Doom Emacs Configuration

The Methods, Management, and Menagerie
of Madness — in meticulous detail

TECOSAUR

eldfcb6
2025-06-09
14:56 UTC

https://code.tecosaur.net/tec/emacs-config/commit/e1dfc56

CHAPTER

Contents

Introduction 8
1.1 WhyEmacs? e e 8
1.1.1 Theenvelopingeditor 9
1.1.2 Some notably unique features L. L. 9
113 Issues 9
1.1.4 Teachamantofish... 10
1.2 Editorcomparison 11
1.3 Notes for the unwary adventurer 12
1.3.1 ExtraRequirements 13
1.4 CurrentIssues L. e 14
1.4.1 Magitpushindaemon 14
1.4.2 Unread emails doesn’t work across Emacs instances 14
Rudimentary configuration 15
2.1 Confpkg L 15
2.1.1 Motivation 15
2.1.2 Design e 15
2.1.3 Preparation Lo 16
2.4 Setupo e 17
2.1.5 Packagegeneration 18
2.1.6 ldentify cross-package dependencies 20
2.1.7 Commenting out package! statements 22
2.1.8 Creatingtheconfigfile 23
2.1.9 QUIter OULPUL o e e e e e e e e e e 26
2.1.10 Reportingload time information 26
2,111 Finalise 31
2.1.12 Bootstrapo e e e 31
2.2 Personal Information i e e e 34
2.3 Betterdefaults e 35
2.3.1 Simplesettings 35
2.3.2 Framesizing Lo 36
2.3.3 Auto-CUSTOMISALIONS« . v v v v v v e 36
23.4 Windows L. 36
2.3.5 Hippieexpand 37

2.3.6 Bufferdefaults 39

CONTENTS 3

2.4 Doomconfiguration 40
2,41 Modules 40

2.4.2 Profiles 45

2.4.3 VisualSettings 46

2.4.4 Somehelpermacros.o 53

2.4.5 Allow babel executionin CLIactions « « v v v v v v v v v .. 53

2.4.6 ElSpREPL i 54

2.4.7 Htmlizecommand 56

2.4.8 Orgbuffercreation 57

2.4.9 Dashboard 57
2.4.10 Configdoctor 72

2.5 Otherthings 74
2.5.1 Editorinteraction 74

2.5.2 Windowtitle 74

2.5.3 Systemddaemono 74

2.5.4 Emacsclientwrapper o 76

2.5.5 Prompttorunsetup SCript oot e e e 78

2.5.6 Grabbing source block contentasastring 79

3 Packages 81
3.1 Loadinginstructionst 81
3.1.1 Packagesin MELPA/ELPA/emacsmirror 81

3.1.2 Packages from gitrepositories 81

3.1.3 Disabling built-inpackages 82

3.2 CONVENIENCE . . . v v v v v v e e e e e e e e e e e e e e e e e e 82
3.2 AVY L. e e e 82

3.2.2 Rotate (window management) 83

3.2.3 EmacsEverywhere 83

3.2.4 Which-key 83

3.3 Tools 84
3.3.1 Abbrev L 84

3.3.2 Verylargefiles 85

3.3.3 Eros.o e e e e e e e e e e 87

3.3.4 EVIL e e e e e e e e 87

3.3.5 GPTel 88

3.3.6 Headlice 89

3.3.7 Consult e 89

3.3.8 Magit . . . Lol e 90

3.3.9 MPRIS e e e e 93

3.3.10 Smerge . o.o. ..o e e e e e 94

CONTENTS 4
3301 Corfu e 95
3.3.12 Projectile 95
3.3.13 JINX . v o e e e e e e e e e e e e e 95
3.3.14 TRAMP e 99
3.3.15 Autoactivating snippetsot e 99
3.3.16 Screenshot 100
3.3.17 Etrace e e e e e e e e 100
3.3.18 YASnippet. 101
3.3.19 Stringinflection o 101
3.3.20 Smartparentheses 102

3.4 Visuals e 102
3.4.1 Infocolours 102

3.4.2 Modusthemes 103

3.4.3 Spacemacsthemes 104

3.4.4 Thememagic e 104

3.4.5 Simplecommentmarkup L. 105

3.4.6 Doommodeline 105

3.4.7 Keycasto 108

3.4.8 SCreencast v v v v it e e e e e e e e e e e e e e 108

3.4.9 Mixedpitch 109
3.4.10 Marginaliao 111
3.4.11 CentaurTabs 112
3.4.12 NerdIcons e 113
3.4.13 Prettierpagebreaks oL 113
3.4.14 WIItErOOM v v v i e e e e e e e e e e e e e 114
3.4.15 Treemacso e e e e e e e e e e e e e 116
3.4.16 Visualfillcolumn 117

3.5 Frivolities e e 119
3.5 xked ... 119

3.5.2 Selectric 126

3.5.3 0 WItrin e e e 126

3.5.4 Sprayo e 126

3.5.5 Elcord. 127

3.6 Filetypes 127
3.6.1 Systemd 127

4 Applications 128
4.1 Ebooks 128
4.2 Caleulator. 132
4.2.1 CalcTeX e 132

CONTENTS 5

4.2.2 Defaults. e 133

4.2.3 Embeddedcalc 133

4.3 Newsfeed e 135
431 Keybindings 135

4.3.2 Usabilityenhancements 136

4.3.3 Visualenhancements 136

4.3.4 Functionality enhancements 139

4.4 DICLIONATY e e e e e e e e 140
45 Mail. . ..o 143
451 Fetching 143

4.5.2 Indexing/Searching 155

453 Sending 156

4.5.4 Mudeo e e e e e e e 157

455 OrgMsgo e 169

5 Language configuration m
5.1 General e 171
5..1 FileTemplates 171

5.2 Plaintext e e e 171
5.2.1 ANSicolours e e e e 171

5.2.2 Marginwithoutlinenumbers L. 171

53 Org 172
5.3.1 Systemconfig 174

53.2 Packages 175

5.3.3 Behaviour 183

5.3.4 Visuals 209

5.3.5 Exporting 217

5.3.6 HTMLEXpoOrt« i ittt it 225

5.3.7 KEIEXEXport e 242

5.3.8 BeamerExporto 284

5.3.9 Revealexport 2.85
5.3.10 ASCIIexport i e 285
5.3.11 Markdown Export. 287
5.3.12 Babel 288
5.3.3 ESS . . e 290

54 BIEX o o oo 290
5.4.1 To-be-implementedideas 290

5.4.2 Compilation 291

5.4.3 Snippethelpers 291

5.4.4 Editorvisuals 294

CONTENTS 6

5.5
5.6

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14

5.4.5 Mathinput 297
54.6 SyncTeX e 298
5.4.7 FIXeS e e e e e e 298
Python e 299
PDFE . . . o o e e 299
5.6.1 MuPDF e e 299
5.6.2 Terminalviewing 299
R e 300
5.71 EditorVisuals 300
Julia e e 301
Data.tomlfiles 301
Graphviz e e 302
Markdown e 302
Beancount L e e e e e e e e e 303
GIMP Palettefiles e e 303
Snmippets e e 305
5.14.1 Latexmode 305
5.14.2 Markdownmode 311

5.4.3 Orgmode L. 312

CONTENTS

Let us change our traditional attitude to the construction of programs: Instead of imagining
that our main task is to instruct a computer what to do, let us concentrate rather on explaining
to human beings what we want a computer to do. — Donald Knuth

CHAPTER
Introduction 1
Customising an editor can be very rewarding ... until you have to leave it. For years I have been

looking for ways to avoid this pain. Then I discovered vim-anywhere, and found that it had an
Emacs companion, emacs-anywhere. To me, this looked most attractive.

Separately, online I have seen the following statement enough times I think it’s a catchphrase

Redditor 1: I just discovered this thing, isn’t it cool.
Redditor 2: Oh, there’s an Emacs mode for that.

This was enough for me to install Emacs, but I soon learned there are far more compelling reasons
to keep using it.

I tried out the spacemacs distribution a bit, but it wasn’t quite to my liking. Then I heard about
doom emacs and thought I may as well give that a try. TLDR; it’s great.

Now I've discovered the wonders of literate programming, and am becoming more settled by the
day. This is both my config, and a cautionary tale (just replace "Linux" with "Emacs" in the comic
below).

Why Emacs?

Emacs is not a text editor, this is a common misnomer. It is far more apt to describe Emacs as a
Lisp machine providing a generic user-centric text manipulation environment. That’s quite a mouthful.
In simpler terms one can think of Emacs as a platform for text-related applications. It’s a vague
and generic definition because Emacs itself is generic.

Good with text. How far does that go? A lot further than one initially thinks:

« Task planning

« File management

« Terminal emulation
« Email client

« Remote server tool
. Git frontend

« Web client/server

https://github.com/cknadler/vim-anywhere
https://github.com/zachcurry/emacs-anywhere
https://github.com/remacs/remacs#why-emacs
https://www.eigenbahn.com/2020/01/12/emacs-is-no-editor
https://orgmode.org/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Dired.html
https://github.com/akermu/emacs-libvterm
https://www.djcbsoftware.nl/code/mu/mu4e.html
https://www.gnu.org/software/tramp/
https://magit.vc/
https://github.com/pashky/restclient.el
https://github.com/skeeto/emacs-web-server

INTRODUCTION Why Emacs? 9

. and more...

Ideally, one may use Emacs as the interface to perform input -+ transform -+ output cycles,
i.e. form a bridge between the human mind and information manipulation.

1.1.1 The enveloping editor

Emacs allows one to do more in one place than any other application. Why is this good?

« Enables one to complete tasks with a consistent, standard set of keybindings, GUI and
editing methods — learn once, use everywhere

« Reduced context-switching

« Compressing the stages of a project — a more centralised workflow can progress with
greater ease

« Integration between tasks previously relegated to different applications, but with a common
subject — e.g. linking to an email in a to-do list

Emacs can be thought of as a platform within which various elements of your workflow may
settle, with the potential for rich integrations between them — a life IDE if you will.

Today, many aspects of daily computer usage are split between different applications which act
like islands, but this often doesn't mirror how we actually use our computers. Emacs, if one goes
down the rabbit hole, can give users the power to bridge this gap.

1.1.2 Some notably unique features

« Recursive editing

« Completely introspectable, with pervasive docstrings

« Mutable environment, which can be incrementally modified
« Functionality without applications

« Client-server separation allows for a daemon, giving near-instant perceived startup time.

1.1.3 Issues

« Emacs has irritating quirks

INTRODUCTION Why Emacs? 10

Code editor

Office suite

Email

Git client

Task Managment

Figure 1.1: Some sample workflow integrations that can be used within Emacs

« Some aspects are showing their age (naming conventions, APIs)

« Emacs is (mostly) single-threaded, meaning that when something holds that thread up
the whole application freezes

« A few other nuisances

1.1.4 Teachamanto fish...

Give a man a fish, and you feed him for a day. Teach a man to fish, and you feed him for a
lifetime. — Anne Isabella

Most popular editors have a simple and pretty settings interface, filled with check-boxes, selects,
and the occasional text-box. This makes it easy for the user to pick between common desirable
behaviours. To me this is now like giving a man a fish.

What if you want one of those "check-box’ settings to be only on in certain conditions? Some
editors have workspace settings, but that requires you to manually set the value for every single
instance. Urgh, what a pain.

What if you could set the value of that ’check-box’ setting to be the result of an arbitrary expression
evaluated for each file? This is where an editor like Emacs comes in. Configuration for Emacs
isn't a list of settings in JSON etc. it’s an executable program which modifies the behaviour of

https://www.gnu.org/software/emacs/manual/html_node/elisp/Threads.html
https://code.visualstudio.com/docs/getstarted/settings
https://github.com/microsoft/vscode/issues/93153
https://github.com/microsoft/vscode/issues/93628
https://github.com/microsoft/vscode/issues/5595

1.2

INTRODUCTION Editor comparison 11

the editor to suit your liking. This is 'teaching a man to fish'.

Emacs is built in the same language you configure it in (Emacs Lisp, or elisp). It comes with a
broad array of useful functions for text-editing, and Doom adds a few handy little convenience
functions.

Want to add a keybinding to delete the previous line? It’s as easy as

(map! "C-d"
(cmd! (previous-line)
(kill-line)
(forward-line)))

How about another example, say you want to be presented with a list of currently open buffers
(think files, almost) when you split the window. It’s as simple as

(defadvice! prompt-for-buffer (&rest _)
:after 'window-split (switch-to-buffer))

Want to test it out? You don't need to save and restart, you can just evaluate the expression within
your current Emacs instance and try it immediately! This editor is, after all, a Lisp interpreter.

Want to tweak the behaviour? Just re-evaluate your new version — it’s a super-tight iteration
loop.

Editor comparison

Over the years I have tried out (spent at least a year using as my primary editor) the following
applications

« Python IDLE
« Komodo Edit
« Brackets

« VSCode

« and now, Emacs

I have attempted to quantify aspects of my impressions of them below.

https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://www.gnu.org/software/emacs/manual/html_node/eintr/

INTRODUCTION Notes for the unwary adventurer 12

Editor Extensibility Ecosystem EaseofUse Comfort Completion Performance
IDLE 1 1 3 1 2
VSCode 3 3 4 3.5 4 3
Brackets 2.5 2 3 2.5 2
Emacs 4 4 2 3.5 3
Komodo Edit 2 1 3 2 2 2

Extensibility

A

Performance Ecosystem

Completion Ease of Use

Comfort

IDLE VSCode 1 Brackets Emacs] Komodo Edit

1.3 Notes for the unwary adventurer

If you like the look of this, that’s marvellous, and I'm really happy that I've made something

which you may find interesting, however:¢ Warning
This config is insidious. Copying the whole thing blindly can easily lead tc
recommend copying chunks instead.

If you are so bold as to wish to steal bits of my config (or if I upgrade and wonder why things

aren't working), here’s a list of sections which rely on external setup (i.e. outside of this config).

dictionary I've downloaded a custom SCOWL dictionary, which I use in . If this causes issues,
just delete the (setq ispell-dictionary ...) bit.

There are also a number of files I may tangle to other than {init,config,package}.el. The

http://app.aspell.net/create

INTRODUCTION Notes for the unwary adventurer 13

complete list (excluding confpkg generated files) is as follows:

« 7/ .config/doom.orgdev/config.el

« 7/.config/doom.orgdev/init.el

« 7/ .config/doom.orgdev/packages.el

« 7/.config/doom/cli.el

« 7/.config/doom/doctor.el

« 7/.config/doom/init.el

« 7/ .config/doom/misc/mbsync-imapnotify.py

« 7/ .config/doom/misc/org-export-header.html

« 7/ .config/doom/packages.el

« 7/ .config/doom/setup.sh

« 7/.config/emacs/profiles.el

« 7/.config/inkscape/palettes/Emacs Fancy Splash.gpl
« 7/.config/systemd/user/emacs.service

« 7/.config/systemd/user/goimapnotifyQ@.service

« 7/.config/systemd/user/mbsync.service

« 7/.config/systemd/user/mbsync.timer

« 7/.local/bin/e

« 7/.local/bin/emacsmail

« 7/.local/share/applications/emacs-client.desktop
« 7/.local/share/applications/emacsmail .desktop

« 7/.local/share/mime/packages/org.xml

Oh, did I mention that I started this config when I didn't know any elisp, and this whole thing
is a hack job? If you can suggest any improvements, please do so, no matter how much criticism
you include I'll appreciate it :)

1.3.1 Extra Requirements

The lovely doom doctor is good at diagnosing most missing things, but here are a few extras.

« A ITEX Compiler is required for the mathematics rendering performed in Org, and by
CalcTeX.

https://www.tug.org/texlive/

1.4

1.4.1

1.4.2

INTRODUCTION Current Issues 14

« Tusethe Overpass font as a go-to sans serif. It's used as my doom-variable-pitch-font
andin the graph generated by Roam. I have chosen it because it possesses a few characteristics
I consider desirable, namely:

- Aclean, and legible style. Highway-style fonts tend to be designed to be clear at a
glance, and work well with a thicker weight, and this is inspired by Highway Gothic.

- It's slightly quirky. Look at the diagonal cut on stems for example. Helvetica is a
masterful design, but I like a bit more pizzazz now and then.

« A few LSP servers. Take a look at init.el to see which modules have the +1sp flag.

Current Issues

Magit push in daemon

Quite often trying to push to a remote in the Emacs daemon produces as error like this:

128 git ... push -v origin refs/heads/master\:refs/heads/master
Pushing to git@github.com:tecosaur/emacs-config.git

fatal: Could not read from remote repository.

Please make sure you have the correct access rights
and the repository exists.

Unread emails doesn’t work across Emacs instances

It would be nice if it did, so that I could have the Emacs-daemon hold the active mu4e session, but
still get that information. In this case I'd want to change the action to open the Emacs daemon,
but it should be possible.

This would probably involve hooking into the daemon’s modeline update function to write to a
temporary file, and having a file watcher started in other Emacs instances, in a similar manner
to Rebuild mail index while using mu4e.

https://overpassfont.org/
init.el

2.1

2.1.1

2.1.2

15

CHAPTER

Rudimentary configuration

Confpkg

Motivation

Previously, all of my configuration was directly tangled into config. el. This almost satisfies my
use. Occasionally though, I'd want to apply or extract a specific bit of my config in an elisp script,
such as some of my Org-export customisations. This is a hassle, either loading my entire config
(of which 90% simply complicates the state), or manually copying the relevant code in pieces,
one source block at a time (just a different kind of hassle). While I’d like to think my config is
"greater than the sum of its parts", much of it can be safely clumped into self-contained packets
of functionality.

One afternoon I thought "wouldn't it be nice if I could just load a few of those self-contained
chunks of my config’, then I started thinking about how I could have that and config.el. This
is the result.

Design

It’s already natural to organise blocks of config under sections, and we can use :noweb-ref with

aheader-args:emacs-1isp property to direct all child source blocks into a single parent. We

could have two parents, one tangling to subconf/config-X.el and the other to config.el,
however this will duplicate any evaluations required to generate the content, which isn't great

(particularly for things which take a moment, like checking for IKTEX packages). Instead we

can just write to the subconf /* files and then at the end of tangling extract their contents into

config.el.

digraph {
graph [bgcolor="transparent"];
node [shape="underline" penwidth="2" style="rounded,filled" fillcolor="#efefef"
color="#c9c9c9" fontcolor="#000000" fontname="Alegreya Sans"];
edge [color="#aaaaaa" penwidth="1.2" fontname="Alegreya Sans"]
rankdir="LR"
"config.org" [color="#4db5bd"]
"config.el" [color="#e69055"]
node [color="#a991f1"]
"subconf/config-magit.el"
"subconf/config-org.el"

2

RUDIMENTARY CONFIGURATION Confpkg 16

"subconf/config-7.el"

node[color="#51afef"]

"config.org" -> "Magit#srcl" -> "subconf/config-magit.el" -> "config.el"
"config.org" -> "Magit#src2" -> "subconf/config-magit.el"

"config.org" -> "Org#srcl" -> "subconf/config-org.el" -> "config.el"
"config.org" -> "Org#src2" -> "subconf/config-org.el"

"config.org" -> "Org#..." -> "subconf/config-org.el"

"config.org" -> "(etc.)#..." -> "subconf/config-7.el" -> "config.el"

}

To set this up within each section, instead of manually repeating a common form we can generate
the form and supply the relevant section properties via a babel call keyword, like so:

* Subject

#+call: confpkg("subject")

#+begin_src emacs-lisp

;5 Code that configures the subject...

#+end_src

This isn't entirely straightforward, but with some mild abuse of noweb and babel we can make it
work!

2.1.3 Preparation

This approach is built around #+call invocations that affect the tangling. Unfortunately for this
use-case, babel call keywords are not executed on tangle. Tangled noweb blocks are however, and
so we can fudge the behaviour we want by tangling a noweb block to a temp file, with a noweb
block that executes babel calls in the buffer.

(condition-case nil

(progn
(message "Intitialising confpkg")
<<bootstrap>>

(org-fold-core-ignore-fragility-checks
(org-babel-map-executables nil
(wvhen (eq (org-element-type (org-element-context)) 'babel-call)
(org-babel-lob-execute-maybe)))))
(quit (revert-buffer t t t)))

See the Section 2.1.12 section for an explanation of the <<bootstrap>> noweb reference.

<<confpkg-prepare () >>

2.1.4

RUDIMENTARY CONFIGURATION Confpkg 17

Setup

Before generating the template with babel, we want to keep track of:

« How many config groups are created

« Information about each config group

To do this we can simply create two variables. Due to temp-buffer shenanigans, we'll have to use
global variables here.

Then we need to set up the two final phases of this process:

+ Creating config.el

« Cleaning up the superfluous generated content

To trigger the final phases well add a hook to org-babel-post-tangle-hook. Once again,
it would be preferred if this was done locally, but it needs to be global. To avoid this causing
headaches down the line we'll make sure when implementing the hook function to have it remove
itself from the hook when executed.

(setq confpkg--num 0
confpkg--list nil)

<<confpkg-dependency-analysis>>
<<confpkg-strip-package-statements>>
<<confpkg-create-config>>
(defun confpkg-cleanup ()
<<confpkg-cleanup>>

)

<<confpkg-finaliser>>
<<confpkg-clear-old-files>>
(add-hook 'org-babel-tangle-finished-hook #'confpkg-tangle-finalise)
To avoid generating cruft, it would also be good to get rid of old tangled config files at the start.
(make-directory "subconf" t)
(dolist (conf-file (directory-files "subconf" t "config-.*\\.el"))

(delete-file conf-file))

Now to have this take effect, we can just use a babel call keyword. Thanks to the preparation step
this will be executed during tangling.

215

RUDIMENTARY CONFIGURATION Confpkg 18

Package generation

Now we actually implement the confpkg babel function. We could just direct the output into
the subconf/config-X. el file without any extra steps, but why not be a bit fancier and make
it more like a package.

To do this, we'llhave confpkgload a template and then fill it in using format - spec. To make sure
this is actually used, we'll call org-set-property to modify the parent heading, and register
the config group with the variables we created earlier.

;; Babel block for use with #+call

;3 Arguments:

;; - name, the name of the config sub-package

;3 - needs, (when non-empty) required system executable(s)

;3 - after, required features as a string or vector of strings

;3 - pre, a noweb reference to code that should be executed eagerly,
88 and not deferred via after. The code is not included in the

¥ generated .el file and should only be used in dire situations.
;35 - prefix, the package prefix ("config-" by default)

53 - via, how this configuration should be included in config.el,
885 the current options are:

38 + "copy", copy the configuration lisp

o + "require", insert a require statement

38 + "none", do not do anything to load this configuration.

38 This only makes sense when configuration is either being

38 temporarily disabled or loaded indirectly/elsewhere.

;3 - emacs-minimum, the minimum emacs version ("29.1" by default)

(when (or (string-empty-p needs)
(cl-every #'executable-find (delq nil (split-string needs ","))))
(let* ((name (if (string-empty-p name)
(save-excursion
(and (org-back-to-heading-or-point-min t)
(substring-no-properties
(org-element-interpret-data
(org-element-property :title (org-element-at-point))))))
name))
(after
(cond
((and (stringp after) (string-empty-p after)) nil)
((and (stringp after) (string-match-p "\\"[~OJ+\\'" after))
(intern after)) ; Single feature.
((and (vectorp after) (cl-every #'stringp after))
(nconc (list :and) (mapcar #'intern after)))
(t nil)))
(pre (and (not (string-empty-p pre)) pre))
(confpkg-name

(concat prefix (replace-regexp-in-string

RUDIMENTARY CONFIGURATION Confpkg

"[~a-z-]1" "-" (downcase name))))
(confpkg-file (expand-file-name (concat confpkg-name ".el')
"subconf")))
(unless (file-exists-p confpkg-file)
(make-empty-file confpkg-file t))
(cl-incf confpkg--num)
(org-set-property
"header-args:emacs-lisp"
(format ":tangle no :noweb-ref %s :noweb-sep \"\\n\\n\"" confpkg-name))
(push (list :name name
:package confpkg-name
:file confpkg-file
:after after
:pre pre
:via (intern via)
:package-statements nil)
confpkg--list)
(format-spec
"#+begin_src emacs-lisp :tangle %f :mkdirp yes :noweb no-export :noweb-ref none
— :comments no
<<confpkg-template>>
#+end_src"
“((?n . ,confpkg--num)
(?p . ,confpkg-name)
(?f . ,confpkg-file)
(?e . ,emacs-minimum)
(?Y . ,(format-time-string "/Y"))
(7B . ,(format-time-string "/B"))
(?m . ,(format-time-string "/m"))
(?d . ,(format-time-string "/d"))
(?M . ,(format-time-string "/M"))
(?S . ,(format-time-string "%S"))))))

Now all that’s needed is a template to be used.
535 hp.el --- Generated package (no.%n) from my config -*- lexical-binding: t; -*-
;3 Copyright (C) %Y TEC

;3 Author: TEC <https://code.tecosaur.net/tec>

;3 Maintainer: TEC <contact@tecosaur.net>

;3 Created: %B %d, %Y

53 Modified: %B %d, %Y

53 Version: %Y.Y%m.%d

;3 Homepage: https://code.tecosaur.net/tec/emacs-config
;3 Package-Requires: ((emacs \"%e\"))

;; This file is not part of GNU Emacs.

RUDIMENTARY CONFIGURATION Confpkg 20

)

535 Commentary:
;35 Generated package (no.%n) from my config.

;; During generation, dependency on other aspects of my configuration and

;5 packages is inferred via (regexp-based) static analysis. While this seems
;3 to do a good job, this method is imperfect. This code likely depends on
;3 utilities provided by Doom, and if you try to rumn it in isolation you may

;; discover the code makes more assumptions.

;3 That said, I've found pretty good results so far.
533 Code:

<<Lhp>>

(provide '%p)
;33 hp-el ends here

This currently makes the included content look much more package-like that in truly is. However,
I hope that some static analysis in future will allow for dependency information to be collected
and included.

Lastly, should there be an issue or interruption, it's possible that the modifications from #+call: confpkg
may persist. If I've been good with my committing, resolving this should be as simple as reverting
unstaged changes. So... back in reality, it would be nice to have a way to clean up confpkg

residue.

(org-fold-core-ignore-fragility-checks
(org-babel-map-executables nil
(when (and (eq (org-element-type (org-element-context)) 'babel-call)
(equal (org-element-property :call (org-element-context)) "confpkg"))
(org-babel-remove-result)

(org-entry-delete nil "header-args:emacs-1lisp"))))

2.1.6 ldentify cross-package dependencies

At a basic level, we can search for regexp expressions indicating the definition of functions or
variables and search for their usage.

(defun confpkg--rough-extract-definitions (file)
(with-temp-buffer
(insert-file-contents file)

(goto-char (point-min))

RUDIMENTARY CONFIGURATION Confpkg 21

(let (symbols)
(while (re-search-forward
(rx line-start (* (any 7\s 7\t)) " ("
(or "defun" "defmacro" "defsubst" "defgeneric" "defalias" "defvar"
— "defcustom" "defface" "deftheme"
"cl-defun" "cl-defmacro" "cl-defsubst" "cl-defmethod"
— "cl-defstruct" "cl-defgeneric" "cl-deftype")
(+ (any ?\s 7\t))
(group (+ (any "A-Z" "a-z" "0-9"

T+ 7- Tk 7/ 7_ 77 70 7@ 78 7 7T 7% 7= T: 7< > 7

= 71))
(or blank ?\mn))
nil t)
(push (match-string 1) symbols))
symbols)))

Continuing our rough regexp approach, we can construct a similar function to look for uses of
symbols.

(defun confpkg--rough-uses-p (file symbols)
(with-temp-buffer

(insert-file-contents file)
(let ((symbols (copy-sequence symbols)) uses-p)
(while symbols
(goto-char (point-min))
(if (re-search-forward (rx word-start (literal (car symbols)) word-end) nil t)
(setq uses-p t symbols nil)
(setq symbols (cdr symbols))))
uses-p)))

Now we can put these two functions together to annotate confpkg--1list with their (confpkg)
dependencies.

(defun confpkg-annotate-list-dependencies ()
(dolist (confpkg confpkg--list)
(plist-put confpkg :defines
(confpkg--rough-extract-definitions
(plist-get confpkg :file))))
(dolist (confpkg confpkg--list)
(let ((after (plist-get confpkg :after))
requires)
(dolist (other-confpkg confpkg--list)
(when (and (not (eq other-confpkg confpkg))
(confpkg--rough-uses-p (plist-get confpkg :file)
(plist-get other-confpkg :defines)))
(push (plist-get other-confpkg :package) requires)))
(when (and after (symbolp after))
(push after requires))

RUDIMENTARY CONFIGURATION Confpkg 22

(plist-put confpkg :requires requires))))

Finally, we can use this information to edit the confpkg files to add the necessary require
statements.

(defun confpkg-write-dependencies ()
(dolist (confpkg confpkg--list)
(when (plist-get confpkg :requires)
(with-temp-buffer
(setq buffer-file-name (plist-get confpkg :file))
(insert-file-contents buffer-file-name)
(re-search-forward "~;;; Code:\n")
(insert "\n")
(dolist (req (plist-get confpkg :requires))
(insert (format '"(require 'Js)\n" req)))

(write-region nil nil buffer-file-name)
(set-buffer-modified-p nil)))))

2.1.7 Commenting out package! statements

It’s easy enough to set package ! statements to tangle to packages . el, however with our noweb
ref approach they will also go to the config files. This could be viewed as a problem, but I actually
think it's rather nice to have the package information with the config. So, we can look for an
immediate package! statement and simply comment it out. As a bonus, we can also then record
which packages are needed for each block of config.

(defun confpkg-comment-out-package-statements ()
(dolist (confpkg confpkg--list)
(with-temp-buffer
(setq buffer-file-name (plist-get confpkg :file))
(insert-file-contents buffer-file-name)
(goto-char (point-min))

(while (re-search-forward "~;;;
< Code:\n[[:space:]1\n]l*(\\(package!\\|unpin!\\) [[:space:]1\n]+\\ ([~ [:space:]1]1+\\)\\b"
< nil t)

(plist-put confpkg :package-statements
(nconc (plist-get confpkg :package-statements)
(1ist (match-string 2))))
(let* ((start (progn (beginning-of-line) (point)))
(end (progn (forward-sexp 1)
(if (looking-at "[\t J#*;.%")
(line-end-position)
(point))))
(contents (buffer-substring start end))
paste-start paste-end

RUDIMENTARY CONFIGURATION Confpkg 23

(comment-start ";")
(comment-padding " ")
(comment-end ""))
(delete-region start (1+ end))
(re-search-backward "~;;; Code:")
(beginning-of-line)
(insert ";; Package statement:\n")
(setq paste-start (point))
(insert contents)
(setq paste-end (point))
(insert "\n;;\n")
(comment-region paste-start paste-end 2)))
(when (buffer-modified-p)
(write-region nil nil buffer-file-name)
(set-buffer-modified-p nil)))))

2.1.8 Creatingthe configfile

After all the subconfig files have been tangled, we need to collect their content and put them
together into config.el. For this, all that’s needed is a function to go through the registered
config groups and put their content in a tempbuffer. We can call this with the finalising step.

(defun confpkg-create-config ()
(let ((revert-without-query '("config\\.el"))
(keywords (org-collect-keywords '("AUTHOR" "EMAIL")))
(original-buffer (current-buffer)))
(with-temp-buffer
(insert

(format ";;; config.el -*- lexical-binding: t; -*-

;3 SPDX-FileCopyrightText: © 2020-%s %s <¥s>
53 SPDX-License-Identifier: MIT

;3 Generated at %s from the literate configuration.

(add-to-1list 'load-path %S)\n"

(format-time-string "%Y")
(cadr (assoc "AUTHOR" keywords))
(cadr (assoc "EMAIL" keywords))
(format-time-string "%FT%T%z")
(replace-regexp-in-string
(regexp-quote (getenv "HOME")) "~"
(expand-file-name "subconf/"))))

(mapc

(lambda (confpkg)

RUDIMENTARY CONFIGURATION Confpkg 24

(insert
(if (eq 'mone (plist-get confpkg :via))
(format "\n;;; %s intentionally omitted.\n" (plist-get confpkg :name))
(with-temp-buffer
(cond
((eq 'copy (plist-get confpkg :via))
(insert-file-contents (plist-get confpkg :file))
(goto-char (point-min))
(narrow-to-region
(re-search-forward "~;;; Code:\nt+'")
(progn
(goto-char (point-max))
(re-search-backward (format "[~\n\t][\n\t I*\n[\t]#*(provide 'Js)"
— (plist-get confpkg :package)))
(match-end 0))))
((eq 'require (plist-get confpkg :via))
(insert (format "(require 'Ys)\n" (plist-get confpkg :package))))
(t (insert (format "(warn \"%s confpkg :via has unrecognised value:
— %S\" %S %S)"
(plist-get confpkg :name) (plist-get confpkg
< :via)))))
(goto-char (point-min))
(insert "\m;;i-----——————-mmm——— - -
"\n;;; " (plist-get confpkg :name)
@3 § g ==mmomcccccsssccsosee \n\n")
(when (plist-get confpkg :defines)
(insert ";; This block defines "
(mapconcat
(lambda (d) (format "“’s'" d))
(plist-get confpkg :defines)

",

ll'll)
(when (re-search-backward "\\([~, 1+\\), \\([~, I+\\), \\([~,
< T\ .A\\="

(line-beginning-position) t)
(replace-match "\\1, \\2, and \\3."))
(when (re-search-backward "\\([~, 1+\\), \\([~, T+\\) .\\="
(line-beginning-position) t)
(replace-match "\\1 and \\2."))
(insert "\n\n")
(forward-line -2)
(setg-local comment-start ";'")
(£ill-comment-paragraph)
(forward-paragraph 1)
(forward-line 1))
(if (equal (plist-get confpkg :package) "config-confpkg-timings")
(progn
(goto-char (point-max))

RUDIMENTARY CONFIGURATION Confpkg

25

(insert "\n\n\
(confpkg-create-record 'doom-pre-config (float-time (time-subtract (current-time)
— before-init-time)))
(confpkg-start-record 'config)
(confpkg-create-record 'config-defered 0.0 'config)
(confpkg-create-record 'set-hooks 0.0 'config-defered)
(confpkg-create-record 'load-hooks 0.0 'config-defered)
(confpkg-create-record 'requires 0.0 'root)\n"))
(let ((after (plist-get confpkg :after))
(pre (and (plist-get confpkg :pre)
(org-babel-expand-noweb-references
(list "emacs-lisp"
(format "<<Js>>" (plist-get confpkg :pre))
'((:noweb . "yes")
(:comments . "none")))
original-buffer)))
(name (replace-regexp-in-string
"config--7" "
(plist-get confpkg :package))))
(if after
(insert (format "(confpkg-with-record '%S\n"
(list (concat "hook: " name) 'set-hooks))
(if pre
(concat ";; Begin pre\n" pre "\n;; End pre\n")
)
(format (if (symbolp after) ; If single feature.
" (with-eval-after-load '/s\n"
" (after! %s\n")
after))
(when pre
(insert "\n;; Begin pre (unnecesary since after is unused)\n"
pre
"\n;; End pre\n")))
(insert
(format "(confpkg-with-record '%S\n"
(1ist (concat "load: " name)
(if after 'load-hooks 'config)))))
(goto-char (point-max))
(when (string-match-p ";" (thing-at-point 'line))
(insert "\n"))
(insert ")")
(when (plist-get confpkg :after)
(insert "))"))
(insert "\n"))
(buffer-string)))))
(let ((confpkg-timings ;; Ensure timings is put first.
(cl-some (lambda (p) (and (equal (plist-get p :package)
— "config-confpkg-timings") p))

RUDIMENTARY CONFIGURATION Confpkg 26

confpkg--1list)))
(append (list confpkg-timings)
(nreverse (remove confpkg-timings confpkg--list)))))
(insert "\n(confpkg-finish-record 'config)\n\n;;; config.el ends here")

(write-region nil nil "config.el" nil :silent))))

Applying lexical binding to the config file is good for a number of reasons, among which it’s
(slightly) faster than dynamic binding (see this blog post for more info).

2.1.9 Quieter output

All the babel evaluation here ends up being quite noisy (along with a few other things during
tangle), let’s see if we can change that.

(when noninteractive
(unless (fboundp 'doom-shut-up-a)
(defun doom-shut-up-a (fn &rest args)
(let ((standard-output #'ignore)
(inhibit-message t))
(apply fn args))))
(advice-add 'org-babel-expand-body:emacs-lisp :around #'doom-shut-up-a)
;3 Quiet some other annoying messages
(advice-add 'sh-set-shell :around #'doom-shut-up-a)
(advice-add 'rng-what-schema :around #'doom-shut-up-a)
(advice-add 'python-indent-guess-indent-offset :around #'doom-shut-up-a))

2.1.10 Reporting load time information

When generating the config we added a form to collect load-time information.

(defvar confpkg-load-time-tree (list (list 'root)))
(defvar confpkg-record-branch (list 'root))

(defvar confpkg-record-num 0)

It would be good to process confpkg-load-times at the end to make it more useful, and provide
a function to display load time information from it. This is to aid in identification of confpkgs
that take particularly long to load, and thus would benefit from some attention.

To extract the per-confpkg load times, we can just take the difference in (float-time) and
exclude the first entry.

https://nullprogram.com/blog/2016/12/22/

RUDIMENTARY CONFIGURATION Confpkg

(defun confpkg-create-record (name elapsed &optional parent enclosing)
(let ((parent (assoc (or parent (car confpkg-record-branch))
confpkg-load-time-tree))
(record (cons name (list (list 'self

:name (format "Ys'" name)
:num (cl-incf confpkg-record-num)
:elapsed elapsed
:enclosing enclosing)))))

(push record confpkg-load-time-tree)

(push record (cdr parent))

record))

(defun confpkg-start-record (name &optional parent)
(let ((record (confpkg-create-record name 0.0et+NaN parent t)))
(plist-put (cdadr record) :start (float-time))
(push name confpkg-record-branch)

record))

(defun confpkg-finish-record (name)
(let ((self-record (cdar (last (cdr (assoc name confpkg-load-time-tree))))))
(plist-put self-record :elapsed
(- (float-time) (plist-get self-record :start) 0.0))
(unless (equal (car confpkg-record-branch) name)
(message "Warning: Confpkg timing record expected to finish %S, instead found
— %hS. %sS"
name (car confpkg-record-branch) confpkg-record-branch))
(setq confpkg-record-branch (cdr confpkg-record-branch))))

A convenience macro could be nice to have.

(defmacro confpkg-with-record (name &rest body)
"Create a time record around BODY.
The record must have a NANE."
(declare (indent 1))
(let ((name-val (make-symbol '"name-val'))
(record-spec (make-symbol "record-spec")))
(let ((,name-val ,name)
(,record-spec (if (consp ,name-val) ,name-val (list ,name-val))))
(apply #'confpkg-start-record ,record-spec)
(unwind-protect
(progn ,@body)
(confpkg-finish-record (car ,record-spec))))))

It would also be nice to collect some other load-time-related information.

(defadvice! +require--log-timing-a (orig-fn feature &optional filename noerror)
:around #'require

(if (or (featurep feature)

RUDIMENTARY CONFIGURATION Confpkg 28

(eq feature 'cus-start) ; HACK Why!?!
(assoc (format "require: Js'" feature) confpkg-load-time-tree))
(funcall orig-fn feature filename noerror)
(confpkg-with-record (list (format "require: Js" feature)
(and (eq (car confpkg-record-branch) 'root)
'requires))
(funcall orig-fn feature filename noerror))))

At last, we'll go to some pains to make a nice result tabulation function.

I will readily admit that this function is absolutely horrible. I just spent an evening adding to it

till it worked then stopped touching it. Maybe in the future I'll go back to it and try to clean up
the implementation.

(defun confpkg-timings-report (&optional sort-p node)
"Display a report on load-time information.
Supply SORT-P (or the universal argument) to sort the results.
NODE defaults to the root mnode."
(interactive
(list (and current-prefix-arg t)))
(let ((buf (get-buffer-create "*Confpkg Load Time Report#*"))
(depth 0)
num-pad name-pad max-time max-total-time max-depth)
(cl-labels
((sort-records-by-time
(record)
(let ((self (assoc 'self record)))
(append (list self)
(sort (nreverse (remove self (cdr record)))
(lambda (a b)
(> (or (plist-get (alist-get 'self a) :total) 0.0)

(or (plist-get (alist-get 'self b) :total) 0.0)))))))
(print-record

(record)
(cond
((eq (car record) 'self)
(insert
(propertize
(string-pad (number-to-string (plist-get (cdr record) :num)) num-pad)
'face 'font-lock-keyword-face)
non
(propertize
(apply #'concat
(make-list (1- depth) "e "))
'face 'font-lock-comment-face)
(string-pad (format "Ys" (plist-get (cdr record) :name)) name-pad)
(make-string (* (- max-depth depth) 2) 7\s)
(propertize

RUDIMENTARY CONFIGURATION Confpkg 29

(format ",.4fs" (plist-get (cdr record) :elapsed))
'face
(list :foreground
(doom-blend 'orange 'green
(/ (plist-get (cdr record) :elapsed) max-time))))
(if (= (plist-get (cdr record) :elapsed)
(plist-get (cdr record) :total))

nn

(concat " (="
(propertize
(format "7,.3fs" (plist-get (cdr record) :total))
'face

(list :foreground
(doom-blend 'orange 'green
(/ (plist-get (cdr record) :total)
< max-total-time))))

")
"\n"))
(t
(cl-incf depth)
(mapc

#'print-record
(if sort-p
(sort-records-by-time record)
(reverse (cdr record))))
(cl-decf depth))))
(flatten-records
(records)
(if (eq (car records) 'self)
(list records)
(mapcan
#'flatten-records
(reverse (cdr records)))))
(tree-depth
(records &optional depth)
(if (eq (car records) 'self)
(or depth 0)
(1+ (cl-reduce #'max (cdr records) :key #'tree-depth))))
(mapreduceprop
(list map reduce prop)
(cl-reduce
reduce list
:key
(lambda (p) (funcall map (plist-get (cdr p) prop)))))
(elaborate-timings
(record)
(if (eq (car record) 'self)
(plist-get (cdr record) :elapsed)

RUDIMENTARY CONFIGURATION Confpkg

30

(let ((total (cl-reduce #'+ (cdr record)
:key #'elaborate-timings))
(self (cdr (assoc 'self record))))
(if (plist-get self :enclosing)
(progl
(plist-get self :elapsed)
(plist-put self :total (plist-get self :elapsed))
(plist-put self :elapsed
(- (x 2 (plist-get self :elapsed)) total)))
(plist-put self :total total)
total))))
(elaborated-timings
(record)
(let ((record (copy-tree record)))
(elaborate-timings record)
record)))
(let* ((tree
(elaborated-timings
(append ' (root)
(copy-tree
(alist-get (or node 'root)
confpkg-load-time-tree
nil nil #'equal))
'((self :num O :elapsed 0)))))
(flat-records
(cl-remove-if
(lambda (rec) (= (plist-get (cdr rec) :num) 0))
(flatten-records tree))))

(setq max-time (mapreduceprop flat-records #'identity #'max :elapsed)
max-total-time (mapreduceprop flat-records #'identity #'max :total)
name-pad (mapreduceprop flat-records #'length #'max :name)
num-pad (mapreduceprop flat-records

(lambda (n) (length (number-to-string n)))
#'max :num)
max-depth (tree-depth tree))
(with-current-buffer buf
(erase-buffer)
(setq-local outline-regexp "[0-9]+ #\\(7:e \\)x*")
(outline-minor-mode 1)
(use-local-map (make-sparse-keymap))
(local-set-key "TAB" #'outline-toggle-children)
(local-set-key "\t" #'outline-toggle-children)
(local-set-key (kbd "<backtab>") #'outline-show-subtree)
(local-set-key (kbd "C-<iso-lefttab>")
(eval ~(cmd! (if current-prefix-arg
(outline-show-all)
(outline-hide-sublevels (+ ,num-pad 2))))))
(insert

2.1.1

2.1.12

RUDIMENTARY CONFIGURATION Confpkg 31

(propertize
(concat (string-pad "#" num-pad) " "
(string-pad "Confpkg"
(+ name-pad (* 2 max-depth) -3))
(format " Load Time (=%.3fs)\n"
(plist-get (cdr (assoc 'self tree)) :total)))
'face '(:inherit (tab-bar-tab bold) :extend t :underline t)))
(dolist (record (if sort-p
(sort-records-by-time tree)
(reverse (cdr tree))))
(unless (eq (car record) 'self)
(print-record record)))
(set-buffer-modified-p nil)
(goto-char (point-min)))
(pop-to-buffer buf)))))

Finalise

At last, to clean up the content inserted by the babel calls we can just revert the buffer. As long as
org-babel-pre-tangle-hook hasn't been modified, save-buffer will be run at the start of
the tangle process and so reverting will take us back to just before the tangle started.

Since this is the function added as the post-tangle hook, we also need to remove the function
from the hook and call the config.el creation function.

(defun confpkg-tangle-finalise ()
(remove-hook 'org-babel-tangle-finished-hook #'confpkg-tangle-finalise)
(revert-buffer t t t)
(confpkg-comment-out-package-statements)
(confpkg-annotate-list-dependencies)
(confpkg-create-config)
(confpkg-write-dependencies)
(message "Processed /s elisp files" (length confpkg--list)))

Within confpkg-tangle-finalise we carefully order each step so that the most important
steps go first, to minimise the impact should a particular step fail.

Bootstrap

This system makes use of some recent commits introduced to Org, such as this noweb expansion
bugfix which will be included in Org 9.5.4. This is problematic if using Emacs 28.2 or older, so to
get around this we must go through a bootstrap process.

https://git.savannah.gnu.org/cgit/emacs/org-mode.git/commit/?id=cb8bf4a0d
https://git.savannah.gnu.org/cgit/emacs/org-mode.git/commit/?id=cb8bf4a0d

RUDIMENTARY CONFIGURATION Confpkg 32

To start with, we'll check if we are:

Running an Org version prior t0 9.5.4

Running in anoninteractive session

Using an Org that’s not installed in the user directory

In a session with the symbol exit! defined

(let ((required-org-version "9.5.4")
(standard-output t))
(when (and (version< (org-version) required-org-version)
(not (string-match-p (regexp-quote (expand-file-name "7"))
(locate-library "org"))))
(cond

((and noninteractive (fboundp 'exit!))

(print! (warn (format "Detected conditions provoking a config bootstrap (Org
— %s)" (org-version))))

(print! (start "Initiating bootstrap..."))

<<bootstrap-perform>>

)
(t (message "Installed Org version %s is too old, %s is needed.\nRun \"doom
— sync\" to fix."

(org-version) required-org-version)))))

If these conditions are met, we can assume that the loaded Org version is insufficient, and that
it’s likely a Emacs is currently running a command like doom sync, and so it makes sense to
perform the 3-step bootstrap.

1. Temporarily rename config.orgto config.original.org.

2. Create anew config.org that when tangled results in Org being installed.

3. Swap back to the original config.org, and re-sync.
(print! (item "Temporarily relocating config.org to config.original.org"))
(rename-file "config.org" "config.original.org" t)
<<boostrap-create-transient-config>>

(print! (item "%s") (bold "Re-running sync"))
(exit! :restart) ; Re-run =doom sync= with the transient config.

With the approach worked out, we just need to generate a snipped that will create anew config. org
that when tangled:

« Tangles our Org recipe to packages.el
« Swaps back to the original config.org

» Re-runsdoom sync

RUDIMENTARY CONFIGURATION Confpkg 33

(print! (item "Creating minimal init.el"))

(let ((standard-output #'ignore))
(with-temp-buffer

(insert
";3; init.el -*- lexical-binding: t; -*-\n\n"
(pp (quote

<<bootstrap-init>>

)))

(write-region nil nil "init.el")))
(print! (item "Creating boostrap config.el"))

(let ((standard-output #'ignore))
(with-temp-buffer
(insert
(org-element-interpret-data
(list
' (keyword (:key "title" :value "Boostrap Stage 1 Config" :post-blank 1))
" (src-block
(:language "emacs-lisp"
:value , (pp (quote (progn
<<boostrap-transition>>
)))
:name "bootstrap-transition"
:post-blank 1))
* (src-block
(:language "emacs-lisp"
:parameters
, (concat ":noweb no-export "
":tangle (expand-file-name (make-temp-name
— \"emacs-org-babel-excuses/confpkg-prepare-\")
— temporary-file-directory) "
":mkdirp yes")

:value ,(concat "<<" ; Split to avoid (prematurely) creating a noweb
— reference.

"bootstrap-transition()"
">>\n"))))))

(write-region nil nil "config.org")))
For the bootstrap we need a minimal init.el, just the literate module should be sufficient.

(doom! :config literate)

This config.org simply provides an entry point for us to run elisp during tangle. We just need
to make use of it to install Org and re-sync the original configuration.

2.2

RUDIMENTARY CONFIGURATIO N Personal Information 34

(setq standard-output t)

(print! (start "Starting second stage of the bootstrap."))
(print! (item "Creating minimal packages.el"))

(let ((standard-output #'ignore))
(with-temp-buffer
(insert
";; -*- no-byte-compile: t; -*-\n\n"
(pp (quote
<<org-pkg-statement () >>
)))

(write-region nil nil "packages.el")))
(doom-packages-install)

(print! (item "Switching back to original config.org"))
(rename-file "config.original.org" "config.org" t)

(print! (item "¥%s") (bold "Re-running sync"))
(exit! :restart)

There we go, that should do the trick, so long as we call the bootstrap block at the start of the
tangle process. This is done by calling bootstrap within the confpkg preparation stage.

Personal Information

It’s useful to have some basic personal information

(setq user-full-name "TEC"
user-mail-address '"contact@tecosaur.net")

Apparently this is used by GPG, and all sorts of other things.

Speaking of GPG, I want to use ~/.authinfo.gpg instead of the defaultin /. config/emacs.
Why? Because my home directory is already cluttered, so this won't make a difference, and I
don't want to accidentally purge this file (I have done . I also want to cache as much as possible,
as my home machine is pretty safe, and my laptop is shutdown a lot.

(setq auth-sources '("~/.authinfo.gpg")
auth-source-cache-expiry nil) ; default is 7200 (2h)

RUDIMENTARY CONFIGURATION Better defaults 35

2.3 Betterdefaults

2.3.1 Simple settings

Inspired by a few sources of modified defaults (such as angrybacon/dotemacs) and my own
experiences, I've ended up with a small set of tweaks on top of the changes Doom makes:

(setq-default
delete-by-moving-to-trash t ; Delete files to trash
window-combination-resize t ; take new window space from all

< other windows (not just current)

x-stretch-cursor t) ; Stretch cursor to the glyph width
(setq undo-limit 80000000 ; Raise undo-limit to 80Mb
evil-want-fine-undo t ; By default while in insert all
— changes are one big blob. Be more granular
auto-save-default t ; Nobody likes to loose work, I
— certainly don't
truncate-string-ellipsis "..." ; Unicode ellispis are nicer than
< "...", and also save /precious/ space
password-cache-expiry nil ; I can trust my computers ... can't
— I7
;5 scroll-preserve-screen-position 'always ; Don't have “point' jump around

scroll-margin 2 ; It's nice to maintain a little
— margin
display-time-default-load-average nil) ; I don't think I've ever found this

— useful

(display-time-mode 1) ; Enable time in the mode-line
(global-subword-mode 1) ; Iterate through CamelCase words

When using a device with a battery, it would be nice to display battery information. We can
check for a battery during tangle via noweb, and only calldisplay-battery-mode when relevant.
From a look at the various status functions in battery . el, it seems like the ?L key is consistently
N/A when there is no battery, so we'll test on that.

(require 'battery)
(if (and battery-status-function
(not (equal (alist-get 7L (funcall battery-status-function))
"N/A")))
(prinl-to-string " (display-battery-mode 1))
")

Now with noweb we’ use the result.

<<battery-status-setup()>>

https://github.com/angrybacon/dotemacs/blob/master/dotemacs.org#use-better-defaults

23.2

233

234

RUDIMENTARY CONFIGURATION Better defaults 36

Framesizing

It’s nice to control the size of new frames, when launching Emacs that can be done with . After
the font size adjustment during initialisation this works out to be 102x31.

Thanks to hotkeys, it’s easy for me to expand a frame to half/full-screen, so it makes sense to be
conservative with the sizing of new frames.

Then, for creating new frames within the same Emacs instance, we'll just set the default to be
something roughly 80% of that size.

(add-to-list 'default-frame-alist '(height . 24))
(add-to-list 'default-frame-alist '(width . 80))

Auto-customisations

By default changes made via a customisation interface are added to init . el. I prefer the idea
of using a separate file for this. We just need to change a setting, and load it if it exists.

(setg-default custom-file (expand-file-name ".custom.el" doom-user-dir))

(when (file-exists-p custom-file)
(load custom-file))

Windows

I find it rather handy to be asked which buffer I want to see after splitting the window. Let’s
make that happen.

First, we'll enter the new window

(setq evil-vsplit-window-right t
evil-split-window-below t)

Then, we'll pull up a buffer prompt.
(defadvice! prompt-for-buffer (&rest _)
:after '(evil-window-split evil-window-vsplit)

(consult-buffer))

Window rotation is nice, and can be found under SPC w r and SPC w R. Layout rotation is also
nice though. Let’s stash this under SPC w SPC, inspired by Tmux’s use of C-b SPC to rotate

RUDIMENTARY CONFIGURATION Better defaults 37

windows.

We could also do with adding the missing arrow-key variants of the window navigation/swapping
commands.

(map! :map evil-window-map
"SPC" #'rotate-layout
;5 Navigation

"<left>" #'evil-window-left

"<down>" #'evil-window-down

"<up>" #'evil-window-up

"<right>" #'evil-window-right

;5 Swapping windows

"C-<left>" #'+evil/window-move-left
"C-<down>" #'+evil/window-move-down
"C-<up>" #'+evil/window-move-up
"C-<right>" #'+tevil/window-move-right)

2.3.5 Hippie expand

Completing text based on other availible content is a great idea, and so dabbrev (dynamic
abbreviations) is throughly useful. There’s another similar tool that Emacs comes with though,
called hippie expand, which is just a bit nicer yet, and can be used as a swap-in upgrade to
dabbrev.

(global-set-key [remap dabbrev-expand] #'hippie-expand)

1. Expansion prioritisation

Hippie expand works by cycling through a series of expansion-generating functions, listed
in the variable hippie-expand-try-functions-list.

By default, it completes (in order):

« File names

« Known abbreviations

« Lists (i.e. bracketed regions)
« Previous lines

« Dabbrev (this buffer)

« Dabbrev (all buffers)

« Dabbrev (kill ring)

https://www.masteringemacs.org/article/text-expansion-hippie-expand

RUDIMENTARY CONFIGURATION Better defaults 38

« Known elisp symbols

I find that try-expand-1line completions often appear when I actually want a dabbrev
completion, so let’s deprioritise it somewhat. If I actually want to try for a line expansion,
it's fairly easy to deliberately trigger it — just invoke hippie-expand after typing a space

and there will be no dabbrev candidates.

Speaking of dabbrev, I do think of hippie-expand mostly as "a stangely named dabbrev+",
so let’s prioritise the dabbrev-related expanders a bit. I'll also toss in a nice non-default
expansion generator as the first dabbrev candidate function: try-expand-dabbrev-visible.

There’s another cool source of multi-word expansion (actually multi-line) that isn’t used by
default, try-expand-dabbrev-from-kill. I personally think this one is quite neat, but
don't want it to interfere with more common single-word completions, and so will place it
just above try-expand-line.

(setq hippie-expand-try-functions-list
' (try-expand-list

try-expand-dabbrev-visible
try-expand-dabbrev
try-expand-all-abbrevs
try-expand-dabbrev-all-buffers
try-complete-file-name-partially
try-complete-file-name
try-expand-dabbrev-from-kill
try-expand-whole-kill
try-expand-line
try-complete-lisp-symbol-partially
try-complete-lisp-symbol))

Unfortunately there’s one aspect of try-expand-dabbrev-from-kill thatfind lets me
down a bit, which is that it fails to complete when the killed text starts with a newline and
the current line does not. I'll see if I can do something about this in the future.

2. Suffix stripping

I am occasionally annoyed by expansions that I make mid-line and cause a common suffix
in the completion to be repeated. For instance, say in an earlier line of a file I have:

func foo(int x, int y, int z)

where the int y argument has just been added. I move to another function that should
have the same adjustment and invoke hippie-expand (at |) to save me keystrokes:

func bar(int x,| int z)
This invokes try-expand-1list and completes to

func bar(int x, int y, int z) int z)

RUDIMENTARY CONFIGURATION Better defaults 39

Clearly, that's not what I want! I suspect that we can make it "just work" the vast majority
of the time by looking to see if there’s a suffix in the completion that’s also a prefix of the
remainder of the line, and stripping it. In our example, this would be int z) which would
turn the completed line into:

func bar(int x, int y, int z)

Hippie-expand doesn't provide a good point to modify expansion behaviour like this,
however the insertion of the expansion is handled by the helper functionhe-substitute-strings,
which we can advise to behave as we wish.

(defun +he-subst-suffix-overlap (ins rem)
"The longest suffixz of the string INS that is a prefiz of REHN.
This <s intended to be used when INS is a newly inserted string and REN is the
remainder of the line, to allow for handling potentially duplicated content."
(let ((len (min (length ins) (length rem))))
(vhile (and (> len 0)
(not (eq 't (compare-strings ins (- len) nil rem O len))))
(setq len (1- len)))
len))

(defun +he-suffix-strip-a (args)
"Filter ARG list for "“he-substitute-string ', truncating duplicated suffiz.
ARGS is the raw argument list (STRING &optional TRANS-CASE)."
(pcase-let* ((°(,ins &optional ,trans-case) args)
(rem (save-excursion
(goto-char (marker-position he-string-end))
(buffer-substring-no-properties
(point) (line-end-position))))
(ov (+he-subst-suffix-overlap ins rem)))
(when (>= ov 0)
(setq ins (substring ins 0 (- (length ins) ov))))
(list ins trans-case)))

(advice-add #'he-substitute-string :filter-args #'+he-suffix-strip-a)

2.3.6 Bufferdefaults

I'd much rather have my new buffers in org-mode than fundamental-mode, hence
;3 (setq-default major-mode 'org-mode)

For some reason this + the mixed pitch hook causes issues with hydra and so I'll just need to
resort to SPC b o for now.

RUDIMENTARY CONFIGURATION Doom configuration 40

2.4 Doom configuration

2.4.1 Modules

Doom has this lovely modular configuration base that takes a lot of work out of configuring Emacs.
Each module (when enabled) can provide a list of packages toinstall (ondoom sync)and configuration
to be applied. The modules can also have flags applied to tweak their behaviour.

535 init.el -*- lexical-binding: t; -*-

;; This file controls what Doom modules are enabled and what order they load in.
;; Press 'K' on a module to view its documentation, and 'gd' to browse its directory.

(doom! :input
<<doom-input>>

:completion
<<doom-completion>>

rui
<<doom-ui>>

:editor
<<doom-editor>>

.emacs

<<doom-emacs>>

:term
<<doom-term>>

:checkers
<<doom-checkers>>

:tools
<<doom-tools>>

:0s
<<doom-o0s>>

:lang
<<doom-lang>>

remail
<<doom-email>>

RUDIMENTARY CONFIGURATION Doom configuration 41

:app
<<doom-app>>

:config
<<doom-config>>

)

1. Structure

As you may have noticed by this point, this is a literate configuration. Doom has good
support for this which we access though the 1iterate module.

While we're in the : config section, we'll use Dooms nicer defaults, along with the bindings
and smartparens behaviour (the flags aren’'t documented, but they exist).

literate

(default +bindings +smartparens)

. Interface

There’s a lot that can be done to enhance Emacs’ capabilities. I reckon enabling half the
modules Doom provides should do it.

;3 company

(corfu torderless +dabbrev)

;shelm

;3ido

33 (dvy

;3 +ticons

;3 tprescient)
(vertico +icons)

; ;deft

doom
doom-dashboard
doom-quit

;3 (emoji +unicode)
;3fill-column
hl-todo

; shydra
;sindent-guides
(ligatures +extra)
— again

; sminimap
modeline
nav-flash

; sneotree

ophints

>

the ultimate code completion backend
complete with cap(f), cape and a flying feather!
the *other* search engine for love and life
the other *other* search engine...
a search engine for love and life
icons are nice
I know what I want(ed)
the search engine of the future

notational velocity for Emacs
what makes DOOM look the way it does
a nifty splash screen for Emacs

DOOM quit-message prompts when you quit Emacs

.

a “fill-column' indicator

highlight TODO/FIXME/NOTE/DEPRECATED/HACK/REVIEW
quick documentation for related commands
highlighted indent columns, notoriously slow
ligatures and symbols to make your code pretty

show a map of the code on the side
snazzy, Atom-inspired modeline, plus APIL
blink the current line after jumping

a project drawer, like NERDTree for vim
highlight the region an operation acts on

https://en.wikipedia.org/wiki/Literate_programming

RUDIMENTARY CONFIGURATION Doom configuration 42

(popup

+all
+defaults)
;; (tabs

;3 +centaur-tabs)

treemacs

; sunicode

(vc-gutter +pretty)

vi-tilde-fringe

(window-select +numbers)

workspaces
zen

(evil +everywhere)

file-templates
fold

(format)

;5g0d

;51ispy
multiple-cursors
;;0bjed

; sparinfer
rotate-text
snippets

; sword-wrap

(dired +icons)
electric
(ibuffer +icons)
undo

— mistakes

vcC

;;eshell
; 5shell
; sterm
vterm

syntax
;5 spell

grammar

ansible
biblio
;s;collab

; ;debugger
;sdirenv

; tame sudden yet inevitable temporary windows

catch all popups that start with an asterix

; default popup rules

an tab bar for Emacs

. with prettier tabs
a project drawer, like neotree but cooler
extended unicode support for various languages

; ves diff in the fringe

; fringe tildes to mark beyond EOB

; visually switch windows

; tab emulation, persistence & separate workspaces

; distraction-free coding or writing

come to the dark side, we have cookies
auto-snippets for empty files
(nigh) universal code folding

automated prettiness

; run Emacs commands without modifier keys
; vim for lisp, for people who don't like vim

editing in many places at once

; text object editing for the innocent
; turn lisp into python, sort of

cycle region at point between text candidates

; my elves. They type so I don't have to

soft wrapping with language-aware indent

; making dired pretty [functionall

smarter, keyword-based electric-indent

interactive buffer management

; persistent, smarter undo for your inevitable

; version-control and Emacs, sitting in a tree

; the elisp shell that works everywhere

simple shell REPL for Emacs

; basic terminal emulator for Emacs
; the best terminal emulation in Emacs

; tasing you for every semicolon you forget
; tasing you for misspelling mispelling

; tasing grammar mistake every you make

a crucible for infrastructure as code

; Writes a PhD for you (citation needed)

; buffers with friends

; FIXME stepping through code, to help you add bugs
; be direct about your environment

RUDIMENTARY CONFIGURATION Doom configuration 43

docker
;seditorconfig
;sein

(eval +overlay)
;sgist

(lookup
+dictionary
+docsets)

1sp

(magit

+forge)

make

;spass

pdf

;sprodigy
;sterraform

3 3 tmux
;stree-sitter

upload

(:if (featurep :system 'macos)

tty

3. Language support

We can be rather liberal with enabling support for languages as the associated packages/configuration

>

port everything to containers

let someone else argue about tabs vs spaces
tame Jupyter notebooks with emacs

run code, run (also, repls)

interacting with github gists

helps you navigate your code and documentation
dictionary/thesaurus is nice

...or in Dash docsets locally

Language Server Protocol

a git porcelain for Emacs

interface with git forges

run make tasks from Emacs

password manager for nerds

pdf enhancements

FIXME managing external services & code builders
infrastructure as code

an API for interacting with tmux

syntax and parsing, sitting in a tree...

map local to remote projects via ssh/ftp

macos) ; improve compatibility with mac0S
improve the terminal Emacs experience

are (usually) only loaded when first opening an associated file.

;;agda

; sbeancount
;3 (cc +1sp)
;;clojure

; ;common-1lisp
;3c0q
;scrystal

; scsharp
data

;3 (dart +flutter)
;3dhall
;selixir
;selm
emacs-lisp
;;erlang

ess

; ;faust

; ;E£sharp
;sfstar
;;gdscript

types of types of types of types...

mind the GAAP

C > C++ ==

java with a lisp

if you've seen one lisp, you've seen them all
proofs-as-programs

ruby at the speed of c

unity, .NET, and mono shenanigans

config/data formats

paint ui and not much else

JSON with FP sprinkles

erlang done right

care for a cup of TEA?

drown in parentheses

an elegant language for a more civilized age
emacs speaks statistics

dsp, but you get to keep your soul

ML stands for Microsoft's Language
(dependent) types and (monadic) effects and Z3
the language you waited for

RUDIMENTARY CONFIGURATION Doom configuration 44

; s (graphql +1sp)

(go +1sp)

;3 (haskell +1sp)

;shy

;3idris

json

;3 (java +1sp)

(javascript +1lsp)

(julia +1sp)
;3kotlin
(latex
+latexmk
+cdlatex
+fold)
;3lean
;;factor
;;ledger

lua

markdown
;3nim

nix

; socaml

(org
+dragndrop
; ;thugo
+noter
+jupyter
+pandoc
+gnuplot
; ;+tpomodoro
+present
+roam?2)

; ;php

; ;plantuml

; ;purescript

(python +1sp +pyright)

359t

; sracket
; sraku
;srest

S IESI

;3 (ruby +rails)

— ‘'life'}"}
(rust +1lsp)
;;scala
scheme

sh

3 3sml

; Give queries a REST

; the hipster dialect

; a language that's lazier than I am

; readability of scheme w/ speed of python

; At least it ain't XML

; the poster child for carpal tunnel syndrome
; all (hope (abandon (ye (who (enter (here))))))

; Python, R, and MATLAB in a blender

; a better, slicker Java(Script)

; writing papers in Emacs has never been so fun
; what else would you use?

; quick maths symbols

; fold the clutter away nicities

; proof that mathematicians need help

; for when scripts are stacked against you

; an accounting system in Emacs

; one-based indices? one-based indices

; writing docs for people to ignore

; python + lisp at the speed of c

I hereby declare "nix geht mehr!"

; an objective camel

; organize your plain life in plain text

; drag & drop files/images into org buffers
; use Emacs for hugo blogging

; enhanced PDF notetaking

ipython/jupyter support for babel

; export-with-pandoc support

; who doesn't like pretty pictures

; be fruitful with the tomato technique
; using org-mode for presentations

; wander around notes

; perl's insecure younger brother

; diagrams for confusing people more
; javascript, but functiomnal

; beautiful is better than ugly

; the 'cutest' gui framework ever

; a DSL for DSLs

; the artist formerly known as perl6
; Emacs as a REST client

; ReST in peace

1.step {|il p "Ruby is #{i.even? 7 'love'

; Fe203.unwrap() .unwrap () .unwrap () .unwrap ()
; java, but good
; a fully conniving family of lisps

she sells {ba,z,fi}sh shells on the C xor

; no, the /other/ ML

RUDIMENTARY CONFIGURATION Doom configuration 45

;3solidity
;3swift

; sterra
web

yaml

zig

4. Input

;sbidi

; schinese
; 3 japanese
; s layout

5. Everything in Emacs

do you need a blockchain? No.

who asked for emoji variables?

Earth and Moon in alignment for performance.
the tubes

JSON, but readable

C, but simpler

(tfel ot) thgir etirw uoy gnipleh

auie,ctsrnm is the superior home row

It's just too convenient being able to have everything in Emacs. I couldn’t resist the Email

and Feed modules.

(:if (executable-find "mu") (mude +org))

; snotmuch

; 3 (wanderlust +gmail)

;;calendar
; ;emms
everywhere
irc

(rss +org)
;stwitter

2.4.2 Profiles

>

; A dated approach to timetabling

Multimedia in Emacs is music to my ears
leave Emacs!? You must be joking.

how neckbeards socialize

emacs as an RSS reader

twitter client https://twitter.com/vnought

Doom has support for multiple configuration profiles. For general usage, this isn't a particularly
useful feature, but for niche use cases it’s fantastic.

((orgdev (env ("DOOMDIR"

"~/.config/doom.orgdev"))))

1. Org development profile For development purposes, it’s handy to have a more minimal
config without my many customisations and interacting packages. Let’s go ahead and
create a near-minimal new config:

;35 init.el -*- lexical-binding: t; -*-

(doom! :completion vertico
P
:editor evil

:config (default +bindings))

RUDIMENTARY CONFIGURATION Doom configuration 46

(unpin! org) ; there be bugs

(require 'org)

(load-theme 'modus-operandi t)

2.4.3 Visual Settings

1. Font Face
a) Setting fonts

’Fira Code is nice, and 'Overpass’ makes for a nice sans companion. We just need to
fiddle with the font sizes a tad so that they visually match. Just for fun I'm trying out
JetBrains Mono though. So far I have mixed feelings on it, some aspects are nice, but
on others I prefer Fira.

(setq doom-font (font-spec :family "JetBrains Mono" :size 24)
doom-big-font (font-spec :family "JetBrains Mono" :size 36)
doom-variable-pitch-font (font-spec :family "Overpass' :size 26)
doom-symbol-font (font-spec :family "JuliaMono")
doom-emoji-font (font-spec :family "Twitter Color Emoji") ; Just used
— by me
doom-serif-font (font-spec :family "IBM Plex Mono" :size 22 :weight
< 'light))

'Fira Code' is nice, and 'Overpass' makes for a nice sans companion. We just need to

fiddle with the font sizes a tad so that they visually match. Just for fun I'm

trying out JetBrains Mono though. So far | have mixed feelings on it, some

aspects are nice, but on others | prefer Fira.

» emacs-lisp

(setq doom-font (font-spec :family "JetBrains Mono" :size 24)
doom-big-font (font-spec :family "JetBrains Mono" :size 36)
doom-variable-pitch-font (font-spec :family "Overpass" :size 24)
doom-serif-font (font-spec :family "IBM Plex Mono" :weight 'light))

«

In addition to these fonts, Merriweather is used with nov.el, and Alegreya as a
serifed proportional font used by mixed-pitch-mode for writeroom-mode with
Org files.

b) Emojis

Emacs (28+) has an emoj i script table. We're about to use it, but before doing so we're
going to excise a few characters that I actually want rendered as using the symbol
font (not as emojis).

RUDIMENTARY CONFIGURATION Doom configuration 47

(dolist (char '(?[3 7@ ?°?))

(set-char-table-range char-script-table char 'symbol))

To actually sort out emojis, all that’s really needed here is to apply doom-emoji-font,
which needs to be done here because it’s not actually a Doom font variable, but rather
my own addition.

(add-hook! 'after-setting-font-hook
(defun +emoji-set-font ()

(set-fontset-font t 'emoji doom-emoji-font nil 'prepend)))

We might as well also construct a regexp to make identifying emojis if buffers more
convenient.

(defvar +emoji-rx
(let (emojis)

(map-char-table

(lambda (char set)

(when (eq set 'emoji)
(push (copy-tree char) emojis)))

char-script-table)
(rx-to-string ~(any ,Q@emojis)))

"4 regezp to find all emoji-script characters.')

For the sake of convenient insertion, we'll also register some emoji aliases based on
common usage.

(setq emoji-alternate-names

'("e" ")")
("g" ":D")
"e" ";)")
("@" ": (")

(n,én nlaughing face" HXDH)
(”12” "ROFL face")

(@ "t (M)
"e" ":')M
"®" ":0")
("@" ":I")

("e" "cool face")

(”é” "gOOfy face")

("@" "pinnochio face" '"liar face")
("1‘" n>:(n)

(n.n vvangry+ face")

("@®" "swearing face")

(|I.H ”SiCk face")

(|I'H "smiling imp")

("@" "frowning imp")

(nn n<3n)

RUDIMENTARY CONFIGURATION Doom configuration 48

)

("&" "o7")
("g" "+1")
(g "-1t)
("»" "left")
("¢ "right")
("L "up")
("ge" "100")

("e" "flying money")))

Lastly, when using Emacs 28+ it would be nice to open the nice emoji dispatch with the
leader key as well as C-x 8 e. Since SPC e is unclaimed, let’s just use that until we
have a better use for it (we could also split up the insertion and querying commands
in other parts of the map).

(when (>= emacs-major-version 29)
(map! :leader
(:prefix ("e" . "Emoji")

:desc "Search" "

s'" #'emoji-search
:desc "Recent" "r'" #'emoji-recent
:desc "List" "1" #'emoji-list

:desc "Describe" "d" #'emoji-describe
:desc "Insert" "i" #'emoji-insert

:desc "Insert" "e" #'emoji-insert)))

Checking the system

Because we care about how things look let’s add a check to make sure we're told if the
system doesn't have any of those fonts. We can obtain a list of installed fonts with
either (font-family-1list) or with the fc-1ist command.

(setq required-fonts '("JetBrains 7Mono.*" "Overpass" "JuliaMono" "IBM Plex
— Mono"

"Merriweather" "Alegreya" "Twitter Color Emoji"))

(setq available-fonts
(delete-dups
(or (font-family-list)
(and (executable-find "fc-list")
(with-temp-buffer
(call-process "fc-list" nil t nil ":" "family")
(split-string (buffer-string) "[,\n]"))))))

(setq missing-fonts
(delq nil (mapcar
(lambda (font)
(unless (delq nil (mapcar (lambda (f)
(string-match-p (format
— "~%s$" font) £f))

RUDIMENTARY CONFIGURATION Doom configuration 49

available-fonts))
font))

required-fonts)))

We can then use this to create a doctor check.

(let (required-fonts available-fonts missing-fonts)
(setq required-fonts '("JetBrains 7Mono.*" "Overpass" "JuliaMono" "IBM
— Plex Mono"

"Merriweather" "Alegreya" "Twitter Color Emoji"))

(setq available-fonts
(delete-dups
(or (font-family-list)
(and (executable-find "fc-list")
(with-temp-buffer
(call-process "fc-list" nil t nil ":" "family")
(split-string (buffer-string) "[,\n]"))))))

(setq missing-fonts
(delq nil (mapcar
(lambda (font)
(unless (delq nil (mapcar (lambda (f)
(string-match-p (format
— "~%s$" font) f£))
available-fonts))
font))
required-fonts)))
(if available-fonts
(dolist (font missing-fonts)
(warn! (format "Missing font: %s." font)))

(warn! "Unable to check for missing fonts, is fc-list installed?")))

Furthermore, when fonts are missing, it could be good to check the state of affairs
on startup.

(setq required-fonts '("JetBrains 7Mono.*" "Overpass" "JuliaMono" "IBM Plex
— Mono"

"Merriweather" "Alegreya" "Twitter Color Emoji"))

(setq available-fonts
(delete-dups
(or (font-family-list)
(and (executable-find "fc-1list'")
(with-temp-buffer
(call-process "fc-list" nil t nil ":" "family")
(split-string (buffer-string) "[,\n]"))))))

RUDIMENTARY CONFIGURATION Doom configuration 50

(setq missing-fonts
(delq nil (mapcar
(lambda (font)
(unless (delq nil (mapcar (lambda (f)
(string-match-p (format
— "~%s$" font) f))
available-fonts))
font))
required-fonts)))

(if missing-fonts
(pp-to-string
“(unless noninteractive
(add-hook! 'doom-init-ui-hook
(run-at-time nil nil
(lambda ()
(let (required-fonts available-fonts
<> missing-fonts)
(setq required-fonts '("JetBrains 7Momno.*"
— "Overpass" "JuliaMono" "IBM Plex Mono"
"Merriweather" "Alegreya"
— "Twitter Color

— Emoji"))

(setq available-fonts
(delete-dups
(or (font-family-list)
(and (executable-find "fc-list")
(with-temp-buffer

(call-process "fc-list" nil t
< nil ":" "family")
(split-string (buffer-string)
= "[,L\n1"))))))

(setq missing-fonts
(delq nil (mapcar
(lambda (font)
(unless (delq nil (mapcar
< (lambda (£)

< (string-match-p
<~ (format

s ”A‘/.S$”

< font)

— £))

< available-fonts))
font))

RUDIMENTARY CONFIGURATION Doom configuration 51

required-fonts)))

(message "’s missing the following fonts: ¥s"
(propertize "Warning!" 'face '(bold
<> warning))

(mapconcat (lambda (font)
(propertize font 'face
<> 'font-lock-variable-name-face))

' ,missing-fonts
","M))
(sleep-for 0.5))))))
";; No missing fonts detected")

<<warn-missing-fonts () >>

This way whenever fonts are missing, after Doom’s UI has initialised, a warning
listing the missing fonts should appear for at least half a second.

2. Theme

The doom-one theme is nice and all, but I find the vibrant variant nicer. With the light
themes, I rather like doom-tomorrow-day. I'd like to pick the default from them based
on the system theme. Thanks to the continued expansion of the xdg-desktop-portal
protocols, we can read this from D-Bus on most systems.

(let ((light-theme 'doom-tomorrow-day)
(dark-theme 'doom-vibrant)
(system-theme
(or (and (memq system-type '(gnu gnu/linux gnu/kfreebsd))
(require 'dbus nil t)
(caar
(ignore-errors
(dbus-call-method
:session
"org.freedesktop.portal.Desktop"
— "/org/freedesktop/portal/desktop"
"org.freedesktop.portal.Settings" "Read"
"org.freedesktop.appearance" "color-scheme"))))
0)))
(pcase system-theme
(1 dark-theme)
(2 light-theme)
(_ dark-theme)))

We'll use the appropriate theme as the default, but let’s also accept the theme as an
environment variable DOOM_THEME for fun.

(setq doom-theme ; Set according to the env var or system-dependent default
(let ((env-theme (getenv "DOOM_THEME")))

RUDIMENTARY CONFIGURATION Doom configuration 52

(if env-theme
(intern env-theme) ; Note: “intern-soft' doesn't work here

'nil)))

Oh, and with the nice selection doom provides there’s no reason for me to want the defaults.

(delq! t custom-theme-load-path)

While the theme environment variable is nice for flexibility, when starting Emacs in a
terminal it doesn’t help us set the right sort of theme automatically. However, we can check
if we're in a terminal and pick a default theme colour accordingly.

(declare-function 'xterm-query "xterm")

(defvar term-background-rgb nil
"4 RGB triple corresponding to the current terminal background, if known.')

(defun +interpret-term-bg ()
"Ezamine an 0SC color query response, and set " term-background-rgd '
— accordingly."
(let ((str "")
chr)
;3 The reply should be: \e] 11 ; rgb: NUMBER1 / NUMBER2 / NUMBER3 \e \\
(while (and (setq chr (xterm--read-event-for-query)) (not (equal chr 7\\)))
(setq str (concat str (string chr))))
(when (string-match
"rgb:\\ ([a-£0-91+\\) /\\ ([a-£0-91+\\) /\\ ([a-£0-9]1+\\) " str)
(let ((r (string-to-number (match-string 1 str) 16))
(g (string-to-number (match-string 2 str) 16))
(b (string-to-number (match-string 3 str) 16)))
(setq term-background-rgb (list r g b))))))

(defun +doom-init-theme-termaware ()
"Update " doom-theme' if in a terminal, unless DOON_THEME has been set."
(let (term-shade)
(when (and (not (display-graphic-p (selected-frame)))
(not (getenv "DOOM_THEME"))
(require 'xterm nil t))
(message "Querying terminal background color")
(xterm--query "\el11;7\e\\" '(("\ell1l;" . +interpret-term-bg)))
(when term-background-rgb
(setq term-shade (if (< (apply #'+ term-background-rgb) (* 0.6 3 65535))
'dark 'light))
(pcase term-shade
('dark (setq doom-theme 'doom-vibrant))
('light (setq doom-theme 'doom-tomorrow-day)))))
(doom-init-theme-h)))

Lastly, I had some issues with theme race conditions, which seem to be resolved by moving

RUDIMENTARY CONFIGURATION Doom configuration 53

doom-init-theme-h around. Henrik attempted to help with this in May 2021 but we
didn’t manage to pin down the issue. It may be worth periodically checking back and
seeing if this is still needed. We might as well inject +doom-init-theme-termaware
while we're at it.

(remove-hook 'window-setup-hook #'doom-init-theme-h)
(remove-hook 'after-init-hook #'doom-init-theme-h)
(add-hook 'after-init-hook #'+doom-init-theme-termaware 'append)

3. Line numbers

Relative line numbers are fantastic for knowing how far away line numbers are, then
ESC 12 <UP> gets you exactly where you think.

(setq display-line-numbers-type 'relative)

2.4.4 Some helper macros

There are a few handy macros added by doom, namely

« load! forloading external . el files relative to this one
- use-package! for configuring packages

« add-load-path! for adding directories to the 1oad-path where Emacs looks when you
load packages with require or use-package

« map! for binding new keys

2.4.5 Allow babel execution in CLI actions

In this config I sometimes generate code to include in my config. This works nicely, but for it to
work with doom sync et. al. I need to make sure that Org doesn'’t try to confirm that I want to
allow evaluation (I do!).

Thankfully Doom supports $D00MDIR/cli. el file which is sourced every time a CLI command
is run, so we can just enable evaluation by setting org-confirm-babel-evaluate tonil there.
While we're at it, we should silence org-babel-execute-src-block to avoid polluting the
output.

;55 cli.el -*- lexical-binding: t; -*-

(setq org-confirm-babel-evaluate nil)

RUDIMENTARY CONFIGURATION Doom configuration

54

(defun doom-shut-up-a (orig-fn &rest args)

(quiet! (apply orig-fn args)))

(advice-add 'org-babel-execute-src-block :around #'doom-shut-up-a)

2.4.6 Elisp REPL

I think an elisp REPL sounds like a fun idea, even if not a particularly useful one 4. We can do

this by adding a new command in c1i.el.

(defcli! repl ((in-rlwrap-p ("--rl") "For internal use only."))
"Start an elisp REPL."
(require 'core-start)
(when (and (executable-find "rlwrap") (not in-rlwrap-p))
;3 For autocomplete
(setq autocomplete-file "/tmp/doom_elisp_repl_symbols")
(unless (file-exists-p autocomplete-file)
(princ "\e[0;33mInitialising autocomplete list...\e[Om\n")
(with-temp-buffer
(cl-do-all-symbols (s)
(let ((sym (symbol-name s)))
(when (string-match-p "\\ " [[:ascii:]J][[:ascii:]1]+\\'" sym)
(insert sym "\n"))))
(write-region nil nil autocomplete-file)))
(princ "\e[F")
(exit! "rlwrap" "-f" autocomplete-file
(concat doom-emacs-dir "bin/doom") "repl" "--rl"))

(doom-initialize-packages)
(require 'engrave-faces-ansi)
(setq engrave-faces-ansi-color-mode '3-bit)

;3 For some reason (require 'parent-mode) doesn't work :(
(defun parent-mode-list (mode)
"Return a list of MODE and all its parent modes.

The returned list starts with the parent-most mode and ends with MODE."
(let ((result ()))
(parent-mode--worker mode (lambda (mode)
(push mode result)))
result))
(defun parent-mode--worker (mode func)
"For MODE and all tts parent modes, call FUNC.

FUNC is first called for MNODE, then for its parent, then for the parent's

RUDIMENTARY CONFIGURATION Doom configuration

55

parent, and so on.

MODE shall be a symbol referring to a function.
FUNC shall be a function taking one argument."
(funcall func mode)
(when (not (fboundp mode))

(signal 'void-function (list mode)))

(let ((modefunc (symbol-function mode)))

(if (symbolp modefunc)

;; Hande all the modes that use (defalias 'foo-parent-mode (stuff)) as
;; their parent
(parent-mode--worker modefunc func)
(let ((parentmode (get mode 'derived-mode-parent)))
(when parentmode
(parent-mode--worker parentmode func))))))

(provide 'parent-mode)

;3 Some extra highlighting (needs parent-mode)

(require 'rainbow-delimiters)

(require 'highlight-quoted)

(require 'highlight-numbers)

(setq emacs-lisp-mode-hook '(rainbow-delimiters-mode
highlight-quoted-mode
highlight-numbers-mode))

;; Pretty print

(defun pp-sexp (sexp)

(with-temp-buffer

(cl-prettyprint sexp)

(emacs-1lisp-mode)

(font-lock-ensure)

(with-current-buffer (engrave-faces-ansi-buffer)
(princ (string-trim (buffer-string)))
(kill-buffer (current-buffer)))))

;3 Now do the REPL

(defvar accumulated-input nil)

(while t

(condition-case nil
(let ((input (if accumulated-input
(read-string "\e[31m .\e[Om ")
(read-string "\e[31m:\e[Om "))))
(setq input (concat accumulated-input

(when accumulated-input "\n')

input))
(cond
((string-match-p "\\" [[:space:]1]*\\'" input)
nil)

((string= input "exit")
(princ "\n") (kill-emacs 0))
(t

RUDIMENTARY CONFIGURATION Doom configuration 56

(condition-case err
(let ((input-sexp (car (read-from-string input))))
(setq accumulated-input nil)
(pp-sexp (eval input-sexp))
(princ "\n"))
;3 Caused when sexp in unbalanced
(end-of-file (setq accumulated-input input))
(error
(cl-destructuring-bind (backtrace &optional type data . _)
(cons (doom-cli--backtrace) err)
(princ (concat "\e[1;31mERROR:\e[0Om " (get type 'error-message)))
(princ "\n ")
(pp-sexp (comns type data))
(when backtrace
(print! (bold "Backtrace:"))
(print-group!
(dolist (frame (seq-take backtrace 10))
(print!
"%0.74s" (replace-regexp-in-string
"MN\n\rl" "\\\\n"
(format "/S" frame))))))
(princ "\n")))))))
;3 C-d causes an end-of-file error
(end-of-file (princ "exit\n") (kill-emacs 0)))
(unless accumulated-input (princ "\n"))))

2.4.7 Htmlize command

Why not have a command to htmlize files? This is basically a little test of my engrave-faces package
because it somehow seems to work without a GUI, while the htmlize package doesn’t.

(defcli! htmlize (file)
"Export a FILE buffer to HTHML."

(print! "Htmlizing %s" file)

(doom-initialize)

(require 'highlight-numbers)
(require 'highlight-quoted)
(require 'rainbow-delimiters)
(require 'engrave-faces-html)

;5 Lighten org-mode
(when (string= "org" (file-name-extension file))
(setcdr (assoc 'org after-load-alist) nil)

RUDIMENTARY CONFIGURATION Doom configuration 57

(setq org-load-hook nil)
(require 'org)
(setq org-mode-hook nil)
(add-hook 'engrave-faces-before-hook
(lambda () (if (eq major-mode 'org-mode)
(org-show-all)))))

(engrave-faces-html-file file))

2.4.8 Org buffer creation

Let’'s make creating an Org buffer just that little bit easier.

(evil-define-command +evil-buffer-org-new (_count file)
"Creates a new ORG buffer replacing the current window, optionally
editing a certain FILE"
:repeat nil
(interactive "P<f>")
(if file
(evil-edit file)

(let ((buffer (generate-new-buffer "*new org*")))
(set-window-buffer nil buffer)
(with-current-buffer buffer

(org-mode)
(setq-local doom-real-buffer-p t)))))

(map! :leader
(:prefix "b"

:desc "New empty Org buffer" "o" #'t+evil-buffer-org-new))

2.4.9 Dashboard

1. Afancy splash screen

Emacs can render an image as the splash screen, but I think we can do better than just a
completely static image. Since, SVG images in particular are supported, we can use them
as the basis for a fancier splash screen image setup — with themeable, resizing images.

With the effort I'm putting into this, it would be nice to have a good image, and @MarioRicalde
came up with a cracker! He's also provided me with a nice Emacs-style E. I was using the

black-hole image, but when I stripped down the splash screen to something more minimal
I switched to just using the E.

https://github.com/MarioRicalde

RUDIMENTARY CONFIGURATION Doom configuration 58

(defvar fancy-splash-image-directory
(expand-file-name "misc/splash-images/" doom-user-dir)
"Directory in which to look for splash image templates.')

(defvar fancy-splash-image-template
(expand-file-name "emacs-e-template.svg" fancy-splash-image-directory)
"Default template svg used for the splash image.

Colours are substituted as per ~ fancy-splash-template-colours '.")

Special named colours can be used as the basis for theming, with a simple replacement
system.

(defvar fancy-splash-template-colours
'(("#111112" :face default :attr :foreground)
("#8b8c8d" :face shadow)
("#eeeeef" :face default :attr :background)
("#e66100" :face highlight :attr :background)
("#1c71d8" :face font-lock-keyword-face)
("#£5c211" :face font-lock-type-face)
("#813d9c" :face font-lock-constant-face)
("#865e3c" :face font-lock-function-name-face)
("#2ec27e" :face font-lock-string-face)
("#c01c28" :face error)
("#000001" :face ansi-color-black)
("#££0000" :face ansi-color-red)
("#£f00ff" :face ansi-color-magenta)
("#00££00" :face ansi-color-green)
("#f£££f00" :face ansi-color-yellow)
("#0000ff" :face ansi-color-blue)
("#00ffff" :face ansi-color-cyan)
("#fffffe" :face ansi-color-white))
"4lest of colour-replacement plists.
Each plist is of the form (\"$placeholder\"” :doom-color 'key :face 'face).
If the current theme 2s a doom theme :doom-color will be used,

otherwise the colour will be face foreground.')

If we want to make sure an image is themed, we can look for unrecognised hex strings
that are not greyscale (as greyscale can be expected in the form of a transparent overlay).

RUDIMENTARY CONFIGURATION Doom configuration

59

(defun fancy-splash-check-buffer ()
"Check the current SVG buffer for bad colours."
(interactive)
(when (eq major-mode 'image-mode)
(xml-mode))
(when (and (featurep 'rainbow-mode)
(not (bound-and-true-p rainbow-mode)))
(rainbow-mode 1))
(let* ((colours (mapcar #'car fancy-splash-template-colours))
(colourise-hex
(lambda (hex)
(propertize
hex
'face " ((:foreground
,(if (< 0.5
(cl-destructuring-bind (r g b) (x-color-values
< hex)
;3 Values taken from “rainbow-color-luminance'
(/ (+ (* .2126 r) (% .7152 g) (* .0722 b))
(* 256 255 1.0))))
"white" "black")
(:background ,hex))))))
(cn 96)
(colour-menu-entries
(mapcar
(lambda (colour)
(cl-incf cn)
(cons cn
(cons
(substring-no-properties colour)
(format " (%s) %s %s"
(propertize (char-to-string cn)
'face 'font-lock-keyword-face)
(funcall colourise-hex colour)
(propertize
(symbol-name
(plist-get
(cdr (assoc colour
<> fancy-splash-template-colours))
:face))
'face 'shadow)))))
colours))
(colour-menu-template
(format
"Colour %%s is unexpected! Should this be one of the following?\n
hs
%s to ignore
%s to quit"

RUDIMENTARY CONFIGURATION Doom configuration 60

(mapconcat
#'cddr
colour-menu-entries
"\n")
(propertize "SPC" 'face 'font-lock-keyword-face)
(propertize "ESC" 'face 'font-lock-keyword-face)))
(colour-menu-choice-keys
(append (mapcar #'car colour-menu-entries)
(1ist ?\s)))
(buf (get-buffer-create "*fancy-splash-lint-colours-popup*"))
(good-colour-p
(lambda (colour)
(or (assoc colour fancy-splash-template-colours)
;5 Check if greyscale
(or (and (= (length colour) 4)
(= (aref colour 1) 5 @
(aref colour 2) 5 g
(aref colour 3))) : b
(and (= (length colour) 7)

(string= (substring colour 1 3) ; rr =
(substring colour 3 5)) 5 88
(string= (substring colour 3 5) ; g8 =

(substring colour 5 7))))))) ; bb
(prompt-to-replace
(lambda (target)
(with-current-buffer buf
(erase-buffer)
(insert (format colour-menu-template
(funcall colourise-hex target)))
(setq-local cursor-type nil)
(set-buffer-modified-p nil)
(goto-char (point-min)))
(save-window-excursion
(pop-to-buffer buf)
(fit-window-to-buffer (get-buffer-window buf))
(car (alist-get
(read-char-choice
(format "Select replacement, %s-%s or SPC: "
(char-to-string (caar colour-menu-entries))
(char-to-string (caar (last colour-menu-entries))))
colour-menu-choice-keys)
colour-menu-entries))))))
(save-excursion
(goto-char (point-min))
(wvhile (re-search-forward "#[0-9A-Fa-f]\\{6\\}\\[#[0-9A-Fa-£f]\\{3\\}" nil
= t)
(recenter)
(let* ((colour (match-string 0))

RUDIMENTARY CONFIGURATION Doom configuration 61

(replacement (and (not (funcall good-colour-p colour))
(funcall prompt-to-replace colour))))
(when replacement
(replace-match replacement t t))))
(message "Done"))))

To make it easier to produce themeable images, we can also provide an Inkscape colour
palette.

GIMP Palette
Name: Emacs Fancy Splash Template
#
17 17 18 #111112 Foreground
139 140 141 #8b8c8d Shadow
238 238 239 #eeeeef Background
230 97 0 #e66100 Colour 1 (Highlight)
28 113 216 #1c71d8 Colour 2 (Keyword)
245 194 17 #£f5c211 Colour 3 (Type)
129 61 156 #813d9c Colour 4 (Constant)
134 94 60 #865e3c Colour 5
46 194 126 #2ec27e Colour 6
192 28 40 #c01c28 Colour 7
0 O 1 #000001 Black
256 0 O #ff0000 Red
255 0 255 #ff0Off Magenta
0 255 0 #00ff00 Green
255 256 0 #ffff00 Yellow
0 0 255 #0000ff Blue
0 255 255 #00ffff Cyan
255 255 254 #fffffe White

(Function)
(String)
(Error)

Since we're going to be generating theme-specific versions of splash images, it would be
good to have a cache directory.

(defvar fancy-splash-cache-dir (expand-file-name "theme-splashes/"
< doom-cache-dir))

To set up dynamic resizing, we'll use a list specifying the image height at various frame-
height thresholds, with a few extra bells and whistles (such as the ability to change image
t00).

(defvar fancy-splash-sizes
“((:height 300 :min-height 50 :padding (0 . 2))
(:height 250 :min-height 42 :padding (2 . 4))
:height 200 :min-height 35 :padding (3 . 3))
:height 150 :min-height 28 :padding (3 . 3))
theight 100 :min-height 20 :padding (2 . 2))
theight 75 :min-height 15 :padding (2 . 1))

~N N~~~

RUDIMENTARY CONFIGURATION Doom configuration 62

(:height 50 :min-height 10 :padding (1 . 0))
(:height 1 :min-height O :padding (0 . 0)))
"List of plists specifying image sizing states.
Each plist should have the following properties:
- ‘height, the height of the image
- :min-height, the minimum ~ frame-height ' for image
- :padding, a " +doom-dashboard-banner-padding ' (top . bottom) padding
specification to apply
Optionally, each plist may set the following two properties:
- :template, a non-default template file

- :file, a file to use instead of template")

Now that’s we've set up the customisation approach, we need to work out the mechanics

for actually implementing this. To start with, a basic utility function to get the relevant
file path.

(defun fancy-splash-filename (theme template height)
"Get the file name for the splash image with THEME and of HEIGHT."
(expand-file-name (format "Ys-%s-/d.svg" theme (file-name-base template)
<> height) fancy-splash-cache-dir))

Now to go about actually generating the images. To adjust the sizing on demand, we will
offer two mechanisms:

a) Aspecial $height token which is replaced with the desired height

b) Recognition of height=100, in which case 100 will be replaced with the desired
height and any width property will be removed.

(defun fancy-splash-generate-image (template height)
"Create a themed image from TEMPLATE of HEIGHT.
The theming is performed using ° fancy-splash-template-colours '’
and the current theme."
(with-temp-buffer
(insert-file-contents template)
(goto-char (point-min))
(if (re-search-forward "$height" nil t)
(replace-match (number-to-string height) t t)
(if (re-search-forward "height=\"100\\(7:\\.0[0-91*\\)?\"" nil t)
(progn
(replace-match (format "height=\"%s\"" height) t t)
(goto-char (point-min))
(when (re-search-forward "\\([\t\nl\\)width=\"[\\.0-91+\"[\t\n]*"
< nil t)
(replace-match "\\1")))
(warn "Warning! fancy splash template: neither $height nor height=100
— not found in %s" template)))
(dolist (substitution fancy-splash-template-colours)
(goto-char (point-min))

RUDIMENTARY CONFIGURATION Doom configuration 63

(let* ((replacement-colour
(face-attribute (plist-get (cdr substitution) :face)
(or (plist-get (cdr substitution) :attr)
< :foreground)
nil 'default))
(replacement-hex
(if (string-prefix-p "#'" replacement-colour)
replacement-colour
(apply 'format "#),02x%02x%02x"
(mapcar (lambda (c) (ash c -8))
(color-values replacement-colour))))))
(wvhile (search-forward (car substitution) nil t)
(replace-match replacement-hex nil nil))))
(unless (file-exists-p fancy-splash-cache-dir)
(make-directory fancy-splash-cache-dir t))
(let ((inhibit-message t))
(write-region nil nil (fancy-splash-filename (car custom-enabled-themes)
— template height)))))

We may as well generate each theme’s appropriate images in bunk.

(defun fancy-splash-generate-all-images ()
"Perform " fancy-splash-generate-image ' in bulk."
(dolist (size fancy-splash-sizes)
(unless (plist-get size :file)
(fancy-splash-generate-image
(or (plist-get size :template)
fancy-splash-image-template)

(plist-get size :height)))))

It would be nice to have a simple check function which will just generate the set of relevant
images if needed, and do nothing if they already exist.

(defun fancy-splash-ensure-theme-images-exist (&optional height)
"Ensure that the relevant images exist.
Use the wmage of HEIGHT to check, defaulting to the height of the first

specification in ° fancy-splash-sizes '. If that file does not exist for

’ n

the current theme, ° fancy-splash-generate-all-images ' is called.
(unless (file-exists-p
(fancy-splash-filename
(car custom-enabled-themes)
fancy-splash-image-template
(or height (plist-get (car fancy-splash-sizes) :height))))
(fancy-splash-generate-all-images)))

In case we switch out the images used (or something else goes wrong), it would be good to
have a convenient method to clear this cache.

RUDIMENTARY CONFIGURATION Doom configuration 64

(defun fancy-splash-clear-cache (&optional delete-files)
"Clear all cached fancy splash images.
Optionally delete all cache files and regenerate the currently relevant set."
(interactive (list t))
(dolist (size fancy-splash-sizes)
(unless (plist-get size :file)
(let ((image-file
(fancy-splash-filename
(car custom-enabled-themes)
(or (plist-get size :template)
fancy-splash-image-template)
(plist-get size :height))))
(image-flush (create-image image-file) t))))
(message "Fancy splash image cache cleared!")
(when delete-files
(delete-directory fancy-splash-cache-dir t)
(fancy-splash-generate-all-images)
(message "Fancy splash images cache deleted!")))

In a similar way, it could be fun to allow for switching the template used. We can support
this by looking for filesending in -template. svg and running image-flushviafancy-splash-clear-cach

(defun fancy-splash-switch-template ()
"Switch the template used for the fancy splash image.'
(interactive)
(let ((new (completing-read
"Splash template: "
(mapcar
(lambda (template)
(replace-regexp-in-string "-template\\.svg$" "" template))
(directory-files fancy-splash-image-directory nil
— "-template\\.svg\\'"))
nil t)))
(setq fancy-splash-image-template
(expand-file-name (concat new "-template.svg")
< fancy-splash-image-directory))
(fancy-splash-clear-cache)
(message "") ; Clear message from ~fancy-splash-clear-cache'.
(setq fancy-splash--last-size nil)
(fancy-splash-apply-appropriate-image)))

Now we can ensure that the desired images exist, we need to work out which particular
one we want. This is really just a matter of comparing the frame height to the set of presets.

(defun fancy-splash-get-appropriate-size ()
"Find the firt ~ fancy-splash-sizes '
— height."

(let ((height (frame-height)))

with min-hetght of at least frame

RUDIMENTARY CONFIGURATION Doom configuration 65

(cl-some (lambda (size) (when (>= height (plist-get size :min-height))
— size))

fancy-splash-sizes)))

We now want to apply the appropriate image to the dashboard. At the same time, we don't
want to do so needlessly, so we may as well record the size and theme to determine when a
refresh is actually needed.

(setq fancy-splash--last-size nil)
(setq fancy-splash--last-theme nil)

(defun fancy-splash-apply-appropriate-image (&rest _)
"Ensure the appropriate splash image is applied to the dashboard.
This function's signature is |"8rest _\" to allow it to be used
in hooks that call functions with arguments."
(let ((appropriate-size (fancy-splash-get-appropriate-size)))
(unless (and (equal appropriate-size fancy-splash--last-size)
(equal (car custom-enabled-themes) fancy-splash--last-theme))
(unless (plist-get appropriate-size :file)
(fancy-splash-ensure-theme-images-exist (plist-get appropriate-size
< :height)))
(setq fancy-splash-image
(or (plist-get appropriate-size :file)
(fancy-splash-filename (car custom-enabled-themes)
fancy-splash-image-template
(plist-get appropriate-size :height)))
+doom-dashboard-banner-padding (plist-get appropriate-size :padding)
fancy-splash--last-size appropriate-size
fancy-splash--last-theme (car custom-enabled-themes))
(+doom-dashboard-reload))))

2. ASCII banner

If we're operating in a terminal (or emacclient) we see an ASCII banner instead of the
graphical one. I'd also like to use something simple for this.

(defun doom-dashboard-draw-ascii-emacs-banner-fn ()
(let* ((banner
00 ==y gm0 g===0 g ===0 g ===0
I B B B - ol
L -

n~___1= 1 ___"‘___V‘___!H))

(longest-line (apply #'max (mapcar #'length banner))))
(put-text-property
(point)
(dolist (line banner (point))
(insert (+doom-dashboard--center
+doom-dashboard--width
(concat

RUDIMENTARY CONFIGURATION Doom configuration 66

line (make-string (max O (- longest-line (length line)))
32)))
w\nn))

'face 'doom-dashboard-banner)))
Now we just need this as Doom’s ASCII banner function.

(unless (display-graphic-p) ; for some reason this messes up the graphical
splash screen atm
(setq +doom-dashboard-ascii-banner-fn
#'doom-dashboard-draw-ascii-emacs-banner-fn))

3. Splash phrases

Having an aesthetically pleasing image is all very well and good, but I'm aiming for minimal,
not clinical — it would be good to inject some fun into the dashboard. After trawling around
the internet for a bit, I've found three sources of fun phrases, namely:

+ anonsense corporate jargon generator,
« aselection of random developer excuses, and

« acollection of fun but rather useless facts.

I used to have a fancy method that used web APIs for these and inserted an invisible
placeholder into the dashboard which was asynchronously replaced on the result of (debounced)
requests to the APIs. While that actually worked quite well, I realised that it would be
much better and simpler if I simply copied the phrases sources to local files and did the
random selection / generation in elisp.

Let’s start off by setting the local folder to put the phrase source files in.

(defvar splash-phrase-source-folder
(expand-file-name "misc/splash-phrases" doom-user-dir)
"4 folder of text files with a fun phrase on each line.")

Now we want to support two "phrase systems"

a) A complete file of phrases, one phrase per line

b) A collection of phrase-components, put together to form a phrase

It would be good to specify/detect which of the two cases apply based on the file name
alone. I've done this by setting the simple check that if the file name contains -N- (where N
is some number) then it is taken as the Nth phrase component, with everything preceding
the -N- token taken as the collection identifier, and everything after -N- ignored.

(defvar splash-phrase-sources
(let* ((files (directory-files splash-phrase-source-folder nil "\\.txt\\'"))
(sets (delete-dups (mapcar

RUDIMENTARY CONFIGURATION Doom configuration 67

(lambda (file)
(replace-regexp-in-string
= "M\ (7:-[0-91+-\\w+\\) ?\\.txt" "" file))
files))))
(mapcar (lambda (sset)
(cons sset
(delq nil (mapcar
(lambda (file)
(when (string-match-p (regexp-quote sset) file)
file))
files))))
sets))
"4 list of cons giving the phrase set nmame, and a list of files which contain

< phrase components.")
Let’s fix the phrase set in use, and pick a random phrase source on startup.

(defvar splash-phrase-set
(nth (random (length splash-phrase-sources)) (mapcar #'car
< splash-phrase-sources))
"The default phrase set. See " splash-phrase-sources'.")

While having a random set of phrases is fantastic the vast majority of the time, I expect
that occasionally I'll feel in the mood to change the phrase set or pick a particular one, so
some functions for that would be nice.

(defun splash-phrase-set-random-set ()

"Set a mew random splash phrase set."

(interactive)

(setq splash-phrase-set

(nth (random (1- (length splash-phrase-sources)))

(cl-set-difference (mapcar #'car splash-phrase-sources) (list
— splash-phrase-set))))

(+doom-dashboard-reload t))

(defun splash-phrase-select-set ()
"Select a specific splash phrase set."
(interactive)
(setq splash-phrase-set (completing-read "Phrase set: " (mapcar #'car
< splash-phrase-sources)))
(+doom-dashboard-reload t))

If we're going to be selecting phrases from a large list of lines, it could be worth caching
the list of lines.

(defvar splash-phrase--cached-lines nil)

Now let’s write a function that will pick a random line from a file, using splash-phrase--cached-1lines
if possible.

RUDIMENTARY CONFIGURATION Doom configuration 68

(defun splash-phrase-get-from-file (file)
"Fetch a random line from FILE."
(let ((lines (or (cdr (assoc file splash-phrase--cached-lines))
(cdar (push (cons file
(with-temp-buffer
(insert-file-contents (expand-file-name
< file splash-phrase-source-folder))
(split-string (string-trim
< (buffer-string)) "\n")))
splash-phrase--cached-lines)))))
(nth (random (length lines)) lines)))

With this, we now have enough to generate random phrases on demand.

(defun splash-phrase (&optional set)
"Construct a splash phrase from SET. See "splash-phrase-sources'."
(mapconcat
#'splash-phrase-get-from-file
(cdr (assoc (or set splash-phrase-set) splash-phrase-sources))

n H))

I originally thought this might be enough, but some phrases are a tad long, and this isn't
exactly doom-dashboard appropriate. In such cases we need to split lines, re-centre them,
and add some whitespace. While we're at it, we may as well make it that you can click on
the phrase to replace it with new one.

(defun splash-phrase-dashboard-formatted ()
"Get a splash phrase, flow ¢t over multiple lines as needed, and fontify zt."
(mapconcat
(lambda (line)
(+doom-dashboard--center
+doom-dashboard--width
(with-temp-buffer
(insert-text-button
line
'action
(lambda (_) (+doom-dashboard-reload t))
'face 'doom-dashboard-menu-title
'mouse-face 'doom-dashboard-menu-title
'help-echo "Random phrase"
'follow-link t)
(buffer-string))))
(split-string
(with-temp-buffer
(insert (splash-phrase))
(setq fill-column (min 70 (/ (* 2 (window-width)) 3)))
(fill-region (point-min) (point-max))

(buffer-string))

RUDIMENTARY CONFIGURATION Doom configuration 69

n\nn)
"\Il”))

Almost there now, this just needs some centreing and newlines.

(defun splash-phrase-dashboard-insert ()

"Insert the splash phrase surrounded by newlines."
(insert "\n" (splash-phrase-dashboard-formatted) "\n"))

4. Quick actions

When using the dashboard, there are often a small number of actions I will take. As the
dashboard is it’s own major mode, there is no need to suffer the tyranny of unnecessary
keystrokes — we can simply bind common actions to a single key!

(defun +doom-dashboard-setup-modified-keymap ()

(setq +doom-dashboard-mode-map (make-sparse-keymap))

(map! :map +doom-dashboard-mode-map

:desc
:desc
:desc
:desc

"Find file" :ng "f" #'find-file

"Recent files" :ng "r" #'consult-recent-file

"Config dir" :ng "C" #'doom/open-private-config

"Open config.org" :ng "c" (cmd! (find-file (expand-file-name

< "config.org" doom-user-dir)))

:desc

"Open org-mode root" :ng "0" (cmd! (find-file (expand-file-name

<~ "lisp/org/" doom-user-dir)))

:desc

e

.
:desc
:desc
:desc
:desc
:desc
:desc
:desc
:desc

"Open dotfile" :ng "." (cmd! (doom-project-find-file
/.config/"))

"Notes (roam)" :ng "n" #'org-roam-node-find

"Switch buffer" :ng "b" #'+vertico/switch-workspace-buffer
"Switch buffers (all)" :ng "B" #'consult-buffer

"IBuffer" :ng "i" #'ibuffer

"Previous buffer" :ng "p" #'previous-buffer

"Set theme" :ng "t" #'consult-theme

"Quit" :ng "Q" #'save-buffers-kill-terminal

"Show keybindings" :ng "h" (cmd! (which-key-show-keymap

< '+doom-dashboard-mode-map))))

(add-transient-hook! #'+doom-dashboard-mode

<> (+doom-dashboard-setup-modified-keymap))

(add-transient-hook! #'+doom-dashboard-mode :append

< (+doom-dashboard-setup-modified-keymap))

(add-hook! 'doom-init-ui-hook :append (+doom-dashboard-setup-modified-keymap))

Unfortunately the show keybindings help doesn't currently work as intended, but this is
still quite nice overall.

Now that the dashboard is so convenient, I'll want to make it easier to get to.

(map! :leader

:desc "Dashboard" "d" #'+doom-dashboard/open)

RUDIMENTARY CONFIGURATION Doom configuration 70

5. Putting it all together

With the splash image and phrase generation worked out, we can almost put together the

desired dashboard from scratch, we just need to re-create the benchmark information by
itself.

(defun +doom-dashboard-benchmark-line ()
"Insert the load time line."
(wvhen doom-init-time
(insert
H\n\nH
(propertize
(+doom-dashboard--center
+doom-dashboard--width
(doom-display-benchmark-h 'return))
'face 'doom-dashboard-loaded))))

With doom-display-benchmark-h displayed here, I don't see the need for it to be shown
in the minibuffer as well.

(remove-hook 'doom-after-init-hook #'doom-display-benchmark-h)

Now we can create the desired dashboard by setting +doom-dashboard-functions to
just have:

« The "widget banner" (splash image)
« The benchmark line

+ Arandom phrase

This gets rid of two segments I'm not particularly interested in seeing

« The shortmenu

« The footer (github link)

(setq +doom-dashboard-functions
(list #'doom-dashboard-widget-banner
#'+doom-dashboard-benchmark-line
#'splash-phrase-dashboard-insert))

At this point there are just a few minor tweaks I'd still like to make to the dashboard.

(defun +doom-dashboard-tweak (&optional _)
(with-current-buffer (get-buffer +doom-dashboard-name)
(setq-local line-spacing 0.2
mode-line-format nil
mode-name ""

evil-normal-state-cursor (list nil))))

RUDIMENTARY CONFIGURATION Doom configuration 71

Now we can just add this as a mode hook.
(add-hook '+doom-dashboard-mode-hook #'+doom-dashboard-tweak)

Unfortunately, the initialisation of doom-modeline interferes with the setmode-line-format
value. To get around this, we can re-apply +doom-dashboard-tweak as a slightly late init
hook, after doom-modeline has been loaded.

(add-hook 'doom-after-init-hook #'+doom-dashboard-tweak 1)

Lastly, with the buffer name being shown in the frame title thanks to some other configuration,
we might as well display something a bit prettier than *doomx.

(setq +doom-dashboard-name " Doom"
doom-fallback-buffer-name +doom-dashboard-name)

The end result is a minimal but rather nice splash screen.

I heard there was a solar flare today.

&

To keep the splash image up to date, we just need to check it every time the frame size or
theme is changed.

(add-hook 'window-size-change-functions #'fancy-splash-apply-appropriate-image)
(add-hook 'doom-load-theme-hook #'fancy-splash-apply-appropriate-image)

RUDIMENTARY CONFIGURATION Doom configuration 72

2.4.10 Configdoctor

We can collect checks throughout this config and put them in a doctor . el file that will be run
as part of doom doctor. This will complement the setup.sh approach.

;55 doctor.el -*- lexical-binding: t; no-byte-compile: t; -*-

(let (required-fonts available-fonts missing-fonts)
(setq required-fonts '("JetBrains 7Mono.*" "Overpass" "JuliaMono" "IBM Plex Mono"
"Merriweather" "Alegreya" "Twitter Color Emoji"))

(setq available-fonts
(delete-dups
(or (font-family-list)
(and (executable-find "fc-list")
(with-temp-buffer
(call-process "fc-1list" nil t nil ":" "family")
(split-string (buffer-string) "[,\nl"))))))

(setq missing-fonts
(delq nil (mapcar
(lambda (font)
(unless (delq nil (mapcar (lambda (f)
(string-match-p (format "~7%s$" font)
— f))
available-fonts))
font))
required-fonts)))
(if available-fonts
(dolist (font missing-fonts)
(warn! (format "Missing font: %s." font)))
(warn! "Unable to check for missing fonts, is fc-list installed?")))

(unless (string= "enabled\n" (shell-command-to-string "systemctl --user is-enabled
< emacs.service"))

(warn! "Emacsclient service is not enabled."))
(unless (executable-find "hunspell")

(warn! "Couldn't find hunspell executable."))
(unless (file-exists-p "~/.local/share/hunspell/en-custom.dic")

(warn! "Custom hunspell dictionary is not present."))
(unless (executable-find "aspell")

(warn! "Couldn't find aspell executable."))
(unless (file-exists-p "~/.config/enchant/aspell/en-custom.multi")

(warn! "Custom aspell dictionary is not present."))
(unless (executable-find "wal")

(warn! "Couldn't find the pywal executable (wal), theme-magic will not function."))
(if (executable-find "sdcv'")

(let ((dict-root (concat (or (getenv "STARDICT_DATA_DIR")

RUDIMENTARY CONFIGURATION Doom configuration

(concat (or "~/.local/share"
(getenv "XDG_DATA_HOME"))
"/stardict"))
"/dic"))
(dicts '("webster" "synonyms" "etymology" "en-to-latin" "hitchcock"
— "elements")))
(if (file-exists-p dict-root)
(dolist (dict dicts)
(unless (file-exists-p (file-name-concat dict-root dict))
(warn! (format "Absent sdcv dictionmary: %s." dict))))
(warn! "Couldn't find any stcv dictionaries, lexic will not function")))
(warn! "Couldn't find sdcv executable, lexic will be disabled"))
(vhen (file-exists-p "~/.mail") ; We care about mail when the mail folder exists
(unless (executable-find "mu")
(error! "Couldn't find mail dependency mu."))
(unless (executable-find "mbsync")
(error! "Couldn't find mail dependency mbsync."))
(unless (executable-find "msmtp")
(error! "Couldn't find mail dependency msmtp."))
(unless (executable-find "goimapnotify")
(warn! "Couldn't find mail helper goimapnotify, mail syncs will be slower.")))
(wvhen (and (executable-find "goimapnotify")
(not (file-exists-p "7/.config/imapnotify")))
(warn! "goimapnotify is installed but not configured."))
(when (executable-find "mbsync')
(unless (string= "enabled\n" (shell-command-to-string "systemctl --user is-enabled
< mbsync.timer"))
(warn! "The mbsync timer is not enabled.")))
(when (and (executable-find "mu")
(not (string= (shell-command-to-string "xdg-mime query default
— x-scheme-handler/mailto")
"emacsmail .desktop\n")))
(warn! "Emacs is not registered as a mailto handler."))
(if (string= (shell-command-to-string "xdg-mime query default text/org") "")
(warn! "text/org is not a registered mime type.")
(unless (string= (shell-command-to-string "xdg-mime query default text/org")
— '"emacs-client.desktop\n")
(warn! "Emacs(client) is not set up as the text/org handler.")))
(unless (executable-find "latex2text")
(warn! "Couldn't find latex2text executable (from pylatexenc), will be unable to

— render LaTeX fragments in org-text exports."))

RUDIMENTARY CONFIGURATION Otherthings 74

2.5 Otherthings

2.5.1 Editorinteraction
1. Mouse buttons

(map! :n [mouse-8] #'better-jumper-jump-backward
:n [mouse-9] #'better-jumper-jump-forward)

2.5.2 Window title

I'd like to have just the buffer name, then if applicable the project folder

(setq frame-title-format

I(HH

(:eval

(if (string-match-p (regexp-quote (or (bound-and-true-p org-roam-directory)

— "\u0000"))

(or buffer-file-name ""))
(replace-regexp-in-string
".%/[0-9]*k-7" "
(subst-char-in-string ?_ 7\s buffer-file-name))
"%b"))
(:eval

(when-let ((project-name (and (featurep 'projectile)
— (projectile-project-name))))
(unless (string= "-'" project-name)
(format (if (buffer-modified-p) " Ys" " Us") project-name))))))

For example when I open my config file it the window will be titled config.org doomthen as
soon as I make a change it will become config.org doom.

2.5.3 Systemd daemon

For running a systemd service for a Emacs server I have the following. zsh -c is used to ensure

that .zshenv is loaded.

[Unit]
Description=Emacs server daemon
Documentation=info:emacs man:emacs (1) https://gnu.org/software/emacs/

Wants=gpg-agent.service

RUDIMENTARY CONFIGURATION Otherthings 75

[Servicel

Type=forking

ExecStart=zsh -c 'emacs --daemon && emacsclient -c --eval "(delete-frame)"'
ExecStop=/usr/bin/emacsclient --no-wait --eval "(progn (setq kill-emacs-hook nil)
— (kill emacs))"

Environment=COLORTERM=truecolor

Restart=on-failure

[Install]
WantedBy=default.target

which is then enabled by
systemctl --user enable emacs.service
We can also add a doctor warning should this not be enabled.

(unless (string= "enabled\n" (shell-command-to-string "systemctl --user is-enabled
< emacs.service"))
(warn! "Emacsclient service is not enabled."))

For some reason if a frame isn't opened early in the initialisation process, the daemon doesn’t
seem to like opening frames later — hence the && emacsclient part of the ExecStart value.

It can now be nice to use this as a’default app’ for opening files. If we add an appropriate desktop
entry, and enable it in the desktop environment.

[Desktop Entry]

Name=Emacs client

GenericName=Text Editor

Comment=A flexible platform for end-user applications
MimeType=text/english;text/plain;text/x-makefile;text/x-c++hdr;text/x-c++src;text/x-chdr;text/x-csrc;text/:
Exec=emacsclient -create-frame --alternate-editor='"" --no-wait %F
Icon=emacs

Type=Application

Terminal=false

Categories=TextEditor;Utility;

StartupWMClass=Emacs

Keywords=Text;Editor;

X-KDE-StartupNotify=false

When the daemon is running, I almost always want to do a few particular things with it, so I may
as well eat the load time at startup. We also want to keep mu4e running.

It would be good to start the IRC client (circe) too, but that seems to have issues when started
in a non-graphical session.

RUDIMENTARY CONFIGURATION Otherthings 76

Lastly, while I'm not sure quite why it happens, but after a bit it seems that new Emacsclient
frames start on the *scratch* buffer instead of the dashboard. I prefer the dashboard, so let’s
ensure that’s always switched to in new frames.

(defun greedily-do-daemon-setup ()
(require 'org)
(wvhen (require 'mude nil t)
(setq mude-confirm-quit t)
(setq +mude-lock-greedy t)
(setq +mude-lock-relaxed t)
(when (+mu4e-lock-available t)
(mude--start)))
(when (require 'elfeed nil t)
(run-at-time nil (* 8 60 60) #'elfeed-update)))

(when (daemonp)
(add-hook 'emacs-startup-hook #'greedily-do-daemon-setup)
(add-hook! 'server-after-make-frame-hook
(unless (string-match-p "*draft\\|*stdin\\|emacs-everywhere" (buffer-name))
(switch-to-buffer +doom-dashboard-name))))

2.5.4 Emacsclient wrapper

I frequently want to make use of Emacs while in a terminal emulator. To make this easier, I can
construct a few handy aliases.

However, a little convenience script in “/.1local/bin can have the same effect, be available
beyond the specific shell I plop the alias in, then also allow me to add a few bells and whistles —
namely:

« Accepting stdin by putting it in a temporary file and immediately opening it.
« Guessing that the tty is a good idea when $DISPLAY is unset (relevant with SSH sessions,
among other things).

« With a whiff of 24-bit colour support, sets TERM variable to a terminfo that (probably)
announces 24-bit colour support.

« Changes GUI emacsclient instances to be non-blocking by default (--no-wait), and
instead take a flag to suppress this behaviour (-w).

I would use sh, but using arrays for argument manipulation is just too convenient, so I'll raise
the requirement to bash. Since arrays are the only ’extra’ compared to sh, other shells like ksh
etc. should work too.

RUDIMENTARY CONFIGURATION

Other things

77

#!/usr/bin/env bash
force_tty=false
force_wait=false
stdin_mode=""

args=()

while :; do
case "$1" in

-t | -nw | --tty)
force_tty=true
shift ;;

-w | --wait)
force_wait=true
shift ;;

-m | --mode)
stdin_mode=" ($2-mode)"
shift 2 ;;

-h | --help)

echo -e "\033[1mUsage: e [-t] [-m MODE] [OPTIONS] FILE [-]\033[0Om

Emacs client convenience wrapper.

\033[1mOptions:\033[Om
\033[0;34m-h, --help\033[0m
\033[0;34m-t, -nw, --tty\033[0m
\033[0;34m-w, --wait\033[0m

— graphical emacsclient
\033[0;34m-\033[0m

< argument)

Show this message
Force terminal mode
Don't supply \033[0;34m--no-wait\033[0m to

Take \033[0;33mstdin\033[0m (when last

\033[0;34m-m MODE, --mode MODE\033[0Om Mode to open \033[0;33mstdin\033[0m with

Run \033[0;32memacsclient --help\033[0m to see help for the emacsclient."

exit 0 ;;
__*=*)

set -- ||$@|| ||${1'/.'/.=*}n n${1#*=}n

shift ;;
*)
if ["$#" = 0 1; then
break; fi
args+=("$1")
shift ;;
esac
done
if [! "${#targs[*1}" = 0 1 && ["${args[-11}" = "-" 1; then

unset 'args[-1]'

TMP="$ (mktemp /tmp/emacsstdin-XXX)"

RUDIMENTARY CONFIGURATION Otherthings 78

cat > "$TMP"
argst=(--eval "(let ((b (generate-new-buffer \"#stdin*\"))) (switch-to-buffer b)
— (insert-file-contents \"$TMP\") (delete-file \"$TMP\")${stdin_mode})")

fi

if [-z "$DISPLAY"] || $force_tty; then
detect terminals with sneaky 24-bit support
if { ["$COLORTERM" = truecolor] || ["$COLORTERM" = 24bit]; } \
& ["$(tput colors 2>/dev/null)" -1t 257]; then
if echo "$TERM" | grep -q "~\w\+-[0-9]"; then
termstub="${TERM//%-*}"; else
termstub="${TERM#*-}"; fi
if infocmp "$termstub-direct" >/dev/null 2>&1; then
TERM="$termstub-direct"; else
TERM="xterm-direct"; fi # should be fairly safe
fi
emacsclient --tty -create-frame --alternate-editor="$ALTERNATE_EDITOR"
— "${args[e@]}"
else
if ! $force_wait; then
args+=(--no-wait); fi
emacsclient -create-frame --alternate-editor="$ALTERNATE_EDITOR" "${args[@]}"
fi

Now, to set an alias to use e with Magit, and then for maximum laziness we can set aliases for
the terminal-forced variants.

alias m='e --eval "(progn (magit-status) (delete-other-windows))"'
alias mt="m -t"
alias et="e -t"

2.5.5 Prompt to run setup script

Atvarious points in this config, content is conditionally tangled to . /setup. sh. It’s no good just
putting content there if it isn't run though. To help remind me to run it when needed, let’s add a
little prompt when there’s anything to be run.

(if (file-exists-p "setup.sh")
(if (string-empty-p (string-trim (with-temp-buffer (insert-file-contents
— "setup.sh") (buffer-string)) "#!/usr/bin/env bash"))
(message ";; Setup script is empty")
(message ";; Detected content in the setup script")
(pp-to-string
“(unless noninteractive

(defun +config-run-setup ()

RUDIMENTARY CONFIGURATION Otherthings 79

(when-let ((setup-file (expand-file-name "setup.sh" doom-user-dir))
((file-exists-p setup-file))
(setup-content (string-trim (with-temp-buffer
<> (insert-file-contents setup-file) (buffer-string))
"#!/usr/bin/env bash"))
((not (string-empty-p setup-content)))
((yes-or-no-p (format "Ys The setup script has content. Check
— and run the script?"
(propertize "Warning!" 'face '(bold
— warning))))))
(find-file setup-file)
(when (yes-or-no-p "Would you like to run this script?")
(async-shell-command "./setup.sh"))))
(add-hook! 'doom-init-ui-hook
(run-at-time nil nil #'+config-run-setup)))))
(message ";; setup.sh did not exist during tangle. Tangle again.")
(pp-to-string
“(unless noninteractive
(add-hook! 'doom-init-ui-hook #'+literate-tangle-async-h))))

<<run-setup()>>

2.5.6 Grabbingsource block content as a string

In a few places in this configuration, it is desirable to grab a source block’s content as a string.
We can use a noweb <<replacement>> form, however that doesn’t work with string escaping.

We can get around this by using noweb execution and write an name (unexported) babel block
that will grab the content of another named source block as a string. Note that this does not
currently expand nested noweb references.

;3 Babel block: grab(name &optional pre post)
;3 NAME is the name of the source block to grab.
;; PRE is a string to prepend to the content of the block.
;; POST is a string to append to the content of the block.
(if-let ((block-pos (org-babel-find-named-block name))
(block (org-element-at-point block-pos)))
(format "%S" (concat pre (string-trim (org-element-property :value block)) post))
;3 look for :noweb-ref matches
(let (block-contents)
(org-element-cache-map
(lambda (src)
(when (and (not (org-in-commented-heading-p nil src))
(not (org-in-archived-heading-p nil src))
(let* ((lang (org-element-property :language src))

RUDIMENTARY CONFIGURATION Otherthings

80

(params
(apply
#'org-babel-merge-params
(append
(org-with-point-at (org-element-property :begin src)
(org-babel-params-from-properties lang t))
(mapcar
(lambda (h)
(org-babel-parse-header-arguments h t))
(cons (org-element-property :parameters src)
(org-element-property :header src))))))
(ref (alist-get :noweb-ref params)))
(equal ref name)))
(push (org-babel--normalize-body src)
block-contents)))
:granularity 'element
:restrict-elements '(src-block))
(and block-contents
(format "JS"
(concat
pre
(mapconcat
#'identity
(nreverse block-contents)
"\n\n")
post)))))

There we go, that’s all it takes! This can be used via the form <<grab("block-name")>>.

81

CHAPTER

Packages

3.1 Loading instructions

This is where you install packages, by declaring them with the package ! macroin packages.el,
then running doom refresh on the command line. This file shouldn’t be byte compiled.

53 —*- no-byte-compile: t; -*-

Youll then need to restart Emacs for your changes to take effect! Oratleast, runM-x doom/reload.

Warning: Don't disable core packages listed in /. config/emacs/core/packages.el. Doom
requires these, and disabling them may have terrible side effects.

3.1.1 Packagesin MELPA/ELPA/emacsmirror

To install some-package from MELPA, ELPA or emacsmirror:

(package! some-package)

3.1.2 Packages from git repositories

To install a package directly from a particular repo, you'll need to specify a :recipe. Youll find
documentation on what :recipe accepts here:

(package! another-package
:recipe (:host github :repo "username/repo"))

If the package you are trying to install does not contain a PACKAGENAME . el file, or is located in a
subdirectory of the repo, you'll need to specify :files in the :recipe:

(package! this-package
:recipe (:host github :repo "username/repo"
:files ("some-file.el" "src/lisp/*.el")))

https://github.com/raxod502/straight.el#the-recipe-format

PACKAGES Convenience 82

3.1.3 Disabling built-in packages

If youd like to disable a package included with Doom, for whatever reason, you can do so here

with the :disable property:
(package! builtin-package :disable t)

You can override the recipe of a built in package without having to specify all the properties for
:recipe. These will inherit the rest of its recipe from Doom or MELPA/ELPA/Emacsmirror:

(package! builtin-package :recipe (:nonrecursive t))
(package! builtin-package-2 :recipe (:repo "myfork/package"))

Specify a :branch to install a package from a particular branch or tag.

(package! builtin-package :recipe (:branch "develop"))

3.2 Convenience

3.2.1 Avy

Fromthe : config default module.

What a wonderful way to jump to buffer positions, and it uses the QWERTY home-row for
jumping. Very convenient ... except 'm using Colemak.

(after! avy
;; home row priorities: 8 6 45 - - 1237

(setq avy-keys '(7n 7e 71 ?s 7t Pr 7i 7a)))
Now let’s just have this included when an ErgoDox is found via dmesg.
(if (= 0 (call-process "sh" nil nil nil "-c" "dmesg | grep -q 'ErgoDox'"))

(pp '<<avy-colemak-setup>>)
";; Avy: Colemak layout not detected (ErgoDox not mentioned in dmesg).")

<<avy-detect-colemak()>>

PACKAGES Convenience 83

3.2.2 Rotate (window management)

The rotate package just adds the ability to rotate window layouts, but that sounds nice to me.

(package! rotate :pin "4e9ac3ff800880bd9b705794ef0£7c99d72900a6")

3.2.3 Emacs Everywhere

The name says it all. It's loaded and set up (a bit) by :app everywhere, however as I develop
this I want the unpinned version I have as a submodule.

(package! emacs-everywhere :recipe (:local-repo "lisp/emacs-everywhere"))

(unpin! emacs-everywhere)

Additionally, I'm going to make some personal choices that aren’t made in the Doom module.

(use-package! emacs-everywhere
:if (daemonp)
:config
(require 'spell-fu)
(setq emacs-everywhere-major-mode-function #'org-mode
emacs-everywhere-frame-name-format "Edit s - %s')
(defadvice! emacs-everywhere-raise-frame ()
:after #'emacs-everywhere-set-frame-name
(setq emacs-everywhere-frame-name (format emacs-everywhere-frame-name-format
(emacs-everywhere-app-class
<> emacs-everywhere-current-app)
(truncate-string-to-width
(emacs-everywhere-app-title
<> emacs-everywhere-current-app)
45 nil nil "...")))
;; need to wait till frame refresh happen before really set
(run-with-timer 0.1 nil #'emacs-everywhere-raise-frame-1))
(defun emacs-everywhere-raise-frame-1 ()
(call-process "wmctrl" nil nil nil "-a" emacs-everywhere-frame-name)))

3.2.4 Which-key

From the : core packages module.

Let’'s make this popup a bit faster

PACKAGES Tools 84

(setq which-key-idle-delay 0.5) ;; I need the help, I really do

I also think that having evil- appear in so many popups is a bit too verbose, let’s change that,
and do a few other similar tweaks while we're at it.

(setq which-key-allow-multiple-replacements t)
(after! which-key

(pushnew!

which-key-replacement-alist

CCC L M\ +7evil -7\ (2:a-\\D AN RN M) L (mdl o M\\LM))

"(("\\"g s" . "\\Tevilem--?motion-\\(.*\\)") . (nil . "\\1™))

)

SPC » lambda / > <avy-goto-char-timer

> asearch-word-backward a > <function-evil-forward-arg
(> <backward-sentence-begin b > <backward-word-begin
) > <forward-sentence-begin e > <forward-word-end
* > asearch-word-forward f > <find-char
+ 3 anext-line-first-non-bhlank j > <next-line
- 3 <previous-line-first-non-bl.. k > <previous-line

g s- (1 of 2) [C-h paging/help]

3.3 Tools

3.3.1 Abbrev

Abbrev mode is great, and something I make use of in multiple ways. As such, I want it on by
default.

(setg-default abbrev-mode t)

Abbrev-mode can save and load abbreviations from an "abbrev file", which I'd like to locate in my
Doom config folder.

(setq abbrev-file-name (expand-file-name "abbrev.el' doom-user-dir))

I need to think more on how I want to manage abbrev changes in the current session, but for
now I'm going to be overly cautious and avoid any modifications to the global abbrev file that I
don't make myself.

(setq save-abbrevs nil)

PACKAGES Tools 85

3.3.2 Verylargefiles

The very large files mode loads large files in chunks, allowing one to open ridiculously large files.

(package! vlf :recipe (:host github :repo "emacs-straight/v1lf" :files ("x.el"))
:pin "d500£39672b35bf8551fdfafa892c551626c8d54")

To make VLF available without delaying startup, we'll just load it in quiet moments.

(use-package! vlf-setup
:defer-incrementally vlf-tune vlf-base vlf-write
vlf-search vlf-occur vlf-follow vlf-ediff vlf
:commands vlf vlf-mode
:init
(defvar vlf-application 'ask) ; Avoid load-order issues
<<vlf-largefile-prompt>>
:config
(advice-remove 'abort-if-file-too-large #'ad-Advice-abort-if-file-too-large)
<<vlf-linenum-offset>>
<<vlf-search-chunking>>)

Now, there are one or two tweaks worth applying to VLF. For starters, it goes to the liberty

of advising abort-if-file-too-large, and in doing so removes the option of opening files

literally. I think that’s abit much, so we can remove the advice and instead override files--ask-user-about-large:
(the more appropriate function, I think) as a simpler approach, just sacrificing the original

behaviour with (setq vlf-application 'always) (whichIcan’timagine using anyway).

(defadvice! +files--ask-about-large-file-vlf (size op-type filename offer-raw)
"Like ~ files--ask-user-about-large-file ', but with support for “wlf'."
:override #'files--ask-user-about-large-file
(if (eq vlf-application 'dont-ask)

(progn (vlf filename) (error ""))
(let ((prompt (format "File %s is large (4s), really %s?"
(file-name-nondirectory filename)
(funcall byte-count-to-string-function size) op-type)))
(if (not offer-raw)
(if (y-or-n-p prompt) nil 'abort)
(let ((choice
(car
(read-multiple-choice
prompt '((?y "yes")
(?n "no")
(71 "literally")
(?v "v1£"))
(files--ask-user-about-large-file-help-text
op-type (funcall byte-count-to-string-function size))))))
(cond ((eq choice ?7y) nil)

PACKAGES Tools 86

((eq choice 71) 'raw)
((eq choice ?7v)
(vlf filename)
(error ""))

(t 'abort)))))))

As you go from one chunk fetched by VLF to the next, the displayed line number of the first line in
each chunk is unchanged. I think it’s reasonable to hope for an overall line number, and by tracking
chunk’s cumulative line numbers we can implement this behaviour fairly easily.

(defvar-local +vlf-cumulative-linenum '((0 . 0))
"An alist keeping track of the cumulative line number.")

(defun +vlf-update-linum ()

"Update the line number offset."”

(let ((linenum-offset (alist-get vlf-start-pos +vlf-cumulative-linenum)))
(setq display-line-numbers-offset (or linenum-offset 0))
(when (and linenum-offset (not (assq vlf-end-pos +vlf-cumulative-linenum)))

(push (cons vlf-end-pos (+ linenum-offset
(count-lines (point-min) (point-max))))
+vlf-cumulative-linenum))))

(add-hook 'vlf-after-chunk-update-hook #'+vlf-update-linum)

;; Since this only works with absolute line numbers, let's make sure we use them.
(add-hook! 'vlf-mode-hook (setq-local display-line-numbers t))

The other thing that doesn’t work too well with VLF is searching with anything other than
M-x occur. This is because trying to go to the next match at the end of a chunk usually wraps
the point to the beginning of the chunk, instead of moving to the next chunk.

(defun +vlf-next-chunk-or-start ()
(if (= vlf-file-size vlf-end-pos)
(v1f-jump-to-chunk 1)
(vlf-next-batch 1))
(goto-char (point-min)))

(defun +vlf-last-chunk-or-end ()
(if (= 0 vlf-start-pos)
(vlf-end-of-file)
(vlf-prev-batch 1))
(goto-char (point-max)))

(defun +vlf-isearch-wrap ()
(if isearch-forward
(+v1f-next-chunk-or-start)
(+vlf-last-chunk-or-end)))

333

3.3.4

PACKAGES Tools 87

(add-hook! 'vlf-mode-hook (setq-local isearch-wrap-function #'+vlf-isearch-wrap))

Unfortunately, since evil-search doesn't have an analogue to isearch-wrap-function, we can't
easily add support to it.

Eros

From the :tools eval module.

This package enables the very nice inline evaluation with gr and gR. The prefix could be slightly
nicer though.

(setq eros-eval-result-prefix " ") ; default =>

EVIL

From the :editor evil module.

When [want to make a substitution, I want it to be global more often than not — so let’s make
that the default.

Now, EVIL cares a fair bit about keeping compatibility with Vim’s default behaviour. I don't.
There are some particular settings that I'd rather be something else, so let’s change them.

(after! evil
(setq evil-ex-substitute-global t ; I like my s/../.. to by global by default
evil-move-cursor-back nil ; Don't move the block cursor when toggling
insert mode

evil-kill-on-visual-paste nil)) ; Don't put overwritten text in the kill ring

Idon't use evil-escape-mode, so I may as well turn it off, I've heard it contributes a typing delay.
I'm not sure it’s much, but it is an extra pre-command-hook that I don’'t benefit from, so... It
seems that there’s a dedicated package for this, so instead of just disabling the mode on startup,
let’s prevent installation of the package.

(package! evil-escape :disable t)

PACKAGES Tools 88

3.3.5 GPTel

(package! gptel :pin "94bf19da93aee9a101429d7ecbfbb9c7c5b67216")

(use-package! gptel
:commands gptel gptel-menu gptel-mode gptel-send
:config
(let ((grog-backend
(gptel-make-openai "Groq"
:host "api.groq.com"
:endpoint "/openai/vl/chat/completions"
:stream t
:key (lambda () (or (secrets-get-secret "Login" "groq'")
(secrets-get-secret "kdewallet" "groq")))
:models '("llama3-70b-8192"
"llama3-8b-8192"
"llama-3.1-70b-versatile"
"llama-3.1-8b-instant"
"llama-3.2-1b-preview"
"deepseek-ril-distill-1lama-70b"
"mixtral-8x7b-32768"
"gemma-7b-it"
"gemma2-9b-it")))
(openai-backend
(gptel-make-openai "ChatGPT"
:host "api.openai.com"
:stream t
:key (lambda () (or (secrets-get-secret "Login" "openai')
(secrets-get-secret "kdewallet" "openai')))
:models '("gpt-4o" "gpt-4o-mini" "chatgpt-4o-latest"
"o1" "ol-mini")))
(anthropic-backend
(gptel-make-anthropic "Claude"
:stream t
:key (lambda () (or (secrets-get-secret "Login" "anthropic")
(secrets-get-secret "kdewallet" "anthropic")))
:models '("claude-3-5-sonnet-20240620"
"claude-3-sonnet-20240229"
"claude-3-haiku-20240307")))
(ollama-backend
(let (ollama-models)
(when (executable-find "ollama')
(with-temp-buffer
(call-process "ollama'" nil t nil "list")
(goto-char (point-min))
(forward-line 1)
(while (and (not (eobp)) (looking-at "[~ \t]+"))

PACKAGES Tools 89

(push (match-string 0) ollama-models)
(forward-line 1)))
(gptel-make-ollama "Ollama" :models ollama-models :stream t)))))
(setg-default gptel-model "llama-3.1-70b-versatile"
gptel-backend groq-backend))
(delete (assoc "ChatGPT'" gptel--known-backends) gptel--known-backends)
(setq gptel-default-mode #'org-mode))

3.3.6 Headlice

Dealing with licenses and in particular license headers is frankly a bit of a pain, and so I've
written a package so that this just takes care of itself and I don't have to think about it.

(package! headlice :recipe (:local-repo "lisp/headlice"
:files (:defaults "licenses" "headers")))

The author of this package has set some pretty good defaults, but as usual there are some specific
personal preferences I'd like to apply, and then there’s the minor matter of hooking it into
Emacs/Doom.

(use-package! headlice
:hook (prog-mode . headlice-auto-insert)
:config
(setq headlice-preferred-license 'mpl
headlice-use-spdx-headers t
headlice-ignored-licenses '(gpl-3)
headlice-user-email "contact@tecosaur.net')

(defalias '+file-templates/insert-license #'headlice-create-license))

3.3.7 Consult

Fromthe : completion vertico module.

Since we're using Section 3.4.10 too, the separation between buffers and files is already clear, and
there’s no need for a different face.

(after! consult
(set-face-attribute 'consult-file nil :inherit 'consult-buffer)
(setf (plist-get (alist-get 'perl consult-async-split-styles-alist) :initial) ";"))

PACKAGES Tools 90

3.3.8 Magit

Fromthe :tools magit module.

Magit is great as-is, thanks for making such a lovely package Jonas!

There’s still a room for a little tweaking though. ..

<<magit-toplevel>>
(after! magit
<<magit-tweaks>>)

1. Easier forge remotes When creating a new project, I often want the remote to be to
my personal Forgejo instance. Let’s make that a bit more streamlined by introducing a
quick-entry "default forge" option.

(defvar +magit-default-forge-remote "git@ssh.tecosaur.net:tec/}s.git"
"Format string that fills out to a remote from the repo name.

Set to nil to disable this functionality.')

While we're at it, when creating a remote with the same name as my Github username ina
project where an HTTPS GitHub remote already exists, let’s make the pre-filled remote
URL use ssh.

(defadvice! +magit-remote-add--streamline-forge-a (args)
"Prompt to setup a remote using " +*magit-default-forge-remote '."
:filter-args #'magit-remote-add
(interactive

(let ((default-name
(subst-char-in-string
7\s 7-
(file-name-nondirectory
(directory-file-name
(or (doom-project-root) default-directory))))))
(or (and +magit-default-forge-remote
(not (magit-list-remotes))
(eq (read-char-choice
(format "Setup %s remote? [y/n]: "
(replace-regexp-in-string

"\\TAN(?: [~e]+@\\ |https://\\D\\ (L™ /T+\\) [: /] +\\ '

= "M\\1"
+magit-default-forge-remote))
"(7y 7))
?y)
(let ((name (read-string "Name: " default-name)))

(list "origin" (format +magit-default-forge-remote name)

https://github.com/tarsius

PACKAGES Tools

91

(transient-args 'magit-remote))))
(let ((origin (magit-get "remote.origin.url"))

(remote (magit-read-string-ns "Remote name"))
(gh-user (magit-get "github.user")))
(and (equal remote gh-user)
(if origin
(and
(string-match
= "\\"https
origin)

(not (string= (match-string 1 origin) gh-user)))
t)

(setq origin
(if origin
(replace-regexp-in-string
"\\"https://github\\.com/" "git@github.com:"
origin)
(format "git@github.com:%s/%s" gh-user (read-string

— "GitHub repo Name: " default-name)))))
(list remote

(magit-read-url

"Remote url"

(and origin
(string-match "\\([~:/1+\\)/[~/T+\\N(\\.git\\) 7\\'"
< origin)
(replace-match remote t t origin 1)))

(transient-args 'magit-remote))))))
args)

2. Commit message templates One little thing I want to add is some per-project commit
message templates.

(defvar +magit-project-commit-templates-alist nil

"Alist of toplevel dirs and template hf strings/functions.’)

(defun +magit-fill-in-commit-template ()

"Insert template from °+magit-fill-in-commit-template' if applicable.”
(wvhen-let ((template (and (save-excursion (goto-char (point-min))
< (string-match-p "\\ \\s-*$" (thing-at-point 'line)))

(cdr (assoc (file-name-base (directory-file-name
< (magit-toplevel)))

—

+magit-project-commit-templates-alist)))))
(goto-char (point-min))

(insert (if (stringp template) template (funcall template)))
(goto-char (point-min))
(end-of-line)))

(add-hook 'git-commit-setup-hook #'+magit-fill-in-commit-template 90)

://github\\.com/\\ ([~/T+\\) /AN ([~/T+\\)\\.git\\'"

PACKAGES Tools 92,

This is particularly useful when creating commits for Org, as they need to follow a certain
format and sometimes I forget elements (oops!).

(defun +org-commit-message-template ()
"Create a skeleton for an (Org commit message based on the staged diff."
(let (change-data last-file file-changes temp-point)
(with-temp-buffer
(apply #'call-process magit-git-executable
nil t nil
(append
magit-git-global-arguments
(list "diff" "--cached")))
(goto-char (point-min))
(while (re-search-forward "~@@\\|~\\+\\+\\+ b/" nil t)
(if (looking-back "~\\+\\+\\+ b/" (line-beginning-position))
(progn
(push (list last-file file-changes) change-data)
(setq last-file (buffer-substring-no-properties (point)
<> (line-end-position))
file-changes nil))
(setq temp-point (line-beginning-position))
(re-search-forward "~\\+\\|~-" nil t)
(end-of-line)
(cond
((string-match-p "\\.el$" last-file)
(when (re-search-backward "~\\(7:[+-]17 #\\|@@[+-\\d,]+0@
< \\) (\\(?:c1-\\)?\\ (7:defun\\ |defvar\\ |defmacro\\|defcustom\\)"
< temp-point t)
(re-search-forward
— "\\(7:c1-\\)?\\(7:defun\\ |defvar\\ |defmacro\\ |defcustom\\)
— \\(["[:space:1\n]+\\)" nil t)
(push (match-string 1) file-changes)))
((string-match-p "\\.org$" last-file)
(when (re-search-backward "~[+-]J*+ \\[~@Q[+-\\d,]+@@ *+ "
< temp-point t)
(re-search-forward "0 *+ " nil t)
(push (buffer-substring-no-properties (point) (line-end-position))
< file-changes)))))))
(setq file-changes (delete-dups file-changes))
(push (list last-file file-changes) change-data)
(setq change-data (delete '(nil nil) change-data))
(concat
(if (= 1 (length change-data))
(replace-regexp-in-string "~.*/\\|.[a-z]+$" "" (caar change-data))
")
": \n\n"
(mapconcat
(lambda (file-changes)

https://orgmode.org/worg/org-contribute.html#commit-messages
https://orgmode.org/worg/org-contribute.html#commit-messages

PACKAGES Tools 93

(if (cadr file-changes)
(format " %s (%s): "
(car file-changes)
(mapconcat #'identity (cadr file-changes) ", "))
(format "* Ys: " (car file-changes))))

change-data

"\n\n"))))

(add-to-list '+magit-project-commit-templates-alist (cons "org"

#'+torg-commit-message-template))

This relies on two small entries in the git config files which improves the hunk heading
line selection for elisp and Org files.

[diff "lisp"]
xfuncname = "~ (((; 3535+) IN\NCI (L
\t]+\\ (((cl-|el-patch-)?def (un|var|macro|method|custom) [gb/))) .*)$"

[diff "org"]
xfuncname = "~ (*+ +.%)$"

3. Magit delta

Delta is a git diff syntax highlighter written in rust. The author also wrote a package to
hook this into the Magit diff view (which don't get any syntax highlighting by default). This
requires the delta binary. It's packaged on some distributions, but most reliably installed
through Rust’s package manager cargo.

cargo install git-delta
Now we can make use of the package for this.

;5 (package! magit-delta :recipe (:host github :repo "dandavison/magit-delta'")
:pin "6fc7dbddcfacfe46d3£fd876172ad02a9abbac616")

All that's left is to hook it into magit
;; (magit-delta-mode +1)

Unfortunately this currently seems to mess things up, which is something I'll want to look
into later.

3.3.9 MPRIS

It’s nice to be able to interact with MPRIS players. This would just be a dependency of org-music
or doom-modeline-media-player, but I haven’t made it available on any an elisp archives.

https://github.com/dandavison/delta/

PACKAGES Tools 94

Thankfully most Emacs package managers make using Git repository URLs pretty easy these
days.

(package! mpris :recipe (:local-repo "lisp/mpris"))

3.3.10 Smerge

For repeated operations, a hydra would be helpful. But I prefer transient.

(defun smerge-repeatedly ()
"Perform smerge actions again and again"
(interactive)
(smerge-mode 1)
(smerge-transient))
(after! transient
(transient-define-prefix smerge-transient ()
[["Move"
("n" "next" (lambda () (interactive) (ignore-errors (smerge-next))
< (smerge-repeatedly)))
("p" "previous" (lambda () (interactive) (ignore-errors (smerge-prev))
< (smerge-repeatedly)))]
["Keep"
("b" "base" (lambda () (interactive) (ignore-errors (smerge-keep-base))
< (smerge-repeatedly)))
("u" "upper" (lambda () (interactive) (ignore-errors (smerge-keep-upper))
< (smerge-repeatedly)))
("1" "lower" (lambda () (interactive) (ignore-errors (smerge-keep-lower))
< (smerge-repeatedly)))
("a" "all" (lambda () (interactive) (ignore-errors (smerge-keep-all))
< (smerge-repeatedly)))
("RET" "current" (lambda () (interactive) (ignore-errors (smerge-keep-current))
< (smerge-repeatedly)))]
["Diff"
("<" "upper/base" (lambda () (interactive) (ignore-errors
< (smerge-diff-base-upper)) (smerge-repeatedly)))
("=" "upper/lower" (lambda () (interactive) (ignore-errors
< (smerge-diff-upper-lower)) (smerge-repeatedly)))
(">" "base/lower" (lambda () (interactive) (ignore-errors
< (smerge-diff-base-lower)) (smerge-repeatedly)))
("R" "refine" (lambda () (interactive) (ignore-errors (smerge-refine))
< (smerge-repeatedly)))
("E" "ediff" (lambda () (interactive) (ignore-errors (smerge-ediff))
< (smerge-repeatedly)))]
["Other"

PACKAGES Tools 95

("c" "combine" (lambda () (interactive) (ignore-errors
— (smerge-combine-with-next)) (smerge-repeatedly)))

("r" "resolve" (lambda () (interactive) (ignore-errors (smerge-resolve))
< (smerge-repeatedly)))

("k" "kill current" (lambda () (interactive) (ignore-errors
— (smerge-kill-current)) (smerge-repeatedly)))
("g" "quit" (lambda () (interactive) (smerge-auto-leave)))ll))

3.3.11 Corfu

Fromthe : completion corfumodule.

I like completion, but I don't like to feel spammed by it, so let’s up the delay.

(setq corfu-auto-delay 0.5)

3.3.12 Projectile

Fromthe : core packages module.

Looking at documentation via SPC h f and SPC h v and looking at the source can add package
src directories to projectile. This isn't desirable in my opinion.

(setq projectile-ignored-projects
(list "7/" "/tmp" (expand-file-name "straight/repos" doom-local-dir)))
(defun projectile-ignored-project-function (filepath)

"Return t <f FILEPATH is within any of ~projectile-ignored-projects'"
(or (mapcar (lambda (p) (string-prefix-p p filepath)) projectile-ignored-projects)))

3.3.13 Jinx

Minad’s Jinx spell-checker looks pretty nifty. When Henrik and I (or someone else) have some
more bandwidth, I think it would be good to incorporate with Doom.

In the meantime, let’s use it here.

(package! jinx)

PACKAGES Tools 96

1. Configuration

Jinx has some pretty lovely defaults out of the box, we'll just be making a few tweaks.

(use-package! jinx
:defer t
:init
(add-hook 'doom-init-ui-hook #'global-jinx-mode)
:config
;; Use my custom dictionary
(setq jinx-languages "en-custom")
;3 Extra face(s) to ignore
(push 'org-inline-src-block
(alist-get 'org-mode jinx-exclude-faces))
;; Take over the relevant bindings.
(after! ispell
(global-set-key [remap ispell-word] #'jinx-correct))
(after! evil-commands
(global-set-key [remap evil-next-flyspell-error] #'jinx-next)
(global-set-key [remap evil-prev-flyspell-error] #'jinx-previous))
;; I prefer for “point' to end up at the start of the word,
;; not just after the end.
(advice-add 'jinx-next :after (lambda (_) (left-word))))

2. Autocorrect

I used to have a small collection of configuration here, but then it grew larger, and now it’s
a package.

(package! autocorrect :recipe (:local-repo "lisp/autocorrect"))

To integrate Jinx with the autocorrect package, we need to tell it:

« About corrections made with Jinx
« How to tell if a word is spelled correctly with Jinx

« When it's appropriate to make an autocorrection

(use-package! autocorrect
rafter jinx
:config
;; Integrate with Jinx
(defun autocorrect-jinx-record-correction (overlay corrected)
"Record that Jinz corrected the text in OVERLAY to CORRECTED."
(let ((text
(buffer-substring-no-properties
(overlay-start overlay)
(overlay-end overlay))))
(autocorrect-record-correction text corrected)))

PACKAGES Tools 97

(defun autocorrect-jinx-check-spelling (word)
"Check if WORD is walzid."
;3 Mostly a copy of " jinx--word-valid-p', just without the buffer substring.
;3 It would have been nice if " jinx--word-valid-p' implemented like this
;3 with "~ jinx--this-word-valid-p' (or similar) as the at-point variant.
(or (member word jinx--session-words)
;5 Allow capitalized words
(and (string-match-p "\\" [[:upper:]1][[:lower:11+\\'" word)
(cl-loop
for w in jinx--session-words
thereis (and (string-equal-ignore-case word w)
(string-match-p "\\" [[:lower:JJ+\\'" w))))
(cl-loop for dict in jinx--dicts
thereis (jinx--mod-check dict word))))

(defun autocorrect-jinx-appropriate (pos)
"Return non-nil 2f it is appropriate to spellcheck at P0OS according to
— jinz."
(and (not (jinx--face-ignored-p pos))
(not (jinx--regexp-ignored-p pos))))

(setq autocorrect-check-spelling-function #'autocorrect-jinx-check-spelling)
(add-to-list 'autocorrect-predicates #'autocorrect-jinx-appropriate)
(advice-add 'jinx--correct-replace :before

< #'autocorrect-jinx-record-correction)

;3 Run setup
(run-with-idle-timer 0.5 nil #'autocorrect-setup)

;3 Make work with evil-mode
(evil-collection-set-readonly-bindings 'autocorrect-list-mode-map)
(evil-collection-define-key 'mormal 'autocorrect-list-mode-map
(kbd "a") #'autocorrect-create-correction
(kbd "x") #'autocorrect-remove-correction
(kbd "i") #'autocorrect-ignore-word))

3. Downloading dictionaries

Let’s get a nice big dictionary from SCOWL Custom List/Dictionary Creator with the
following configuration

size 80 (huge)

spellings British(-ise) and Australian
spelling variants level o

diacritics keep

extra lists hacker, roman numerals

http://app.aspell.net/create

PACKAGES Tools 98

a) Hunspell

cd /tmp

if [! -d hunspell-en-custom]; then
curl -o "hunspell-en-custom.zip"
— 'http://app.aspell.net/create?max_size=80&spelling=GBs&spelling=AU&max_variant=0&diacrit
unzip "hunspell-en-custom.zip" -d hunspell-en-custom

fi

cd hunspell-en-custom
DESTDIR1="$HOME/.local/share/hunspell"
DESTDIR2="$HOME/.config/enchant/hunspell"
mkdir -p "$DESTDIR1"

mkdir -p "$DESTDIR2"

cp en-custom.{aff,dic} "$DESTDIRIL"

cp en-custom.{aff,dic} "$DESTDIR2"

We will also add an accompanying doctor warning.

(unless (executable-find "hunspell')
(warn! "Couldn't find hunspell executable."))

(unless (file-exists-p "~/.local/share/hunspell/en-custom.dic")
(warn! "Custom hunspell dictionary is not present."))

b) Aspell

cd /tmp

if [! -d aspell6-en-custom]; then
curl -o "aspell6-en-custom.tar.bz2"
— 'http://app.aspell.net/create?max_size=80&spelling=GBs&spelling=AU&max_variant=0&diacrit
tar -xjf "aspell6-en-custom.tar.bz2"

fi

cd aspell6-en-custom
DESTDIR="$HOME/.config/enchant/" ./configure

sed -i 's/dictdir = .*/dictdir = "aspell"/' Makefile
sed -i 's/datadir = .x/datadir = "aspell"/' Makefile
make && make install

We will also add an accompanying doctor warning.

(unless (executable-find "aspell")
(warn! "Couldn't find aspell executable."))
(unless (file-exists-p "~/.config/enchant/aspell/en-custom.multi")

(warn! "Custom aspell dictionary is not present."))

PACKAGES Tools 99

3.3.14 TRAMP

Another lovely Emacs feature, TRAMP stands for Transparent Remote Access, Multiple Protocol. In
brief, it’s a lovely way to wander around outside your local filesystem.

1. Prompt recognition

Unfortunately, when connecting to remote machines Tramp can be a wee pit picky with
the prompt format. Let’s try to get Bash, and be a bit more permissive with prompt
recognition.

(after! tramp
(setenv "SHELL" "/bin/bash")
(setq tramp-shell-prompt-pattern "\\(7:~\\[\n\\[\x0d\\) [~1#$/>\n]*#7 [1#$%>]
\\(\e\\[[0-9;]1[a-zA-Z] *\\)*")) ;; default +

2. Troubleshooting

In case the remote shell is misbehaving, here are some things to try
a) Zsh

There are some escape code you don't want, let's make it behave more considerately.

if [["$TERM" == "dQumb"]1]; then
unset zle_bracketed_paste
unset zle
pPSi='§ !
return

fi

3. Guix
Guix puts some binaries that TRAMP looks for in unexpected locations. That’s no problem

though, we just need to help TRAMP find them.

(after! tramp
(appendq! tramp-remote-path
'(""/.guix-profile/bin" "~/.guix-profile/sbin"
"/run/current-system/profile/bin"

"/run/current-system/profile/sbin")))

3.3.15 Auto activating snippets

Sometimes pressing TAB is just too much.

https://guix.gnu.org/

PACKAGES Tools 100

(package! aas :recipe (:host github :repo "ymarco/auto-activating-snippets")
:pin "ddc2b7a58a2234477006af348b30e970£73bc2c1")

(use-package! aas
:commands aas-mode)

3.3.16 Screenshot

This makes it a breeze to take lovely screenshots.

(package! screenshot :recipe (:local-repo "lisp/screenshot"))

@ Screenshots
This makes it a breeze to take lovely screenshots.
» emacs-1isp
(package! screenshot :recipe (:local-repo "lisp/screenshot"))
«

Some light configuring is all we need, so we can make use of the oxo wrapper file uploading
script (which I've renamed to upload).

(use-package! screenshot
:defer t
:config (setq screenshot-upload-fn "upload %s 2>/dev/null"))

3.3.17 Etrace

The Emacs Lisp Profiler (ELP) does a nice job recording information, but it isn't the best for looking
at results. etrace converts ELP’s results to the "Chromium Catapult Trace Event Format". This
means that the output of etrace can be loaded in something like the speedscope webapp for
easier profile investigation.

(package! etrace :recipe (:host github :repo "aspiers/etrace")
:pin "2291ccf2f2ccc80abaac4664e8ede736ceb672b7")

https://github.com/Calinou/0x0
https://www.speedscope.app/

PACKAGES

Tools

101

(use-package!

:after elp)

3.3.18 YASnippet

From the

etrace

:editor snippets module.

Nested snippets are good, so let’s enable that.

(setq yas-tri

ggers-in-field t)

3.3.19 Stringinflection

For when you want to change the case pattern for a symbol.

(package! str

(use-package!
:commands (

ing-inflection :pin "617df25e91351feffe6aff4d9e4724733449d608")

string-inflection
string-inflection-all-cycle
string-inflection-toggle
string-inflection-camelcase
string-inflection-lower-camelcase
string-inflection-kebab-case
string-inflection-underscore
string-inflection-capital-underscore
string-inflection-upcase)

:init
(map! :leader :prefix ("c™" . "naming convention")
:desc '"cycle" """ #'string-inflection-all-cycle
:desc "toggle" "t" #'string-inflection-toggle
:desc "CamelCase" "c" #'string-inflection-camelcase
:desc "downCase" "d" #'string-inflection-lower-camelcase
:desc "kebab-case" "k" #'string-inflection-kebab-case
:desc "under_score" "_" #'string-inflection-underscore
:desc "Upper_Score" "u" #'string-inflection-capital-underscore
:desc "UP_CASE" "U" #'string-inflection-upcase)

(after! evi
(evil-def
"Define

:move-p

1

ine-operator evil-operator-string-inflection (beg end _type)
a new evil operator that cycles symbol casing."
oint nil

(interactive "<R>")

(string-inflection-all-cycle)

PACKAGES Visuals 102

(setq evil-repeat-info '([?g 77]1)))

(define-key evil-normal-state-map (kbd "g™") 'evil-operator-string-inflection)))

3.3.20 Smart parentheses

Fromthe : core packages module.

(sp-local-pair
' (org-mode)
H<<|l H>>|l

:actions '(insert))

3.4 Visuals

3.4.1 Infocolours

This makes manual pages nicer to look at by adding variable pitch fontification and colouring = .

2.9 Set operations
Operations pretending lists are sets.

-- Function: -union (list list2)

Return a new list containing the elements of LIST and elements of
LIST2 that are not in LIST. The test for equality is done with

‘equal’, or with ‘-compare-1In’if that’s non-nil.

(-union '(1 2 3) '(3 45))
= '(12345)

(-union "(1 2 3 4) '())
= '(123 4)

(-union '(1122) '(32 1))
= '(11223)

(package! info-colors :pin "2e237c301ba62f0e0286a27clabe48c4c8441143")

To use this we'll just hook it into Info.

PACKAGES Visuals 103

(use-package! info-colors

:commands (info-colors-fontify-node))

(add-hook 'Info-selection-hook 'info-colors-fontify-node)

£ *info*
Next: Advice Combinators, Prev: Core Advising Primitives, Up: Adv
need to make sure the advice is installed before the macro is expanded.

It is possible to advise a primitive (see What Is a Function),
but one should typically _not_ do so, for two reasons. Firstly, some
primitives are used by the advice mechanism, and advising them could
cause an infinite recursion. Secondly, many primitives are called
directly from C, and such calls ignore advice; hence, one ends up in a
confusing situation where some calls (occurring from Lisp code) obey the
advice and other calls (from C code) do not.

-- Macro: define-advice symbol (where lambda-list &optional name depi

&rest body
This macro defines a piece of advice and adds it to the function

named SYMBOL. The advice is an anonymous function if NAME is ‘nil’

or a function named ‘symbol@name’. See ‘advice-add’ for
explanation of other arguments.

-- Function: advice-add symbol where function &optional props
Add the advice FUNCTION to the named function SYMBOL. WHERE and
PROPS have the same meaning as for ‘add-function’ (see Core
Advising Primitives).

-- Function: advice-remove symbol function
Remove the advice FUNCTION from the named function SYMBOL.

FUNCTION can also be the ‘name’ of a piece of advice.

-- Function: advice-member-p function symbol
Return non-‘nil’ if the advice FUNCTION is already in the named

| 2 @ + *info* (elisp) Advising Named Functions 66:0 60% 2:12PM @

3.4.2 Modusthemes

Proteolas did a lovely job with the Modus themes, so much so that they were welcomed into
Emacs 28. However, he is also rather attentive with updates, and so I'd like to make sure we have
a recent version.

(package! modus-themes :pin "f3cd4d6983566dabOef3bcddf812cfd565d00d08" :pin
— "3576d14f06£245c3111496bfb035bb0926£48089")

343

344

PACKAGES Visuals 104

Spacemacs themes

(package! spacemacs-theme :pin "a7c5dccb4a037balf090015fc8ffb9566c64e369")

Theme magic

With all our fancy Emacs themes, my terminal is missing out!
(package! theme-magic :pin "844c4311bd26ebafd4b6ald72ddcc65d87£074e3")

This operates using pywal, which is present in some repositories, but most reliably installed
with pip.

sudo python3 -m pip install pywal
We can also add a doctor check.

(unless (executable-find "wal")

(warn! "Couldn't find the pywal executable (wal), theme-magic will not function."))

Theme magic takes a look at a number of faces, the saturation levels, and colour differences to try
to cleverly pick eight colours to use. However, it uses the same colours for the light variants, and
doesn’t always make the best picks. Since we're using doom-themes, our life is a little easier and
we can use the colour utilities from Doom themes to easily grab sensible colours and generate
lightened versions — let’s do that.

(use-package! theme-magic

:commands theme-magic-from-emacs

:config

(defadvice! theme-magic--auto-extract-16-doom-colors ()
:override #'theme-magic--auto-extract-16-colors
(list
(face-attribute 'default :background)
(doom-color 'error)
(doom-color 'success)
(doom-color 'type)
(doom-color 'keywords)
(doom-color 'constants)
(doom-color 'functions)
(face-attribute 'default :foreground)
(face-attribute 'shadow :foreground)
(doom-blend 'base8 'error 0.1)
(doom-blend 'base8 'success 0.1)
(doom-blend 'base8 'type 0.1)

PACKAGES Visuals 105

(doom-blend 'base8 'keywords 0.1)
(doom-blend 'base8 'constants 0.1)
(doom-blend 'base8 'functions 0.1)
(face-attribute 'default :foreground))))

3.4.5 Simple comment markup

I find that every now and then I sprinkle a little markup in code comments. Of course, this
doesn’t get fortified as it’s ultimately meaningless ... but it would be nice if it was, just slightly.
Surprisingly, I couldn’t find a package for this, so I made one.

(package! simple-comment-markup :recipe (:local-repo "lisp/simple-comment-markup"))
Let’s use both basic Org markup and Markdown code backticks, to cover most situations decently.

(use-package! simple-comment-markup
:hook (prog-mode . simple-comment-markup-mode)
:config
(setq simple-comment-markup-set '(org markdown-code)))

3.4.6 Doom modeline

From the :ui modeline module.

1. Modified buffer colour

The modeline is very nice and pretty, however I have a few niggles with the defaults. For
starters, by default red text is used to indicate an unsaved file. This makes me feel like
something’s gone wrong, so let’s tone that down to orange.

(custom-set-faces!
' (doom-modeline-buffer-modified :foreground "orange"))

2. Height

The default size (25) makes for a rather narrow mode line. To me, the modeline feels a bit
comfier if we give it a bit more space. I find 45 adds roughly a third of the line height as
padding above and below.

(setq doom-modeline-height 45)

3. File encoding

PACKAGES Visuals 106

While we're modifying the modeline, when we have the default file encoding (LF UTF-8),
it really isn't worth noting in the modeline. So, why not conditionally hide it?

(defun doom-modeline-conditional-buffer-encoding ()
"We expect the encoding to be LF UIF-8, so only show the modeline when this s
— mnot the case"
(setq-local doom-modeline-buffer-encoding
(unless (and (memq (plist-get (coding-system-plist
buffer-file-coding-system) :category)
' (coding-category-undecided
< coding-category-utf-8))
(not (memq (coding-system-eol-type
buffer-file-coding-system) '(1 2))))
t)))

(add-hook 'after-change-major-mode-hook
< #'doom-modeline-conditional-buffer-encoding)

4. Analogue clock

Now that my code for an analogue clock icon has been upstreamed, all I do here is adjust
the size slightly «.

(setq doom-modeline-time-clock-size 0.65)

5. Media player

Sometimes (particularly when reading a novel, with Emacs full-screened) it would be nice
to know what I'm listening to. We can put this information in the modeline with my media
player package.

(package! doom-modeline-media-player
:recipe (:local-repo "lisp/doom-modeline-media-player"))

To enable the lazy loading, we make doom-modeline aware of the segment function in
:init, and the segment function itself is autoloaded.

(use-package! doom-modeline-media-player

:defer t
:init
(after! doom-modeline

(add-to-1list 'doom-modeline-fn-alist

(cons 'media-player #'doom-modeline-segment--media-player)))

:config
(defun +single-fullscreen-window-p ()

(and (memq (frame-parameter nil 'fullscreen) '(fullscreen fullboth))

(not (consp (car (window-tree))))))

(setq doom-modeline-media-player #'+single-fullscreen-window-p

doom-modeline-media-player-playback-indication 'dim))

PACKAGES Visuals 107

6. PDF modeline

I think the PDF modeline could do with tweaking. I raised an issue on this, however the
response was basically "put your preferences in your personal config, the current default is
sensible" — so here we are.

First up I'm going to want a segment for just the buffer file name, and a PDF icon. Then
we'll redefine two functions used to generate the modeline.

(doom-modeline-def-segment buffer-name
"Display the current buffer's name, without any other information."
(concat
(doom-modeline-spc)
(doom-modeline--buffer-name)))

(doom-modeline-def-segment pdf-icon
"PDF icon from nerd-icons."
(concat
(doom-modeline-icon sucicon "nf-seti-pdf" nil nil
(doom-modeline-spc)
:face (if (doom-modeline--active)
'nerd-icons-red
'mode-line-inactive)
:v-adjust 0.02)))

(defun doom-modeline-update-pdf-pages ()
"Update PDF pages."
(setq doom-modeline--pdf-pages
(let ((current-page-str (number-to-string (eval
< ~(pdf-view-current-page))))
(total-page-str (number-to-string (pdf-cache-number-of-pages))))
(concat
(propertize
(concat (make-string (- (length total-page-str) (length
<> current-page-str)) 7)
" P" current-page-str)
'face 'mode-line)
(propertize (concat "/" total-page-str) 'face
< 'doom-modeline-buffer-minor-mode)))))

(doom-modeline-def-segment pdf-pages
"Display PDF pages."
(if (doom-modeline--active) doom-modeline--pdf-pages

(propertize doom-modeline--pdf-pages 'face 'mode-line-inactive)))

(doom-modeline-def-modeline 'pdf
' (bar window-number pdf-pages pdf-icon buffer-name)
' (media-player misc-info matches major-mode process vcs))

https://github.com/seagle0128/doom-modeline/pull/425

PACKAGES Visuals 108

3.4.7 Keycast

For some reason, I find myself demoing Emacs every now and then. Showing what keyboard
stuff I'm doing on-screen seems helpful. While screenkey does exist, having something that
doesn’t cover up screen content is nice.

| 2 ~/.config/doom/ SPC SPC +ivy/projectile-find-file 4:32PM 1.46 DOOM v2.0.9

(package! keycast :pin "53514c3dc3dfb7d4c3a65898b0b3edb69b6536c2")
Let’s just make sure this is lazy-loaded appropriately.

(use-package! keycast
:commands keycast-mode
:config
(define-minor-mode keycast-mode
"Show current command and its key binding in the mode line."

:global t
(if keycast-mode
(progn
(add-hook 'pre-command-hook 'keycast--update t)
(add-to-list 'global-mode-string '("" mode-line-keycast " ")))

(remove-hook 'pre-command-hook 'keycast--update)
(setq global-mode-string (remove '("" mode-line-keycast " ")
< global-mode-string))))
(custom-set-faces!
' (keycast-command :inherit doom-modeline-debug
:height 0.9)
' (keycast-key :inherit custom-modified
:height 1.1
:weight bold)))

3.4.8 Screencast

In a similar manner to Section 3.4.7, gif-screencast may come in handy.
(package! gif-screencast :pin "6798656d3d3107d16e30cc26bc3928b00e50cica")

We can lazy load this using the start/stop commands.

Iinitially installed scrot for this, since it was the default capture program. However it raised
glib error: Saving to file ... failed each time itwasrun. Google didn't reveal any

https://gitlab.com/screenkey/screenkey
https://gitlab.com/ambrevar/emacs-gif-screencast

PACKAGES Visuals 109

easy fixed, so I switched to maim. We now need to pass it the window ID. This doesn't change
throughout the lifetime of an Emacs instance, so as long as a single window is used xdotool
getactivewindow will give a satisfactory result.

It seems that when new colours appear, that tends to make gifsicle introduce artefacts. To
avoid this we pre-populate the colour map using the current doom theme.

(use-package! gif-screencast
:commands gif-screencast-mode
:config
(map! :map gif-screencast-mode-map
:g "<£8>" #'gif-screencast-toggle-pause
ig "<f9>" #'gif-screencast-stop)
(setq gif-screencast-program "maim"
gif-screencast-args ~("--quality" "3" "-i" ,(string-trim-right
(shell-command-to-string
"xdotool getactivewindow")))
gif-screencast-optimize-args '("--batch" "--optimize=3"
< "--usecolormap=/tmp/doom-color-theme"))
(defun gif-screencast-write-colormap ()
(write-region
(replace-regexp-in-string
H\n+|l |l\n|l
(mapconcat (lambda (c) (if (listp (cdr c))
(cadr c))) doom-themes--colors "\n"))
nil "/tmp/doom-color-theme"))
(gif-screencast-write-colormap)
(add-hook 'doom-load-theme-hook #'gif-screencast-write-colormap))

3.4.9 Mixed pitch

From the :ui zen module.

We'd like to use mixed pitch in certain modes. If we simply add a hook, when directly opening a
file with (a new) Emacs mixed-pitch-mode runs before Ul initialisation, which is problematic.
To resolve this, we create a hook that runs after Ul initialisation and both

« conditionally enables mixed-pitch-mode
« sets up the mixed pitch hooks
(defvar mixed-pitch-modes '(org-mode LaTeX-mode markdown-mode gfm-mode Info-mode)

"Hodes that “mized-pitch-mode ' should be enabled in, but only after UI

— anitialisation.')

https://github.com/naelstrof/maim

PACKAGES Visuals 110

(defun init-mixed-pitch-h ()

"Hook “mized-pitch-mode ' into each mode in "mized-pitch-modes '.

4lso immediately enables "“mized-pitch-modes '

1f currently in one of the modes.'
(when (memq major-mode mixed-pitch-modes)

(mixed-pitch-mode 1))
(dolist (hook mixed-pitch-modes)

(add-hook (intern (concat (symbol-name hook) '"-hook")) #'mixed-pitch-mode)))

(add-hook 'doom-init-ui-hook #'init-mixed-pitch-h)

As mixed pitch uses the variable mixed-pitch-face, we can create a new function to apply
mixed pitch with a serif face instead of the default (see the subsequent face definition). This was
created for writeroom mode.

(autoload #'mixed-pitch-serif-mode "mixed-pitch"
"Change the default face of the current buffer to a serifed wariable pitch, while
— keeping some faces fized pitch." t)

(setq! variable-pitch-serif-font (font-spec :family "Alegreya'" :size 27))

(after! mixed-pitch
(setq mixed-pitch-set-height t)
(set-face-attribute 'variable-pitch-serif nil :font variable-pitch-serif-font)
(defun mixed-pitch-serif-mode (&optional arg)
"Change the default face of the current buffer to a serifed variable pitch, while
— keeping some faces fized pitch."
(interactive)
(let ((mixed-pitch-face 'variable-pitch-serif))
(mixed-pitch-mode (or arg 'toggle)))))

Now, as Harfbuzz is currently used in Emacs, we'll be missing out on the following Alegreya
ligatures:

fiff thifffy ff flfificfrifi 57 fefe ThTh

Thankfully, it isn't to hard to add these to the composition-function-table.

(set-char-table-range composition-function-table ?f '(["\\(7:££f7[fij1t]\\)" O
< font-shape-gstring]))

(set-char-table-range composition-function-table ?T '(["\\(7:Th\\)" 0

<> font-shape-gstring]))

1. Variable pitch serif font

It would be nice if we were able to make use of a serif version of the variable-pitch face.
Since this doesn't already exist, let’s create it.

PACKAGES Visuals 111

(defface variable-pitch-serif
'((t (:family "serif")))
"4 variable-pitch face with serifs.”
:group 'basic-faces)

For ease of use, let’s also set up an easy way of setting the : font attribute.

(defcustom variable-pitch-serif-font (font-spec :family '"serif")
"The font face used for “wariable-pitch-serif'."
:group 'basic-faces
:type '(restricted-sexp :tag "font-spec" :match-alternatives (fontp))
:set (lambda (symbol value)
(set-face-attribute 'variable-pitch-serif nil :font value)
(set-default-toplevel-value symbol value)))

3.4.10 Marginalia

Partof the : completion vertico module.

Marginalia is nice, but the file metadata annotations are a little too plain. Specifically, I have
these gripes

« File attributes would be nicer if coloured
« Idon't care about the user/group information if the user/group is me
« When a file time is recent, a relative age (e.g. 2h ago) is more useful than the date

« Anindication of file fatness would be nice

Thanks to the marginalia-annotator-registry, we don't have to advise, we can just add a
new file annotator.

Another small thing is the face used for docstrings. At the momentit’s (italic shadow), butl
don't like that.

(after! marginalia

(setq marginalia-censor-variables nil)

(defadvice! +marginalia--anotate-local-file-colorful (cand)
"Just a more colourful wversion of “marginalia--anotate-local-file'."
:override #'marginalia--annotate-local-file
(when-let (attrs (file-attributes (substitute-in-file-name
(marginalia--full-candidate cand))
'integer))

PACKAGES Visuals

112

(marginalia--fields

((marginalia--file-owner attrs)
:width 12 :face 'marginalia-file-owner)

((marginalia--file-modes attrs))

((+marginalia-file-size-colorful (file-attribute-size attrs))
:width 7)

((+marginalia--time-colorful (file-attribute-modification-time attrs))
:width 12))))

(defun +marginalia--time-colorful (time)
(let* ((seconds (float-time (time-subtract (current-time) time)))
(color (doom-blend
(face-attribute 'marginalia-date :foreground nil t)
(face-attribute 'marginalia-documentation :foreground nil t)
(/ 1.0 (log (+ 3 (/ (+ 1 seconds) 345600.0)))))))
55 1 - log(8 + 1/(days + 1)) % grey
(propertize (marginalia--time time) 'face (list :foreground color))))

(defun +marginalia-file-size-colorful (size)
(let* ((size-index (/ (log (+ 1 size)) 7.0))
(color (if (< size-index 10000000) ; 10m
(doom-blend 'orange 'green size-index)
(doom-blend 'red 'orange (- size-index 1)))))

(propertize (file-size-human-readable size) 'face (list :foreground color)))))

3.4.11 Centaur Tabs

From the :ui tabs module.

We want to make the tabs a nice, comfy size (36), with icons. The modifier marker is nice, but
the particular default Unicode one causes a lag spike, so let’s just switch to an o, which still looks
decent but doesn’t cause any issues. An ’active-bar’ is nice, so let’s have one of those. If we have it
under needs us to turn on x-underline-at-decent though. For some reason this didn't seem
to work inside the (after! ...) block ~\(;_/~ . Thenlet’s change the font to a sans serif, but
the default one doesn't fit too well somehow, so let’s switch to P22 Underground Book’; it looks

much nicer.

(after! centaur-tabs

(centaur-tabs-mode -1)

(setq centaur-tabs-height 36
centaur-tabs-set-icons t
centaur-tabs-modified-marker "o"
centaur-tabs-close-button "x"

centaur-tabs-set-bar 'above

PACKAGES Visuals 113

centaur-tabs-gray-out-icons 'buffer)
(centaur-tabs-change-fonts "P22 Underground Book" 160))
;; (setq x-underline-at-descent-line t)

3.4.12 Nerd Icons

Fromthe : core packages module.

nerd-icons does a generally great job giving file names icons. One minor niggle I have is
that when I open a .m file, it’'s much more likely to be Matlab than Objective-C. As such, it'll be
switching the icon associated with .m.

(after! nerd-icons

(when-let ((matlab-icon (assoc "matlab'" nerd-icons-extension-icon-alist)))
(setcdr (assoc "m" nerd-icons-extension-icon-alist)
(cdr matlab-icon))))

3.4.13 Prettier page breaks

In some files, ~L appears as a page break character. This isn't that visually appealing, and Steve
Purcell has been nice enough to make a package to display these as horizontal rules.

(package! page-break-lines :recipe (:host github :repo "purcell/page-break-lines")
:pin "982571749c8fe2b5€2997dd043003a1b9fe87b38")

We can go from "better" to "where has this been all my life?" by now making page navigation easy
with some simple keybindingslifted from Xah Lee’s post on the form feed. Making forward-page

and backward-page work with Evil mode also takes a little tweaking, so we might as well do
that too while we're at it.

We can also make the displayed horizontal rule communicate more useful information by making
it the same as the fill column. While this could be accomplished by just setqing the rule width to
the default £i11-column value, it would be better for it to always match the local buffer value.
This may be accomplished with advise, but it’s a bit cleaner (and even simpler) to just turn the
width variable into an alias for fi11-column.

(use-package! page-break-lines
:hook (prog-mode . page-break-lines-mode)
:init
(autoload 'turn-on-page-break-lines-mode '"page-break-lines")
:config

http://xahlee.info/emacs/emacs/modernization_formfeed.html

PACKAGES Visuals 114

(defvaralias 'page-break-lines-max-width 'fill-column)
(defun tevil-forward-page ()
"Call ° forward-page ', such that <t works as intended with evil-mode."
(interactive)
(when (eq (char-after (point)) 7?\"L)
(forward-char 1))
(forward-page))
(defun +evil-backward-page ()
"Call " backward-page ', such that it works as intended with evil-mode."
(interactive)
(wvhen (eq (char-after (point)) 7\"L)
(backward-char 1))
(backward-page))
(map! :prefix "g"
:desc "Prev page break" :nv "[" #'+evil-backward-page
:desc "Next page break" :nv "]" #'t+evil-forward-page)
(map! "<C-M-prior>" #'+evil-backward-page
"<C-M-next>" #'+evil-forward-page))

With this setup, I find form-feeds to be a really convenient addition to my coding workflow.
Despite generally poor adoption, they are the only language-independent form that "just works".
While you could also use specially crafted comment forms and a more complex setup, it’s not as
though the form-feed is being used for anything else — it’s free real estate! @

3.4.14 Writeroom

From the :ui zen module.

For starters, I think Doom is a bit over-zealous when zooming in
(setq +zen-text-scale 0.8)

Then, when using Org it would be nice to make a number of other aesthetic tweaks. Namely:

« Use a serifed variable-pitch font

« Hiding headline leading stars

« Using fleurons as headline bullets
« Hiding line numbers

« Removing outline indentation

« Centring the text

PACKAGES Visuals 115

(defvar +zen-serif-p t

"Whether to use a serifed font with ~mized-pitch-mode '.")
(defvar +zen-org-starhide t

"The value °org-modern-hide-stars ' is set to.")

(after! writeroom-mode
(defvar-local +zen--original-org-indent-mode-p nil)
(defvar-local +zen--original-mixed-pitch-mode-p nil)
(defun +zen-enable-mixed-pitch-mode-h ()
"Enable “mized-pitch-mode ' when in " +zen-mimed-pitch-modes

(when (apply #'derived-mode-p +zen-mixed-pitch-modes)

rn

(if writeroom-mode
(progn
(setq +zen--original-mixed-pitch-mode-p mixed-pitch-mode)
(funcall (if +zen-serif-p #'mixed-pitch-serif-mode #'mixed-pitch-mode) 1))
(funcall #'mixed-pitch-mode (if +zen--original-mixed-pitch-mode-p 1 -1)))))
(defun +zen-prose-org-h ()
"Reformat the current (rg buffer appearance for prose."
(when (eq major-mode 'org-mode)
(setq display-line-numbers nil
visual-fill-column-width 60
org-adapt-indentation nil)
(when (featurep 'org-modern)
(setg-local org-modern-star '("" "' "¢ o)
;3 org-modern-star ' ("' ""ofwonnomnonnown o
org-modern-hide-stars +zen-org-starhide)
(org-modern-mode -1)
(org-modern-mode 1))
(setq
+zen--original-org-indent-mode-p org-indent-mode)
(org-indent-mode -1)))
(defun +zen-nonprose-org-h ()
"Reverse the effect of " +zen-prose-org'."
(when (eq major-mode 'org-mode)
(when (bound-and-true-p org-modern-mode)
(org-modern-mode -1)
(org-modern-mode 1))
(when +zen--original-org-indent-mode-p (org-indent-mode 1))))
(pushnew! writeroom--local-variables
'display-line-numbers
'visual-fill-column-width
'org-adapt-indentation
'org-modern-mode
'org-modern-star
'org-modern-hide-stars)
(add-hook 'writeroom-mode-enable-hook #'+zen-prose-org-h)
(add-hook 'writeroom-mode-disable-hook #'+zen-nonprose-org-h))

PACKAGES Visuals 116

. = |
4 Demo Org Document
This should illustrate how I see an Org file with and without writeroon-mode.
Let's make some demonstration elements.
< Demo elements
> Some
> Demo
> List

Add in a quotation
In the art of design, colour is to form what verse is to prose,

—amore harmonious and luminous vehicle of the thought.

¢ More comments

Hello, here are some more comments
Elaboration

Is this not visually attractive?

1 © Pemo Org Document
1 This should illustrate how | see an Org file with and without writeroom-mode.
Let's make some demonstration elements.
0 Demo elements
> Some
> Demo
> List

Add in a quotation

In the art of design, colour is to form what verseis to prose,
1 —amore harmonious and luminous vehicle of the thought.

© More comments
Hello, here are some more comments
* Elaboration
Is this not visually attractive?

2 ® 448 xnew orgx 1:2 ALl 7:28PM 2.34 Org @

3.4.15 Treemacs

Fromthe :ui treemacs module.

Quite often there are superfluous files I'm not that interested in. There’s no good reason for them
to take up space. Let’s add a mechanism to ignore them.

(after! treemacs
(defvar treemacs-file-ignore-extensions '()
"File extension which ° treemacs-ignore-filter ' will ensure are ignored")
(defvar treemacs-file-ignore-globs '()
"Globs which will are transformed to " treemacs-file-ignore-regexps ' which
— " treemacs-ignore-filter ' will ensure are ignored")
(defvar treemacs-file-ignore-regexps '()
"RegEzps to be tested to ignore files, generated from
— treeemacs-file-ignore-globs '")
(defun treemacs-file-ignore-generate-regexps ()
"Generate " treemacs-file-ignore-regexzps ' from " treemacs-file-ignore-globs '"
(setq treemacs-file-ignore-regexps (mapcar 'dired-glob-regexp
<> treemacs-file-ignore-globs)))
(if (equal treemacs-file-ignore-globs '()) nil
< (treemacs-file-ignore-generate-regexps))
(defun treemacs-ignore-filter (file full-path)
"Ignore files specified by " treemacs-file-ignore-extensions ', and
— " treemacs-file-ignore-regexps '"
(or (member (file-name-extension file) treemacs-file-ignore-extensions)

PACKAGES Visuals 117

(let ((ignore-file nil))
(dolist (regexp treemacs-file-ignore-regexps ignore-file)
(setq ignore-file (or ignore-file (if (string-match-p regexp full-path) t
= nil)))))))

(add-to-list 'treemacs-ignored-file-predicates #'treemacs-ignore-filter))
Now, we just identify the files in question.

(setq treemacs-file-ignore-extensions
'(;; LaTeX
"aux"
"ptc
"fdb_latexmk"
"fls"
"synctex.gz"
"toc"
;; LaTeX - glossary
Hglg”
Hgloﬂ
ngls"
"glsdefs"
"ist"
"acn"
"acr"
nalgh
;; LaTeX - pgfplots
Hmwll
;; LaTeX - pdfx
"pdfa.xmpi"
))
(setq treemacs-file-ignore-globs
'(;; LaTeX
"x/_minted-*"
53 AucTeX
"x/.auctex-auto"
"x/_region_.log"
"x/_region_.tex"))

3.4.16 Visual fill column

This is already loaded by Doom, but it needs a patch applied for Emacs 29. I've emailed this to
the maintainer, hopefully Joost will take a look at it.

Account for remapping in window width calculation

PACKAGES Visuals 118

The window width calculation in
“visual-fill-column--window-max-text-width' uses “window-width' with the
active window as the sole argument. As of Emacs 29, this returns the
width of the window using the default face, even if the default face has
been remapped in the window: causing incorrect results when the window

is remapped.

Emacs 29 also introduces a special second argument value, “remap'

which (as we want) uses the remapped face, if applicable. This corrects
the width calculation. However, margin calculations are still dome in
terms of the non-remapped default face, and so a conversion factor needs
to be applied when considering margins.

That's the problem/fix, I'll just overwrite the two functions in question with the fixed versions for
now.

(defun +visual-fill-column--window-max-text-width--fixed (&optional window)
"Return the mazimum possible text width of WINDOW.
The mazimum possible text width ts the width of the current tezt
area plus the margins, but excluding the fringes, scroll bar, and
right divider. WINDOW defaults to the selected window. The
return value 15 scaled to account for "~ text-scale-mode-amount '
and " text-scale-mode-step '."
(or window (setq window (selected-window)))
(let* ((margins (window-margins window))
(buffer (window-buffer window))
(scale (if (and visual-fill-column-adjust-for-text-scale
(boundp 'text-scale-mode-step)
(boundp 'text-scale-mode-amount))
(with-current-buffer buffer
(expt text-scale-mode-step
text-scale-mode-amount))
1.0))
(remap-scale
(if (>= emacs-major-version 29)
(/ (window-width window 'remap) (float (window-width window)))
1.0)))
(truncate (/ (+ (window-width window (and (>= emacs-major-version 29) 'remap))
(¥ (or (car margins) 0) remap-scale)
(* (or (cdr margins) 0) remap-scale))
(float scale)))))

(advice-add 'visual-fill-column--window-max-text-width
:override #'+visual-fill-column--window-max-text-width--fixed)

PACKAGES Frivolities 119

(defun +visual-fill-column--set-margins--fixed (window)
"Set window margins for WINDOW."
;5 Calculate left & right margins.
(let* ((total-width (visual-fill-column--window-max-text-width window))
(remap-scale
(if (>= emacs-major-version 29)
(/ (window-width window 'remap) (float (window-width window)))
1.0))
(width (or visual-fill-column-width
fill-column))
(margins (if (< (- total-width width) 0) ; margins must be >= 0
0
(round (/ (- total-width width) remap-scale))))
(left (if visual-fill-column-center-text
(/ margins 2)
0))
(right (- margins left)))

(if visual-fill-column-extra-text-width
(let ((add-width (visual-fill-column--add-extra-width left right
<> visual-fill-column-extra-text-width)))

(setq left (car add-width)
right (cdr add-width))))

;5 put an explicitly R2L buffer on the right side of the window
(when (and (eq bidi-paragraph-direction 'right-to-left)
(= left 0))
(setq left right)
(setq right 0))

(set-window-margins window left right)))

advice-a visual-fill-column--set-margins
(advi dd 'visual-fill-col gi
:override #'+visual-fill-column--set-margins--fixed)

3.5 Frivolities

3.5.1 xked

XKCD comics are fun.

(package! xkcd :pin "80011da2e7def8f65233d4e0d790ca60d287081d")

We want to set this up so it loads nicely in Extra links.

PACKAGES Frivolities 120

(use-package! xkcd
:commands (xkcd-get-json
xkcd-download xkcd-get
;; now for funcs from my extension of this pkg
+xkcd-find-and-copy +xkcd-find-and-view
+xkcd-fetch-info +xkcd-select)
:config
(setq xkcd-cache-dir (expand-file-name "xkcd/" doom-cache-dir)
xkcd-cache-latest (concat xkcd-cache-dir "latest"))
(unless (file-exists-p xkcd-cache-dir)
(make-directory xkcd-cache-dir))
(after! evil-snipe
(add-to-list 'evil-snipe-disabled-modes 'xkcd-mode))
:general (:states 'normal
:keymaps 'xkcd-mode-map
"<right>" #'xkcd-next

""n" #'xkcd-next ; evil-ish

"<left>" #'xkcd-prev

"N #'xkcd-prev ; evil-ish

"r" #'xkcd-rand

"a" #'xkcd-rand ; because image-rotate can interfere
A #'xkcd-alt-text

"q" #'xkcd-kill-buffer

"o" #'xkcd-open-browser

e #'xkcd-open-explanation-browser
;5 extras

"s" #'+xkcd-find-and-view

"/ #'+xkcd-find-and-view

nyt #'+xkcd-copy))

Let’s also extend the functionality a whole bunch.

(after! xkcd
(require 'emacsql-sqlite)

(defun +xkcd-select ()
"Prompt the user for an zkcd using "~ completing-read ' and " +zkcd-select-format '.
— Return the zkcd number or nil"
(let* (prompt-lines
(-dummy (maphash (lambda (key xkcd-info)
(push (+xkcd-select-format xkcd-info) prompt-lines))
+xkcd-stored-info))
(num (completing-read (format "xkcd (%s): " xkcd-latest) prompt-lines)))
(if (equal "" num) xkcd-latest
(string-to-number (replace-regexp-in-string "\\([0-9]1+\\).*" "\\1" num)))))

(defun +xkcd-select-format (xkcd-info)

PACKAGES Frivolities 121

"Creates each completing-read line from an zkcd info plist. Hust start with the
— ackcd number"
(format "%-4s 7-30s %s"
(propertize (number-to-string (plist-get xkcd-info :num))
'face 'counsel-key-binding)
(plist-get xkcd-info :title)
(propertize (plist-get xkcd-info :alt)
'face '(variable-pitch font-lock-comment-face))))

(defun +xkcd-fetch-info (&optional num)
"Fetch the parsed json info for comic NUM. Fetches latest when omitted or 0"
(require 'xkcd)
(when (or (not num) (= num 0))
(+xkcd-check-latest)
(setq num xkcd-latest))
(let ((res (or (gethash num +xkcd-stored-info)
(puthash num (+xkcd-db-read num) +xkcd-stored-info))))
(unless res
(+xkcd-db-write
(let* ((url (format "https://xkcd.com/%d/info.0.json" num))
(json-assoc
(if (gethash num +xkcd-stored-info)
(gethash num +xkcd-stored-info)
(json-read-from-string (xkcd-get-json url num)))))
json-assoc))
(setq res (+xkcd-db-read num)))
res))

;5 since we've done this, we may as well go one little step further
(defun +xkcd-find-and-copy ()
"Prompt for an zkcd using " +zkcd-select ' and copy url to clipboard”
(interactive)
(+xkcd-copy (+xkcd-select)))

(defun +xkcd-copy (&optional num)
"Copy a url to zkcd NUM to the clipboard”
(interactive "i")
(let ((num (or num xkcd-cur)))
(gui-select-text (format "https://xkcd.com/%d" num))
(message "xkcd.com/%d copied to clipboard" num)))

(defun +xkcd-find-and-view ()
"Prompt for an zkcd using " tzkcd-select ' and view it"
(interactive)
(xkcd-get (+xkcd-select))
(switch-to-buffer "*xkcd+*"))

(defvar +xkcd-latest-max-age (¥ 60 60) ; 1 hour

PACKAGES Frivolities 122,

"Time after which zkcd-latest should be refreshed, in seconds")

;3 initialise “xkcd-latest' and ~+xkcd-stored-info' with latest xkcd
(add-transient-hook! '+xkcd-select

(require 'xkcd)

(+xkcd-fetch-info xkcd-latest)

(setq +xkcd-stored-info (+xkcd-db-read-all)))

(add-transient-hook! '+xkcd-fetch-info
(xkcd-update-latest))

(defun +xkcd-check-latest ()
"Use value in "zkcd-cache-latest ' as long as it isn't older thabn
— " +zkcd-latest-maz-age '"
(unless (and (file-exists-p xkcd-cache-latest)

(< (- (time-to-seconds (current-time))
(time-to-seconds (file-attribute-modification-time
< (file-attributes xkcd-cache-latest))))

+xkcd-latest-max-age))
(let* ((out (xkcd-get-json "http://xkcd.com/info.0.json" 0))
(json-assoc (json-read-from-string out))
(latest (cdr (assoc 'num json-assoc))))
(when (/= xkcd-latest latest)
(+xkcd-db-write json-assoc)
(with-current-buffer (find-file xkcd-cache-latest)
(setq xkcd-latest latest)
(erase-buffer)
(insert (number-to-string latest))
(save-buffer)
(kill-buffer (current-buffer)))))
(shell-command (format "touch s" xkcd-cache-latest))))

(defvar +xkcd-stored-info (make-hash-table :test 'eql)
"Basic info on downloaded zkcds, in the form of a hashtable")

(defadvice! xkcd-get-json--and-cache (url &optional num)
"Fetch the Json coming from URL.
If the file NUM.json exzists, use it instead.
If NUN 2s 0, always download from URL.
The return value 2s a string."
:override #'xkcd-get-json
(let* ((file (format "Ys’d.json" xkcd-cache-dir num))
(cached (and (file-exists-p file) (not (eq num 0))))
(out (with-current-buffer (if cached
(find-file file)
(url-retrieve-synchronously url))
(goto-char (point-min))
(unless cached (re-search-forward "~$"))

PACKAGES Frivolities 123

(progl
(buffer-substring-no-properties (point) (point-max))
(kill-buffer (current-buffer))))))
(unless (or cached (eq num 0))
(xkcd-cache-json num out))
out))

(defadvice! +xkcd-get (num)
"Get the zkcd number NUM."
:override 'xkcd-get
(interactive "nEnter comic number: ")
(xkcd-update-latest)
(get-buffer-create "*xkcd*")
(switch-to-buffer "*xkcdx")
(xkcd-mode)
(let (buffer-read-only)
(erase-buffer)
(setq xkcd-cur num)
(let* ((xkcd-data (+xkcd-fetch-info num))
(num (plist-get xkcd-data :num))
(img (plist-get xkcd-data :img))
(safe-title (plist-get xkcd-data :safe-title))
(alt (plist-get xkcd-data :alt))
title file)
(message "Getting comic...")
(setq file (xkcd-download img num))
(setq title (format "Jd: ’s" num safe-title))
(insert (propertize title
'face 'outline-1))
(center-line)
(insert "\n")
(xkcd-insert-image file num)
(if (eq xkcd-cur 0)
(setq xkcd-cur num))
(setq xkcd-alt alt)
(message "/s" title))))

(defconst +xkcd-db--sqlite-available-p
(with-demoted-errors "+org-xkcd initialization: %S"
(emacsql-sqlite-ensure-binary)

t))

(defvar +xkcd-db--connection (make-hash-table :test #'equal)
"Database comnection to torg-zkcd database.")

(defun +xkcd-db--get ()
"Return the sqlite db file."
(expand-file-name "xkcd.db" xkcd-cache-dir))

PACKAGES Frivolities 124

(defun +xkcd-db--get-connection ()
"Return the database comnection, if any."
(gethash (file-truename xkcd-cache-dir)
+xkcd-db--connection))

(defconst +xkcd-db--table-schema
' ((xkcds
[(num integer :unique :primary-key)

(year :not-null)
(month :not-null)
(1ink :not-null)
(news :not-null)
(safe_title :not-null)
(title :not-null)
(transcript :not-null)
(alt :not-null)
(img :not-null)])))

(defun +xkcd-db--init (db)
"Initialize database DB with the correct schema and user wversion."
(emacsql-with-transaction db
(pcase-dolist (" (,table . ,schema) +xkcd-db--table-schema)
(emacsql db [:create-table $il $S2] table schema))))

(defun +xkcd-db ()
"Entrypoint to the +org-zkcd sqlite database.
Initializes and stores the database, and the database connection.
Performs a database upgrade when required."”
(unless (and (+xkcd-db--get-connection)
(emacsql-live-p (+xkcd-db--get-connection)))
(let* ((db-file (+xkcd-db--get))
(init-db (not (file-exists-p db-file))))
(make-directory (file-name-directory db-file) t)
(let ((conn (emacsql-sqlite db-file)))
(set-process-query-on-exit-flag (emacsql-process conn) nil)
(puthash (file-truename xkcd-cache-dir)
conn
+xkcd-db--connection)
(when init-db
(+xkcd-db--init comnn)))))
(+xkcd-db--get-connection))

(defun +xkcd-db-query (sql &rest args)
"Run SQL query on torg-zkcd database with ARGS.
SQL can be etther the emacsql vector representation, or a string."
(if (stringp sql)
(emacsql (+xkcd-db) (apply #'format sql args))

PACKAGES

Frivolities

125

(apply #'emacsql (+xkcd-db) sql args)))

(defun +xkcd-db-read (num)
(wvhen-let ((res

(car (+xkcd-db-query [:select * :from xkcds

num
:limit 1))))

(+xkcd-db-list-to-plist res)))

(defun +xkcd-db-read-all ()

(let ((xkcd-table (make-hash-table :test 'eql :size 4000)))

(mapcar (lambda (xkcd-info-1list)

(puthash (car xkcd-info-list) (+xkcd-db-list-to-plist xkcd-info-list)

< xkcd-table))

:where (= num $s1)]

(+xkcd-db-query [:select * :from xkcds]))

xkcd-table))

(defun +xkcd-db-list-to-plist (xkcd-datalist)
“(:num , (nth 0 xkcd-datalist)
:year ,(nth 1 xkcd-datalist)
:month , (nth 2 xkcd-datalist)
:link ,(nth 3 xkcd-datalist)
:news , (nth 4 xkcd-datalist)
:safe-title ,(nth 5 xkcd-datalist)
:title ,(nth 6 xkcd-datalist)
:transcript ,(nth 7 xkcd-datalist)
:alt ,(nth 8 xkcd-datalist)
:img , (nth 9 xkcd-datalist)))

(defun +xkcd-db-write (data)

(+xkcd-db-query [:insert-into xkcds

:values $vi]

(list (vector

(cdr
(cdr
(cdr
(cdr
(cdr
(cdr
(cdr
(cdr
(cdr
(cdr
)))))

(assoc
(assoc
(assoc
(assoc
(assoc
(assoc
(assoc
(assoc
(assoc
(assoc

'num

'year
'month
'link

'news
'safe_title
'title
'transcript
‘alt

'img

data))
data))
data))
data))
data))
data))
data))
data))
data))
data))

PACKAGES Frivolities 126

3.5.2 Selectric

Every so often, you want everyone else to know that you're typing, or just to amuse oneself.
Introducing: typewriter sounds!

(package! selectric-mode :pin "1840de71£7414b7cd6ce425747c8e26a413233aa")

(use-package! selectic-mode
:commands selectic-mode)

3.5.3 Wttrin

Hey, let’s get the weather in here while we're at it. Unfortunately this seems slightly unmaintained
(few open bugfix PRs) so let’s roll our own version.

(package! wttrin :recipe (:local-repo "lisp/wttrin"))

(use-package! wttrin
:commands wttrin)

3.5.4 Spray

Why not flash words on the screen. Why not — hey, it could be fun.

(package! spray :pin "74d9dcfa2e8b38f96a43de9ab0eb13364300cb46"

:recipe (:host github :repo "emacsmirror/spray")) ; sr.ht can be flaky

It would be nice if Spray’s default speed suited me better, and the keybindings worked in evil
mode. Let’s do that and make the display slightly nicer while we're at it.

(use-package! spray
:commands spray-mode
:config
(setq spray-wpm 600
spray-height 800)
(defun spray-mode-hide-cursor ()
"Hide or unhide the cursor as is appropriate.”
(if spray-mode
(setqg-local spray--last-evil-cursor-state evil-normal-state-cursor
evil-normal-state-cursor '(nil))
(setq-local evil-normal-state-cursor spray--last-evil-cursor-state)))

https://github.com/bcbcarl/emacs-wttrin/pulls
lisp/wttrin/wttrin.el

PACKAGES File types 127

(add-hook 'spray-mode-hook #'spray-mode-hide-cursor)
(map! :map spray-mode-map
"<return>'" #'spray-start/stop
"f" #'spray-faster
"s" #'spray-slower
"t" #'spray-time
"<right>" #'spray-forward-word
"h" #'spray-forward-word
"<left>" #'spray-backward-word
"1" #'spray-backward-word
"q" #'spray-quit))

3.5.5 Elcord

What's even the point of using Emacs unless you're constantly telling everyone about it?

(package! elcord :pin "deeb22f84378b382f09e78f1718bc4c39a3582b8")

(use-package! elcord
:commands elcord-mode
:config
(setq elcord-use-major-mode-as-main-icon t))

3.6 Filetypes

3.6.1 Systemd

For editing systemd unit files

(package! systemd :pin "8742607120fbc440821acbc351fdale8e68a8806")

(use-package! systemd
:defer t)

128

CHAPTER

Applications

4.1 Ebooks

For managing my ebooks, I'll hook into the well-established ebook library manager calibre. A
number of Emacs clients for this exist, but this seems like a good option.

(package! calibredb :pin "7d33947462c77£9e87e8078fa7b7b398feeef0f7")
Then for reading them, the only currently viable options seems to be nov.el.
(package! nov :pin "b37d9380752e541db3f4b947c219cab4d50ca273")

Together these should give me a rather good experience reading ebooks.

calibredb lets us use calibre through Emacs, because who wouldn’t want to use something
through Emacs?

(use-package! calibredb
:commands calibredb
:config
(setq calibredb-root-dir "~/.local/share/calibre-library"
calibredb-db-dir (expand-file-name '"metadata.db" calibredb-root-dir))
(map! :map calibredb-show-mode-map
:ne "7" #'calibredb-entry-dispatch
:ne "o" #'calibredb-find-file
:ne "0" #'calibredb-find-file-other-frame
:ne "V" #'calibredb-open-file-with-default-tool
:ne "s'" #'calibredb-set-metadata-dispatch
:ne "e'" #'calibredb-export-dispatch
:ne "q" #'calibredb-entry-quit
:ne "." #'calibredb-open-dired
:ne [tab] #'calibredb-toggle-view-at-point
:ne "M-t" #'calibredb-set-metadata--tags
:ne "M-a" #'calibredb-set-metadata--author_sort
:ne "M-A" #'calibredb-set-metadata--authors
:ne "M-T" #'calibredb-set-metadata--title
:ne "M-c" #'calibredb-set-metadata--comments)
(map! :map calibredb-search-mode-map
:ne [mouse-3] #'calibredb-search-mouse
:ne "RET" #'calibredb-find-file
:ne "?7" #'calibredb-dispatch
:ne "a" #'calibredb-add
:ne "A" #'calibredb-add-dir

https://calibre-ebook.com/
https://depp.brause.cc/nov.el/

APPLICATIONS Ebooks 129
:ne "c" #'calibredb-clone
:ne "d" #'calibredb-remove
:ne "D" #'calibredb-remove-marked-items
:ne "j" #'calibredb-next-entry
:ne "k'" #'calibredb-previous-entry
:ne "1" #'calibredb-virtual-library-list
:ne "L" #'calibredb-library-list
:ne "n" #'calibredb-virtual-library-next
:ne "N" #'calibredb-library-next
:ne "p" #'calibredb-virtual-library-previous
:ne "P" #'calibredb-library-previous
:ne "s'" #'calibredb-set-metadata-dispatch
:ne "S" #'calibredb-switch-library
:ne "o" #'calibredb-find-file
:ne "0" #'calibredb-find-file-other-frame
:ne "v'" #'calibredb-view
:ne "V" #'calibredb-open-file-with-default-tool
:ne "." #'calibredb-open-dired
:ne "b" #'calibredb-catalog-bib-dispatch
:ne "e'" #'calibredb-export-dispatch
:ne "r'" #'calibredb-search-refresh-and-clear-filter
:ne "R" #'calibredb-search-clear-filter
:ne "q" #'calibredb-search-quit
:ne "m" #'calibredb-mark-and-forward
:ne "f" #'calibredb-toggle-favorite-at-point
:ne "x" #'calibredb-toggle-archive-at-point
:ne "h" #'calibredb-toggle-highlight-at-point
:ne "u" #'calibredb-unmark-and-forward
:ne "i" #'calibredb-edit-annotation
:ne "DEL" #'calibredb-unmark-and-backward
:ne [backtab] #'calibredb-toggle-view
:ne [tab] #'calibredb-toggle-view-at-point
:ne "M-n'" #'calibredb-show-next-entry
:ne "M-p" #'calibredb-show-previous-entry
ine "/" #'calibredb-search-live-filter
:ne "M-t" #'calibredb-set-metadata--tags
:ne "M-a" #'calibredb-set-metadata--author_sort
:ne "M-A" #'calibredb-set-metadata--authors
:ne "M-T" #'calibredb-set-metadata--title
ine "M-c" #'calibredb-set-metadata--comments))

Then, to actually read the ebooks we use nov.

APPLICATIONS Ebooks

130

gem.epub ® tec

8.1 Using the Minibuffer

When the minibuffer is in use, it appears in the echo area, with a cursor. The
minibuffer starts with a prompt, usually ending with a colon. The prompt
states what kind of input is expected, and how it will be used. The prompt is
highlighted using the minibuffer-prompt face (see section Text Faces).

The simplest way to enter a minibuffer argument is to type the text, then
<RET> to submit the argument and exit the minibuffer. Alternatively, you can
type C-gto exit the minibuffer by canceling the command asking for the
argument (see section Quitting and Aborting)}

Richard Stallman GNU Emacs Manual 35/919 Top33% EPUB

(use-package! nov
:mode ("\\.epub\\'" . nov-mode)
:config
(map! :map nov-mode-map

:n "RET" #'nov-scroll-up)
(advice-add 'nov-render-title :override #'ignore)

(defun +nov-mode-setup ()
"Tweak mov-mode to our liking."
(face-remap-add-relative 'variable-pitch
:family "Merriweather"
:height 1.4
:width 'semi-expanded)

(face-remap-add-relative 'default :height 1.3)

(variable-pitch-mode 1)

(setg-local line-spacing 0.2
next-screen-context-lines 4
shr-use-colors nil)

(wvhen (require 'visual-fill-column nil t)

(setg-local visual-fill-column-center-text t
visual-fill-column-width 64
nov-text-width 106)

(visual-fill-column-mode 1))

(when (featurep 'hl-line-mode)

(hl-line-mode -1))

;5 Re-render with new display settings

(nov-render-document)

;3 Look up words with the dictionary.

(add-to-list '+lookup-definition-functions #'+lookup/dictionary-definition))

APPLICATIONS Ebooks 131

(add-hook 'nov-mode-hook #'+nov-mode-setup))

To enhance the reading experience, we can create a nice minimal modeline, with just the basic
bare minimum, information about the book/chapter, and possibly currently playing media.

(after! doom-modeline

(defvar doom-modeline-nov-title-max-length 40)
(doom-modeline-def-segment nov-author

(propertize

(cdr (assoc 'creator nov-metadata))

'face (doom-modeline-face 'doom-modeline-project-parent-dir)))
(doom-modeline-def-segment nov-title

(let ((title (or (cdr (assoc 'title nov-metadata)) "")))

(if (<= (length title) doom-modeline-nov-title-max-length)

(concat " " title)
(propertize
(concat " " (truncate-string-to-width title

<> doom-modeline-nov-title-max-length nil nil t))
'help-echo title))))
(doom-modeline-def-segment nov-current-page
(let ((words (count-words (point-min) (point-max))))
(propertize
(format " %d/%d"
(1+ nov-documents-index)
(length nov-documents))
'face (doom-modeline-face 'doom-modeline-info)
'help-echo (if (= words 1) "1 word in this chapter"
(format "%s words in this chapter" words)))))
(doom-modeline-def-segment scroll-percentage-subtle
(concat
(doom-modeline-spc)
(propertize (format-mode-line '("'" doom-modeline-percent-position "77%"))
'face (doom-modeline-face 'shadow)
'help-echo "Buffer percentage")))

(doom-modeline-def-modeline 'nov
' (workspace-name window-number nov-author nov-title nov-current-page
<> scroll-percentage-subtle)
' (media-player misc-info major-mode time))

(add-to-list 'doom-modeline-mode-alist '(nov-mode . nov)))

APPLICATIONS Calculator 132

4.2 Calculator

Emacs includes the venerable calc, which is a pretty impressive RPN (Reverse Polish Notation)
calculator. However, we can do a bit to improve the experience.

4.2.1 CalcTeX

Everybody knows that mathematical expressions look best with ITgX, so calc’s ability to create
IATEX representations of its expressions provides a lovely opportunity which is taken advantage
of in the CalcTeX package.

(package! calctex :recipe (:host github :repo "johnbcoughlin/calctex"
:files ("*.el" "calctex/*.el" "calctex-contrib/*.el"
— "org-calctex/*.el" "vendor"))
:pin "67a2e76847a9ea9eff1f8e4eb37607£84b380ebb")

Calculator @ tec

--- Emacs Calculator Mode --- alg' erf(x)
4: erf(x) intg integ(erf(x), x)
3. xerf()+ 12 eval x * erf(x) + 1 / exp(x
, AR LIS s 1 16 tylr taylor(x % erf(x) + 1
2: i+x * ﬁ_ﬁ)+x [Tﬁ_ﬁ) eval 1 / sgrt(pi) + x2 * (
B, 2 o g ® =x 1 / sgrt(pi) + 172 = (
1: L ATV AT w eval 1 / sgrt(pi) + (4 / sq

1 @ 425 g *Calculator* 7:0 ALl Calculator 2 @ 435 @ *Calc Trailx

We'd like to use CalcTeX too, so let’s set that up, and fix some glaring inadequacies — why on
earth would you commit a hard-coded path to an executable that only works on your local machine,
consequently breaking the package for everyone else!?

(use-package! calctex
:commands calctex-mode
:init
(add-hook 'calc-mode-hook #'calctex-mode)
:config

APPLICATIONS Calculator 133

(setq calctex-additional-latex-packages "
\\usepackage [usenames] {xcolor}
\\usepackage{soul}
\\usepackage{adjustbox}
\\usepackage{amsmath}
\\usepackage{amssymb}
\\usepackage{siunitx}
\\usepackage{cancel}
\\usepackage{mathtools}
\\usepackage{mathalpha}
\\usepackage{xparse}
\\usepackage{arevmath}"
calctex-additional-latex-macros
(concat calctex-additional-latex-macros
"\n\\let\\evalto\\Rightarrow"))
(defadvice! no-messaging-a (orig-fn &rest args)
:around #'calctex-default-dispatching-render-process
(let ((inhibit-message t) message-log-max)
(apply orig-fn args)))
;3 Fix hardcoded dvichop path (whyyyyyyy)
(let ((vendor-folder (concat (file-truename doom-local-dir)
"straight/"
(format "build-%s'" emacs-version)
"/calctex/vendor/")))
(setq calctex-dvichop-sty (concat vendor-folder "texd/dvichop")
calctex-dvichop-bin (concat vendor-folder "texd/dvichop")))
(unless (file-exists-p calctex-dvichop-bin)
(message "CalcTeX: Building dvichop binary")
(let ((default-directory (file-name-directory calctex-dvichop-bin)))

(call-process "make" nil nil nil))))

4.2.2 Defaults

Any sane person prefers radians and exact values.

(setq calc-angle-mode 'rad ; radians are rad

calc-symbolic-mode t) ; keeps expressions like \sqrt{2} irrational for as long

— as possible

4.2.3 Embedded calc

Embedded calc is a lovely feature which let’s us use calc to operate on IKTEX maths expressions.
The standard keybinding is a bit janky however (C-x * e), so we'll add a localleader-based

APPLICATIONS Calculator 134

alternative.

(map! :map calc-mode-map

:after calc

:localleader

:desc "Embedded calc (toggle)" "e" #'calc-embedded)
(map! :map org-mode-map

:after org

:localleader

:desc "Embedded calc (toggle)" "E" #'calc-embedded)
(map! :map latex-mode-map

:after latex

:localleader

:desc "Embedded calc (toggle)" "e" #'calc-embedded)

Unfortunately this operates without the (rather informative) calculator and trail buffers, but we
can advice it that we would rather like those in a side panel.

(defvar calc-embedded-trail-window nil)

(defvar calc-embedded-calculator-window nil)

(defadvice! calc-embedded-with-side-pannel (&rest _)
:after #'calc-do-embedded
(when calc-embedded-trail-window
(ignore-errors
(delete-window calc-embedded-trail-window))
(setq calc-embedded-trail-window nil))
(when calc-embedded-calculator-window
(ignore-errors
(delete-window calc-embedded-calculator-window))
(setq calc-embedded-calculator-window nil))
(wvhen (and calc-embedded-info
(> (* (window-width) (window-height)) 1200))
(let ((main-window (selected-window))
(vertical-p (> (window-width) 80)))
(select-window
(setq calc-embedded-trail-window
(if vertical-p
(split-window-horizontally (- (max 30 (/ (window-width) 3))))
(split-window-vertically (- (max 8 (/ (window-height) 4)))))))
(switch-to-buffer "#Calc Trailx")
(select-window
(setq calc-embedded-calculator-window
(if vertical-p
(split-window-vertically -6)
(split-window-horizontally (- (/ (window-width) 2))))))
(switch-to-buffer "#Calculator*")

(select-window main-window))))

APPLICATIONS Newsfeed 135

4.3 Newsfeed

RSS feeds are still a thing. Why not make use of them with e1lfeed. I really like what fuxialexander
has going on, but I don’t think I need a custom module. Let’s just try to patch on the main things
I like the look of.

Updated 2020-10-86 17:49, 26/928:11
arXiv (stats) pap

Robust regression with covariate filtering: Heavy tails and ac
Annoying Precision Le Compression and Kolmogorov complexity

arXiv (stats) a Large Deviation Principle for the Whittaker 2d Growth Model
arXiv (stats) apers, sta c A Statistical Learning Assessment of Huber Regression

Compression and Kolmogorov complexity

Annoying Precision Mon, 28 Sep 2020 06:31:20 AWST

athematics
This is a post | wanted to write some time ago; I've forgotten why, but it was short and cute enough to finish.
Our starting point is the following observation:

Theorem 1: Universal lossless compression is impossible. That is, there is no function which takes as input
finite strings (over some fixed alphabet) and always

produces as output shorter finite strings (over the same alphabet) in such a way that the latter is
recoverable from the former.

Supposedly people sometimes claim to be able to do this. It is as impossible as constructing a perpetual
motion machine, if not more so, and for much more

4.3.1 Keybindings

(map! :map elfeed-search-mode-map

:after elfeed-search

[remap kill-this-buffer] "q"

[remap kill-buffer] '"q"

:n doom-leader-key nil
"q" #'+rss/quit
"e" #'elfeed-update
"r'" #'elfeed-search-untag-all-unread
"u" #'elfeed-search-tag-all-unread
"s" #'elfeed-search-live-filter
"RET" #'elfeed-search-show-entry
"p" #'elfeed-show-pdf
"+'" #'elfeed-search-tag-all
"-" #'elfeed-search-untag-all
"S" #'elfeed-search-set-filter
"b" #'elfeed-search-browse-url
"y'" #'elfeed-search-yank)
(map! :map elfeed-show-mode-map

BB BBBBBBH88B58 B

:after elfeed-show
[remap kill-this-buffer] "q"

https://github.com/fuxialexander/doom-emacs-private-xfu/tree/master/modules/app/rss

APPLICATIONS

Newsfeed

136

[remap kill-buffer] "q"

:n doom-leader-key nil
:nm "q" #'+rss/delete-

pane

:nm "o" #'ace-link-elfeed
:nm "RET" #'org-ref-elfeed-add

:nm "n" #'elfeed-show-
:nm "N" #'elfeed-show-
:nm "p" #'elfeed-show-
:nm "+" #'elfeed-show-
:nm "-" #'elfeed-show-
:nm "s" #'elfeed-show-
"y" #'elfeed-show-

4.3.2 Usability enhancements

(after! elfeed-search
(set-evil-initial-state! '
(after! elfeed-show-mode

(set-evil-initial-state! '
(after! evil-snipe

(push 'elfeed-show-mode
(push 'elfeed-search-mode

4.3.3 Visual enhancements

(after! elfeed

(elfeed-org)
(use-package! elfeed-link)

next

prev

pdf

tag

untag
new-live-search
yank)

elfeed-search-mode 'normal))

elfeed-show-mode 'normal))

evil-snipe-disabled-modes)
evil-snipe-disabled-modes))

(setq elfeed-search-filter "Ql-week-ago +unread"

elfeed-search-print-

entry-function '+rss/elfeed-search-print-entry

elfeed-search-title-min-width 80
elfeed-show-entry-switch #'pop-to-buffer

elfeed-show-entry-delete #'+rss/delete-pane

elfeed-show-refresh-

function #'+rss/elfeed-show-refresh--better-style

shr-max-image-proportion 0.6)

(add-hook! 'elfeed-show-mode-hook (hide-mode-line-mode 1))

(add-hook! 'elfeed-search-

update-hook #'hide-mode-line-mode)

(defface elfeed-show-title-face '((t (:weight ultrabold :slant italic :height 1.5)))

APPLICATIONS Newsfeed 137

"title face in elfeed show buffer”
:group 'elfeed)
(defface elfeed-show-author-face ~((t (:weight light)))
"title face in elfeed show buffer”
:group 'elfeed)
(set-face-attribute 'elfeed-search-title-face nil
:foreground 'nil
:weight 'light)

(defadvice! +rss-elfeed-wrap-h-nicer ()
"Enhances an elfeed entry's readability by wrapping ¢t to a width of

“fill-column ' and centering @t with ~wvisual-fill-column-mode '."
:override #'+rss-elfeed-wrap-h
(setg-local truncate-lines nil
shr-width 120
visual-fill-column-center-text t
default-text-properties '(line-height 1.1))
(let ((inhibit-read-only t)
(inhibit-modification-hooks t))
(visual-fill-column-mode)
;3 (setg-local shr-current-font '(:family "Merriweather" :height 1.2))

(set-buffer-modified-p nil)))

(defun +rss/elfeed-search-print-entry (entry)
"Print ENTRY to the buffer.”
(let* ((elfeed-goodies/tag-column-width 40)
(elfeed-goodies/feed-source-column-width 30)
(title (or (elfeed-meta entry :title) (elfeed-entry-title entry) "'"))
(title-faces (elfeed-search--faces (elfeed-entry-tags entry)))
(feed (elfeed-entry-feed entry))
(feed-title
(when feed
(or (elfeed-meta feed :title) (elfeed-feed-title feed))))
(tags (mapcar #'symbol-name (elfeed-entry-tags entry)))
(tags-str (concat (mapconcat 'identity tags ",")))
(title-width (- (window-width) elfeed-goodies/feed-source-column-width
elfeed-goodies/tag-column-width 4))

(tag-column (elfeed-format-column
tags-str (elfeed-clamp (length tags-str)
elfeed-goodies/tag-column-width
elfeed-goodies/tag-column-width)
:left))
(feed-column (elfeed-format-column
feed-title (elfeed-clamp
< elfeed-goodies/feed-source-column-width

< elfeed-goodies/feed-source-column-width

APPLICATIONS Newsfeed 138

< elfeed-goodies/feed-source-column-width)

:left)))
(insert (propertize feed-column 'face 'elfeed-search-feed-face) " ")
(insert (propertize tag-column 'face 'elfeed-search-tag-face) " ')

(insert (propertize title 'face title-faces 'kbd-help title))
(setg-local line-spacing 0.2)))

(defun +rss/elfeed-show-refresh--better-style ()
"Update the buffer to match the selected entry, using a mail-style."”
(interactive)
(let* ((inhibit-read-only t)
(title (elfeed-entry-title elfeed-show-entry))
(date (seconds-to-time (elfeed-entry-date elfeed-show-entry)))
(author (elfeed-meta elfeed-show-entry :author))
(link (elfeed-entry-link elfeed-show-entry))
(tags (elfeed-entry-tags elfeed-show-entry))
(tagsstr (mapconcat #'symbol-name tags ", "))
(nicedate (format-time-string "Y%a, %e %b %Y %T 4Z" date))
(content (elfeed-deref (elfeed-entry-content elfeed-show-entry)))
(type (elfeed-entry-content-type elfeed-show-entry))
(feed (elfeed-entry-feed elfeed-show-entry))
(feed-title (elfeed-feed-title feed))
(base (and feed (elfeed-compute-base (elfeed-feed-url feed)))))
(erase-buffer)
(insert "\n")
(insert (format "/s\n\n" (propertize title 'face 'elfeed-show-title-face)))
(insert (format "/s\t" (propertize feed-title 'face 'elfeed-search-feed-face)))
(when (and author elfeed-show-entry-author)

(insert (format "Ys\n" (propertize author 'face 'elfeed-show-author-face))))
(insert (format "Ys\n\n" (propertize nicedate 'face 'elfeed-log-date-face)))
(when tags

(insert (format "%s\n"

(propertize tagsstr 'face 'elfeed-search-tag-face))))

;3 (insert (propertize "Link: " 'face 'message-header-name))

;3 (elfeed-insert-link link link)

;3 (insert "\n")

(cl-loop for enclosure in (elfeed-entry-enclosures elfeed-show-entry)
do (insert (propertize "Enclosure: " 'face 'message-header-name))
do (elfeed-insert-link (car enclosure))
do (imsert "\n"))

(insert "\n")

(if content

(if (eq type 'html)
(elfeed-insert-html content base)
(insert content))
(insert (propertize "(empty)\n" 'face 'italic)))

APPLICATIONS Newsfeed

139

(goto-char (point-min))))

4.3.4 Functionality enhancements

(after! elfeed-show
(require 'url)

(defvar elfeed-pdf-dir
(expand-file-name "pdfs/"
(file-name-directory (directory-file-name
< elfeed-enclosure-default-dir))))

(defvar elfeed-link-pdfs
'(("https://www. jstatsoft.org/index.php/jss/article/view/vO\\ ([~/1+\\)"
— "https://www.jstatsoft.org/index.php/jss/article/view/v0O\\1/v\\1.pdf")
("http://arxiv.org/abs/\\([*/1+\\)" . "https://arxiv.org/pdf/\\1.pdf"))
"List of alists of the form (REGEX-FOR-LINK . FORN-FOR-PDF)")

(defun elfeed-show-pdf (entry)
(interactive
(list (or elfeed-show-entry (elfeed-search-selected :ignore-region))))
(let ((link (elfeed-entry-link entry))

(feed-name (plist-get (elfeed-feed-meta (elfeed-entry-feed entry)) :title))

(title (elfeed-entry-title entry))
(file-view-function
(lambda (f)
(when elfeed-show-entry
(elfeed-kill-buffer))
(pop-to-buffer (find-file-noselect £))))
pdf)

(let ((file (expand-file-name
(concat (subst-char-in-string 7/ 7, title) ".pdf")
(expand-file-name (subst-char-in-string 7/ 7, feed-name)
elfeed-pdf-dir))))
(if (file-exists-p file)
(funcall file-view-function file)
(dolist (link-pdf elfeed-link-pdfs)
(when (and (string-match-p (car link-pdf) link)

(not pdf))
(setq pdf (replace-regexp-in-string (car link-pdf) (cdr link-pdf)

(if (not pdf)

APPLICATIONS Dictionary 140

(message "No associated PDF for entry")
(message "Fetching %s" pdf)
(unless (file-exists-p (file-name-directory file))
(make-directory (file-name-directory file) t))
(url-copy-file pdf file)
(funcall file-view-function file))))))

4.4 Dictionary
Doom already loads define-word, and provides it's own definition service using wordnut.

However, using an offline dictionary possess a few compelling advantages, namely:

. speed

- integration of multiple dictionaries

GoldenDict seems like the best option currently available, but lacks a CLI. Hence, we'll fall back
to sdcv (a CLI version of StarDict) for now. To interface with this, we'll use a my lexic package.

https://github.com/gromnitsky/wordnut
http://goldendict.org/
https://dushistov.github.io/sdcv/

APPLICATIONS Dictionary 141

Literate
Webster's Revised Unabridged Dictionary (1913)

Lit"erxate, adjective [Latin litteratus, literatus. See Letter.]
Instructed in learning, science, or literature; learned;

lettered.
The literate now chose their emperor, as the military
chose theirs. —Landor.
|

Lit"er%ate, noun
1. One educated, but not having taken a university degree;
especially, such a person who is prepared to take holy
orders. [Eng.]

2. A literary man.
Etymology

literate adjective

"educated, instructed, having knowledge of letters," early 15c., from Latin
literatus/litteratus "educated, learned, who knows the letters;” formed in
imitation of Greek grammatikos from Latin littera/litera "alphabetic letter”
(see letter (noun 1)). By late 18c. especially "acquainted with literature.” As
a noun, "one who can read and write," 1894.

Synonyms

adjective
Learned, lettered.

(package! lexic :recipe (:local-repo "lisp/lexic"))

Given that a request for a CLI is the most upvoted issue on GitHub for GoldenDict, it’s likely we'll
be able to switch from sdcv to that in the future.

Since GoldenDict supports StarDict files, I expect this will be a relatively painless switch.

We start off by loading 1exic, then we'll integrate it into pre-existing definition functionality
(like +1ookup/dictionary-definition).

(use-package! lexic
:commands lexic-search lexic-list-dictionary
:config
(map! :map lexic-mode-map
:n "q" #'lexic-return-from-lexic
:nv "RET" #'lexic-search-word-at-point
:n "a" #'outline-show-all
:n "h" (cmd! (outline-hide-sublevels 3))

https://github.com/goldendict/goldendict/issues/37

APPLICATIONS Dictionary 142

"o" #'lexic-toggle-entry

"n" #'lexic-next-entry

"N'" (cmd! (lexic-next-entry t))

"p" #'lexic-previous-entry

"P" (cmd! (lexic-previous-entry t))

BB BB BB

"E" (cmd! (lexic-return-from-lexic) ; expand
(switch-to-buffer (lexic-get-buffer)))

:n "M" (cmd! (lexic-return-from-lexic) ; minimise

(lexic-goto-lexic))

:n "C-p" #'lexic-search-history-backwards

5

"C-n" #'lexic-search-history-forwards
:n "/" (cmd! (call-interactively #'lexic-search))))

Now let’s use this instead of wordnet.

(defadvice! +lookup/dictionary-definition-lexic (identifier &optional arg)
"Look up the definition of the word at point (or selection) using " lezic-search '."
:override #'+lookup/dictionary-definition
(interactive
(list (or (doom-thing-at-point-or-region 'word)
(read-string "Look up in dictionary: "))
current-prefix-arg))
(lexic-search identifier nil nil t))

Lastly, I want to make sure I have some dictionaries set up. I've put a tarball of dictionaries online
which we can download if none seem to be present on the system.

DIC_FOLDER=${STARDICT_DATA_DIR:-${XDG_DATA_HOME:-$HOME/.local/share}/stardict}/dic
if [! -d "$DIC_FOLDER"]; then
TMP="$ (mktemp -d /tmp/dict-XXX)"
cd "$TMP"
curl -A "Mozilla/4.0" -o "stardict.tar.gz"
< "https://tecosaur.com/resources/config/stardict.tar.gz"
tar -xf "stardict.tar.gz"
rm "stardict.tar.gz"
mkdir -p "$DIC_FOLDER"
mv * "$DIC_FOLDER"
fi

We can also add a doctor dictionary check.

(if (executable-find '"sdcv")
(let ((dict-root (concat (or (getenv "STARDICT_DATA_DIR")
(concat (or "~/.local/share"
(getenv "XDG_DATA_HOME"))
"/stardict"))
Y qhtca)))

APPLICATIONS Mail 143

(dicts '("webster" "synonyms" "etymology" "en-to-latin" "hitchcock"
— "elements")))
(if (file-exists-p dict-root)
(dolist (dict dicts)
(unless (file-exists-p (file-name-concat dict-root dict))
(warn! (format "Absent sdcv dictionary: %s." dict))))
(warn! "Couldn't find any stcv dictionaries, lexic will not function")))

(warn! "Couldn't find sdcv executable, lexic will be disabled"))

4.5 Mail

4.5.1 Fetching

The contenders for this seem to be:

« OfflineIMAP (ArchWiki page)
« isync/mbsync (ArchWiki page)

From perusing r/emacs the prevailing opinion seems to be that

. isync is faster

« isync works more reliably

So let’s use that.

The configwas straightforward, and islocated at ~/.mbsyncrc. I'm currently successfully connecting
to: Gmail, office365mail, and dovecot. I'm also shoving passwords in my authinfo.gpg and
fetching them using PassCmd:

gpg2 -q --for-your-eyes-only --no-tty -d ~/.authinfo.gpg | awk '/machine IMAP_SERCER
< login EMAIL_ADDR/ {print $NF}'

We can run mbsync -ain a systemd service file or something, but we can do better than that.
vsemyonoff/easymail seems like the sort of thing we want, but is written for notmuch unfortunately.
We can still use it for inspiration though. Using goimapnotify we should be able to sync just after
new mail. Unfortunately this means yet another config file :(

We install with

https://www.offlineimap.org/
https://wiki.archlinux.org/index.php/OfflineIMAP
http://isync.sourceforge.net/mbsync.html
https://wiki.archlinux.org/index.php/isync
file:///home/runner/.mbsyncrc
file:///home/runner/.authinfo.gpg
https://github.com/vsemyonoff/easymail#usage
https://gitlab.com/shackra/goimapnotify

APPLICATIONS Mail 144

go get -u gitlab.com/shackra/goimapnotify
1n -s “/.local/share/go/bin/goimapnotify ~/.local/bin/

Here's the general plan:

1. Use goimapnotify to monitor mailboxes This needs it’s own set of configs, and systemd
services, which is a pain. We remove this pain by writing a python script (found below) to
setup these config files, and systemd services by parsing the ~/.mbsyncrc file.

2. Onnewmail, callmbsync --pull --new ACCOUNT:BOXWetryto beasspecificaspossible,
sombsync returns as soon as possible, and we can get those emails as soon as possible.

3. Trytocallmu index --lazy-fetch. This failsif mu4e is already open (due to a write lock
on the database), so in that case we just touch a tmp file (/tmp/mu_reindex_now).

4. Separately, we set up Emacs to check for the existance of /tmp/mu_reindex_now once a
second while mu4e is running, and (after deleting the file) call mude-update-index.

We can add a doctor check for these external dependencies.

(vhen (file-exists-p "~/.mail") ; We care about mail when the mail folder exists
(unless (executable-find "mu")
(error! "Couldn't find mail dependency mu."))
(unless (executable-find "mbsync')
(error! "Couldn't find mail dependency mbsync."))
(unless (executable-find "msmtp")
(error! "Couldn't find mail dependency msmtp."))
(unless (executable-find "goimapnotify")

(warn! "Couldn't find mail helper goimapnotify, mail syncs will be slower.")))

Let’s start oft by handling the elisp side of things

1. Rebuild mail index while using mu4e

(defvar mude-reindex-request-file "/tmp/mu_reindex_now"
"Location of the reinder request, signaled by ezistance")
(defvar mude-reindex-request-min-seperation 5.0
"Don't refresh again until this many second have elapsed.
Prevents a series of redisplays from being called (when set to an appropriate
— walue)")

(defvar mude-reindex-request--file-watcher nil)
(defvar mude-reindex-request--file-just-deleted nil)

(defvar mude-reindex-request--last-time 0)

(defun mude-reindex-request--add-watcher ()
(setq mude-reindex-request--file-just-deleted nil)

(setq mude-reindex-request--file-watcher

file:///home/runner/.mbsyncrc

APPLICATIONS Mail 145

(file-notify-add-watch mude-reindex-request-file
' (change)
#'mude-file-reindex-request)))

(defadvice! mude-stop-watching-for-reindex-request ()
rafter #'mude--server-kill
(if mude-reindex-request--file-watcher
(file-notify-rm-watch mude-reindex-request--file-watcher)))

(defadvice! mude-watch-for-reindex-request ()
rafter #'mude--server-start
(mude-stop-watching-for-reindex-request)

(when (file-exists-p mude-reindex-request-file)
(delete-file mude-reindex-request-file))

(mude-reindex-request--add-watcher))

(defun mude-file-reindex-request (event)
"dct based on the existance of muje-reindex-request-file "
(if mude-reindex-request--file-just-deleted
(mude-reindex-request--add-watcher)
(when (equal (nth 1 event) 'created)
(delete-file mude-reindex-request-file)
(setq mude-reindex-request--file-just-deleted t)
(mude-reindex-maybe t))))

(defun mud4e-reindex-maybe (&optional new-request)
"Run "~ muje--server-index ' if it's been more than
‘muje-reindex-request-min-seperation 'seconds since the last request,”
(let ((time-since-last-request (- (float-time)
mude-reindex-request--last-time)))
(when new-request
(setq mude-reindex-request--last-time (float-time)))
(if (> time-since-last-request mude-reindex-request-min-seperation)
(mu4e--server-index nil t)
(when new-request
(run-at-time (* 1.1 mu4e-reindex-request-min-seperation) nil

#'mude-reindex-maybe)))))
2. Config transcoding & service management
Aslong as the mbsyncrc file exists, this is as easy as running
~/.config/doom/misc/mbsync-imapnotify.py
Let’s also add a doctor check for this.

(when (and (executable-find "goimapnotify")
(not (file-exists-p "~/.config/imapnotify")))

(warn! "goimapnotify is installed but not configured."))

APPLICATIONS Mail 146

When run without flags this will perform the following actions
« Read, and parse ~/.mbsyncrc, specifically recognising the following properties

— IMAPAccount
— Host
- Port
— User
— Password
— PassCmd
— Patterns
« Callmbsync --list ACCOUNT, and filter results according to Patterns

« Construct a imapnotify config for each account, with the following hooks

onNewMail
onNewMailPost

« Compare accounts list to previous accounts, enable/disable the relevant systemd
services, called with the --now flag (start/stop services as well)

This script also supports the following flags

«--status to get the status of the relevant systemd services supports active, failing,
and disabled

«--enable to enable all relevant systemd services

«--disable to disable all relevant systemd services

from pathlib import Path
import json

import re

import shutil

import subprocess

import sys

import fnmatch

mbsyncFile = Path("”/.mbsyncrc") .expanduser ()

imapnotifyConfigFolder = Path("~/.config/imapnotify/") .expanduser ()
imapnotifyConfigFolder.mkdir (exist_ok=True)
imapnotifyConfigFilename = "notify.conf"

imapnotifyDefault = {
Hhostﬂ: HH’
"port": 993,

file:///home/runner/.mbsyncrc

APPLICATIONS Mail 147
"tls": True,
"t1lsOptions": {"rejectUnauthorized": True},
"onNewMail": "",
"onNewMailPost": "if mu index --lazy-check; then test -f /tmp/mu_reindex_now

def

< &% rm /tmp/mu_reindex_now; else touch /tmp/mu_reindex_now; fi",

stripQuotes(string) :
if string[0] == '"' and string[-1] == '"':
return string[1:-1].replace('\\"', '"")

mbsyncInotifyMapping = {

oldAccounts = [d.name for d in imapnotifyConfigFolder.iterdir() if d.is_dir()]

"Host": (str, "host"),

"Port": (int, "port"),

"User": (str, "username"),

"Password": (str, "password"),
"PassCmd": (stripQuotes, "passwordCmd"),
"Patterns": (str, "_patterns"),

currentAccount = ""

currentAccountData = {}

successfulAdditions = []

def

processLine (line) :
newAcc = re.match(r"“IMAPAccount ([~#]+)", line)

linecontent = re.sub(xr"(~|[~\\1)#.x", "", line).split(" ", 1)
if len(linecontent) != 2:
return

parameter, value = linecontent

if parameter == "IMAPAccount":

if currentAccountNumber > 0:
finaliseAccount ()

newAccount (value)

elif parameter in mbsyncInotifyMapping.keys():
parser, key = mbsyncInotifyMapping[parameter]
currentAccountDatalkey] = parser(value)

elif parameter == "Channel":

currentAccountData["onNewMail"] = f"mbsync --pull --new {value}:'Js'"

APPLICATIONS Mail 148

def

def

def

newAccount (name) :

global currentAccountNumber

global currentAccount

global currentAccountData

currentAccountNumber += 1

currentAccount = name

currentAccountData = {}

print (£"\n\033[1;32m{currentAccountNumber}\033[0;32m - {name}\033[0;37m")

accountToFoldername (name) :

return re.sub(r"[~A-Za-z0-9]", "", name)

finaliseAccount():
if currentAccountNumber ==

return

global currentAccountData
try:
currentAccountData["boxes"] = getMailBoxes(currentAccount)
except subprocess.CalledProcessError as e:
print(
£"\033[1;31mError:\033[0;31m failed to fetch mailboxes (skipping): "
+ £"°{' '.join(e.cmd)}' returned code {e.returncode}\033[0;37m"
)
return
except subprocess.TimeoutExpired as e:
print(
£"\033[1;31mError:\033[0;31m failed to fetch mailboxes (skipping): "
+ £"°{' '.join(e.cmd)}' timed out after {e.timeout:.2f}
— seconds\033[0;37m"
)

return

if "_patterns" in currentAccountData:
currentAccountData["boxes"] = applyPatternFilter(
currentAccountData["_patterns"], currentAccountData["boxes"]

strip not-to-be-exported data
currentAccountData = {

k: currentAccountDatal[k] for k in currentAccountData if k[0] != "_"

parametersSet = currentAccountData.keys ()

APPLICATIONS Mail

149

def

def

def

currentAccountData = {**imapnotifyDefault, **currentAccountData}

for key, val in currentAccountData.items():
valColor = "\033[0;33m" if key in parametersSet else "\033[0;37m"
print (f" \033[1;37m{key:<13} {valColor}{val}\033[0;37m")

if (
len(currentAccountData["boxes"]) > 15
and "O@gmail.com" in currentAccountData["username"]
DE
print(
" \033[1;31mWarning:\033[0;31m Gmail raises an error when more
— than"
+ "\033[1;31m15\033[0;31m simultanious connections are attempted."
+ "\n You are attempting to monitor "
+ £"\033[1;31m{len(currentAccountDatal'boxes'])}\033[0;31m
<> mailboxes.\033[0;37m"
)

configFile = (
imapnotifyConfigFolder
/ accountToFoldername (currentAccount)
/ imapnotifyConfigFilename

)

configFile.parent.mkdir (exist_ok=True)

json.dump (currentAccountData, open(configFile, "w"), indent=2)
print (£" \033[0;35mConfig generated and saved to {configFile}\033[0;37m")

global successfulAdditions
successfulAdditions.append(accountToFoldername (currentAccount))

getMailBoxes (account) :

boxes = subprocess.run(
["mbsync", "--list", account], check=True, stdout=subprocess.PIPE,
— timeout=10.0

)

return boxes.stdout.decode("utf-8").strip().split("\n")

applyPatternFilter(pattern, mailboxes):
patternRegexs = getPatternRegexes(pattern)
return [m for m in mailboxes if testPatternRegexs(patternRegexs, m)]

getPatternRegexes (pattern):
def addGlob(b):
blobs.append(b.replace('\\""', '"'))

APPLICATIONS Mail 150

return ""

blobs = []
pattern = re.sub(r' 7"([~"]+)"', lambda m: addGlob(m.groups() [0]), pattern)
blobs.extend(pattern.split (" "))
blobs = [
(-1, fnmatch.translate(b[1::])) if b[0] == "!" else (1,
< fnmatch.translate (b))
for b in blobs
]

return blobs

def testPatternRegexs(regexCond, case):
for factor, regex in regexCond:
if factor * bool(re.match(regex, case)) < 0:
return False
return True

def processSystemdServices():
keptAccounts = [acc for acc in successfulAdditions if acc in oldAccounts]
freshAccounts = [acc for acc in successfullAdditions if acc not in
<> oldAccounts]
staleAccounts = [acc for acc in oldAccounts if acc not in
< successfulAdditions]

if keptAccounts:
print (£"\033[1;34m{len (keptAccounts)}\033[0;34m kept
— accounts:\033[0;37m")
restartAccountSystemdServices (keptAccounts)

if freshAccounts:
print (£"\033[1;32m{len(freshAccounts)}\033[0;32m new
— accounts:\033[0;37m")
enableAccountSystemdServices (freshAccounts)

else:
print (£"\033[0;32mNo new accounts.\033[0;37m")

notActuallyEnabledAccounts = [
acc for acc in successfulAdditions if not
< getAccountServiceState (acc) ["enabled"]
]
if notActuallyEnabledAccounts:
print(
£"\033[1;32m{len(notActuallyEnabledAccounts)}\033[0;32m accounts
< need re-enabling:\033[0;37m"

APPLICATIONS Mail 151

enableAccountSystemdServices (notActuallyEnabledAccounts)

if staleAccounts:
print (£"\033[1;33m{len(staleAccounts)}\033[0;33m removed
— accounts:\033[0;37m")
disableAccountSystemdServices (staleAccounts)
else:
print (£"\033[0;33mNo removed accounts.\033[0;37m")

def enableAccountSystemdServices(accounts):
for account in accounts:
print (£" \033[0;32m - \033[1;37m{account:<18}", end="\033[0;37m",
< flush=True)
if setSystemdServiceState(

"enable", f"goimapnotify@{accountToFoldername (account)}.service"

print ("\033[1;32m enabled")

def disableAccountSystemdServices(accounts):
for account in accounts:
print (£" \033[0;33m - \033[1;37m{account:<18}", end="\033[0;37m",
— flush=True)
if setSystemdServiceState(
"disable",

< f"goimapnotify@{accountToFoldername (account)}.service"

print ("\033[1;33m disabled")

def restartAccountSystemdServices(accounts):
for account in accounts:
print (£" \033[0;34m - \033[1;37m{account:<18}", end="\033[0;37m",
— flush=True)
if setSystemdServiceState(
"restart",

< f"goimapnotify@{accountToFoldername (account)}.service"

print ("\033[1;34m restarted")

def setSystemdServiceState(state, service):
try:
enabler = subprocess.run(
["systemctl", "--user", state, service, "--now"],
check=True,
stderr=subprocess.DEVNULL,

APPLICATIONS Mail 152

timeout=5.0,
)
return True
except subprocess.CalledProcessError as e:
print(
£" \033[1;31mfailed\033[0;31m to {state}, “{' '.join(e.cmd)}'"
+ f'"returned code {e.returncode}\033[0;37m"
)
except subprocess.TimeoutExpired as e:
print (£" \033[1;31mtimed out after {e.timeout:.2f} seconds\033[0;37m")
return False

def getAccountServiceState(account):

return {
state: bool(
1
- subprocess.run(
[

"systemctl",
"--user",
f'"is-{statel}",
"--quiet",

f'"goimapnotify@{accountToFoldername (account)}.service",
i
stderr=subprocess.DEVNULL,
) .returncode
)

for state in ("enabled", "active", "failing")

def getAccountServiceStates(accounts):
for account in accounts:
enabled, active, failing = getAccountServiceState (account).values()
print (f" - \033[1;37m{account:<18}\033[0;37m ", end="", flush=True)
if not enabled:
print ("\033[1;33mdisabled\033[0;37m")
elif active:
print ("\033[1;32mactive\033[0;37m")
elif failing:
print ("\033[1;31mfailing\033[0;37m")
else:
print ("\033[1;35min an unrecognised state\033[0;37m")

if len(sys.argv) > 1:
if sys.argv[1] in ["-e", "--enable"]:

APPLICATIONS Mail 153

enableAccountSystemdServices (oldAccounts)

exit ()

elif sys.argv[1] in ["-d", "--disable"]:
disableAccountSystemdServices(oldAccounts)
exit ()

elif sys.argv[1] in ["-r", "--restart"]:
restartAccountSystemdServices (oldAccounts)
exit ()

elif sys.argv[1] in ["-s", "--status"]:
getAccountServiceStates (oldAccounts)
exit ()

elif sys.argv[1] in ["-h", "--help"]:

print ("""\033[1;37mMbsync to IMAP Notify config generator.\033[0;37m

Usage: mbsync-imapnotify [options]

Options:
-e, --enable enable all services
-d, --disable disable all services
-r, --restart restart all services
-s, --status fetch the status for all services
-h, --help show this help
mnn end="")
exit()
else:

print (£"\033[0;31mFlag {sys.argv[1]} not recognised, try
< --help\033[0;37m")
exit ()
mbsyncData = open(mbsyncFile, "r").read()
currentAccountNumber = 0
totalAccounts = len(re.findall(r"~IMAPAccount", mbsyncData, re.M))
def main():
print ("\033[1;34m:: MbSync to Go IMAP notify config file creator
— ::\033[0;37m")
shutil.rmtree (imapnotifyConfigFolder)
imapnotifyConfigFolder.mkdir(exist_ok=False)
print ("\033[1;30mImap Notify config dir purged\033[0;37m")

print(£"Identified \033[1;32m{totalAccounts}\033[0;32m accounts.\033[0;37m")

for line in mbsyncData.split("\n"):

APPLICATIONS Mail 154

processLine(line)
finaliseAccount ()
print(

f"\nConfig files generated for

— \033[1;36m{len(successfulAdditions) }\033[0;36m"
+ f" out of \033[1;36m{totalAccounts}\033[0;37m accounts.\n"

processSystemdServices ()

if __name__ == "__main__":
main()
3. Systemd

We then have a service file to run goimapnotify on all of these generated config files.
We'll use a template service file so we can enable a unit per-account.

[Unit]

Description=IMAP notifier using IDLE, golang version.
ConditionPathExists=%h/.config/imapnotify/%I/notify.conf
After=network.target

Wants=gpg-agent .service

[Service]
ExecStart=}h/.local/bin/goimapnotify -conf %h/.config/imapnotify/%I/notify.conf

Restart=always
RestartSec=30

[Install]
WantedBy=default.target

Enabling the service is actually taken care of by that python script.
From one or two small tests, this can bring the delay down to as low as five seconds, which
I'm quite happy with.

This works well for fetching new mail, but we also want to propagate other changes (e.g.
marking mail as read), and make sure we're up to date at the start, so for that I'll do the
'normal’ thing and run mbsync -all every so often — let’s say five minutes.

We can accomplish this via a systemd timer, and service file.

[Unit]
Description=call mbsync on all accounts every 5 minutes

ConditionPathExists=%h/.mbsyncrc

APPLICATIONS Mail 155

[Timer]
OnBootSec=5m
OnUnitInactiveSec=bm

[Install]
WantedBy=default.target

[Unit]

Description=mbsync service, sync all mail
Documentation=man:mbsync (1)
ConditionPathExists=)h/.mbsyncrc

Wants=gpg-agent.service
[Servicel
Type=oneshot

ExecStart=/usr/bin/mbsync -c h/.mbsyncrc --all

[Install]
WantedBy=mail.target

Enabling (and starting) this is as simple as
systemctl --user enable mbsync.timer --now
We can also add a doctor check for the timer state.
(when (executable-find "mbsync')
(unless (string= "enabled\n" (shell-command-to-string "systemctl --user

< 1is-enabled mbsync.timer"))
(warn! "The mbsync timer is not enabled.")))

4.5.2 Indexing/Searching

This is performed by Mu. This is a tool for finding emails stored in the Maildir format. According
to the homepage, it’s main features are

Fast indexing

Good searching

« Support for encrypted and signed messages
« Rich CLI tooling

« accent/case normalisation

« strong integration with email clients

https://www.djcbsoftware.nl/code/mu/
http://en.wikipedia.org/wiki/Maildir

APPLICATIONS Mail 156

Unfortunately mu is not currently packaged from me. Oh well, I guess I'm building it from source
then. I needed to install these packages

« gmime-devel
« xapian-core-devel
cd 7/.local/lib/
git clone https://github.com/djcb/mu.git
cd ./mu
./autogen.sh

make
sudo make install

To check how my version compares to the latest published:

curl --silent "https://api.github.com/repos/djcb/mu/releases/latest" | grep
'"tag_name":' | sed -E 's/.¥"([~"]+)".*/\1/'
mu --version | head -n 1 | sed 's/.* version //'

4.5.3 Sending

SmtpMail seems to be the *default’ starting point, but that’s not packaged for me. msmtp is
however, so I'll give that a shot. Reading around a bit (googling "msmtp vs sendmail” for example)
almost every comparison mentioned seems to suggest msmtp to be a better choice. I have seen
the following points raised

« sendmail has several vulnerabilities

« sendmail is tedious to configure

« ssmtp is no longer maintained

- msmtp is a maintained alternative to ssmtp

« msmtp is easier to configure
The config file is ~/.config/msmtp/config.

1. System hackery

Unfortunately, I seem to have run into a bug present in my packaged version, so we'll just
install the latest from source.

For full use of the auth options, I need GNU SASL, which isn't packaged for me. I don't
think I want it, but in case I do, I'll need to do this.

https://www.nongnu.org/smtpmail/
https://marlam.de/msmtp/
https://bugs.archlinux.org/task/44994

APPLICATIONS Mail 157

export GSASL_VERSION=1.8.1

cd ~/.local/lib/

curl "ftp://ftp.gnu.org/gnu/gsasl/libgsasl-$GSASL_VERSION.tar.gz" | tar xz
curl "ftp://ftp.gnu.org/gnu/gsasl/gsasl-$GSASL_VERSION.tar.gz" | tar xz
cd "./libgsasl-$GSASL_VERSION"

./configure

make

sudo make install

cd ..

cd "./gsasl-$VERSION"

./configure

make

sudo make install

cd ..

Now actually compile msmtp.

cd ~/.local/lib/

git clone https://github.com/marlam/msmtp-mirror.git ./msmtp
cd ./msmtp

libtoolize --force

aclocal

autoheader

automake --force-missing --add-missing

autoconf

if using GSASL

PKG_CONFIG_PATH=/usr/local/lib/pkgconfig ./configure --with-libgsasl
./configure

make

sudo make install

If using GSASL (from earlier) we need to make ensure that the dynamic library in in the
library path. We can do by adding an executable with the same name earlier on in my
$PATH.

LD_LIBRARY_PATH=/usr/local/lib exec /usr/local/bin/msmtp "$@"

4.5.4 Mude

Webmail clients are nice and all, but I still don’t believe that SPAs in my browser can replaced
desktop apps ... sorry Gmail. I'm also liking google less and less.

Mailspring is a decent desktop client, quite lightweight for electron (apparently the backend is
in C, which probably helps), however I miss Emacs stuff.

APPLICATIONS Mail 158

While Notmuch seems very promising, and I've heard good things about it, it doesn’t seem to
make any changes to the emails themselves. All data is stored in Notmuch’s database. While this
is a very interesting model, occasionally I need to pull up an email on say my phone, and so not I
want the tagging/folders etc. to be applied to the mail itself — not stored in a database.

On the other hand Mu4e is also talked about a lot in positive terms, and seems to possess a
similarly strong feature set — and modifies the mail itself (I.e. information is accessible without
the database). Mu4e also seems to have a large user base, which tends to correlate with better
support and attention.

If I install mu4e from source, I need to add the /usr/local/ loadpath so Mu4e has a chance of
loading. Alternatively, I may need to add the /usr/share/ path.

(cond

((cl-some (lambda (path) (string-match-p "mu4e" path)) load-path) nil)
((file-directory-p "/usr/local/share/emacs/site-lisp/mude")

(quote (add-to-list 'load-path "/usr/local/share/emacs/site-lisp/mude")))
((file-directory-p "/usr/share/emacs/site-lisp/mude")

(quote (add-to-list 'load-path "/usr/share/emacs/site-lisp/mude"))))

Let’s also just shove all the Elisp code hereinan (after! ...) block.

<<mué4e-conf>>

1. Viewing Mail There seem to be some advantages with using Gnus’ article view (such as
inline images), and judging from djcb/mu!1442 (comment) this seems to be the 'way of the
future’ for muse.

There are some nerd-icons font related issues, so we need to redefine the fancy chars, and
make sure they get the correct width.

To account for the increase width of each flag character, and make perform a few more
visual tweaks, we'll tweak the headers a bit

(setq mude-headers-fields
'((:flags . 6)
(:account-stripe . 2)
:from-or-to . 25)
:folder . 10)
irecipnum . 2)
:subject . 80)

(:human-date . 8))
+mué4e-min-header-frame-width 142
mude-headers-date-format "%d/%m/%y"
mude-headers-time-format " JH:/M"
mud4e-headers-results-1limit 1000

https://github.com/djcb/mu/pull/1442#issuecomment-591695814

APPLICATIONS Mail 159

mude-index-cleanup t)

(add-to-list 'mude-bookmarks
'(:name "Yesterday's messages" :query "date:2d..1d" :key 7y) t)

(defvar +mude-header--folder-colors nil)
(appendq! mude-header-info-custom
'((:folder .
(:name "Folder" :shortname "Folder" :help "Lowest level folder"
< :function
(lambda (msg)
(+mude-colorize-str
(replace-regexp-in-string "\\".*/" "" (mu4e-message-field msg
< :maildir))
' tmude-header--folder-colors))))))

Among the flags mu4e displays is the "personal address" flag, for messages sent to me (as
opposed to mailing-list-y emails where I am not an explicit recipient). Unfortunately, this
doesn't play well with my wildcard email addresses, so let’s fix this with advise.

(defadvice! +mude-personal-address-p--*-a (orig-fn addr)
:around #'mu4e-personal-address-p
(or (and (stringp addr)
(string-match-p "@\\([a-z]+\\.\\)?tecosaur\\.net$" addr))
(funcall orig-fn addr)))

We'll also use a nicer alert icon
(setq mude-alert-icon "/usr/share/icons/Papirus/64x64/apps/evolution.svg")
And save ourselves from the awful mude-thread-fold-face.

(custom-set-faces!
' (mude-thread-fold-face :inherit default))

2. Sending Mail Let’s send emails too.

(setq sendmail-program "/usr/bin/msmtp"
send-mail-function #'smtpmail-send-it
message-sendmail-f-is-evil t
message-sendmail -extra-arguments '("--read-envelope-from"); ,
< "--read-recipients")

message-send-mail-function #'message-send-mail-with-sendmail)

It’s also nice to avoid accidentally sending emails with the wrong account. If we can send
from the address in the To field, let’s do that. Opening a prompt otherwise also seems
sensible.

We can register Emacs as a potential email client with a desktop file. We could put an

APPLICATIONS Mail 160

emacsclient ... entryin the Exec field, but I've found this a bit dodgy. Instead let’s
package the emacslient behaviour in alittle executable “/.1local/bin/emacsmail.

emacsclient -create-frame --alternate-editor='' --no-wait --eval \

"(progn (x-focus-frame nil) (mu4e-compose-from-mailto \"$1\" t))"
Now we can just call that in a desktop file.

[Desktop Entry]

Name=Mu4de

GenericName=Compose a new message with Mude in Emacs
Comment=0pen mu4e compose window
MimeType=x-scheme-handler/mailto;
Exec=emacsmail %u

Icon=emacs

Type=Application

Terminal=false
Categories=Network;Email;
StartupWMClass=Emacs

To register this, just call
update-desktop-database ~/.local/share/applications
We can see if this is necessary with a doctor check.

(when (and (executable-find "mu")
(not (string= (shell-command-to-string "xdg-mime query default
< x-scheme-handler/mailto")
"emacsmail.desktop\n")))

(warn! "Emacs is not registered as a mailto handler."))
We also want to define mude-compose-from-mailto.

(defun mude-compose-from-mailto (mailto-string &optional quit-frame-after)
(require 'mu4e)
(unless mude--server-props (mude t) (sleep-for 0.1))
(let* ((mailto (message-parse-mailto-url mailto-string))
(to (cadr (assoc "to" mailto)))
(subject (or (cadr (assoc "subject" mailto)) ""))
(body (cadr (assoc "body" mailto)))
(headers (-filter (lambda (spec) (not (-contains-p '("to'" "subject"
<~ "body") (car spec)))) mailto)))
(when-let ((mu4e-main (get-buffer mude-main-buffer-name)))
(switch-to-buffer mude-main))
(mude”compose-mail to subject headers)
(when body
(goto-char (point-min))

(if (eq major-mode 'org-msg-edit-mode)

APPLICATIONS Mail 161

(org-msg-goto-body)
(mu4e-compose-goto-bottom))
(insert body))
(goto-char (point-min))
(cond ((null to) (search-forward "To: "))
((string= "" subject) (search-forward "Subject: "))
(t (if (eq major-mode 'org-msg-edit-mode)
(org-msg-goto-body)
(mu4e-compose-goto-bottom))))
(font-lock-ensure)
(when evil-normal-state-minor-mode
(evil-append 1))
(when quit-frame-after
(add-hook 'kill-buffer-hook
* (lambda ()
(when (eq (selected-frame) ,(selected-frame))
(delete-frame)))))))

It would also be nice to change the name pre-filled in From: when drafting.

(defvar mude-from-name "Timothy"
"Name used in \'"From:\" template.')
(defadvice! mude~draft-from-construct-renamed (orig-fn)
"Wrap “muje”draft-from-construct-renamed ' to change the name."
raround #'mude”draft-from-construct
(let ((user-full-name mu4e-from-name))
(funcall orig-fn)))

We can also use this a signature,
(setq message-signature mude-from-name)
I've got a few extra addresses I'd like +mude-set-from-address-h to be aware of.

(defun +mude-update-personal-addresses ()
(let ((primary-address
(car (cl-remove-if-not
(lambda (a) (eq (mod (apply #'* (cl-coerce a 'list)) 600) 0))
(mude-personal-addresses)))))
(setq +mude-personal-addresses
(and primary-address
(append (mu4e-personal-addresses)
(mapcar
(lambda (subalias)
(concat subalias "@"
(subst-char-in-string 7@ 7. primary-address)))
' ("orgmode"))
(mapcar

APPLICATIONS Mail 162

(lambda (alias)

(replace-regexp-in-string

"\\T\\N(.#\\)@" alias primary-address t t 1))
'("contact" "timothy")))))))

(add-transient-hook! 'mude-compose-pre-hook
(+mu4e-update-personal-addresses))

We also want to use any @tecosaur .net address as an automatic from address.

(defadvice! +mude-set-from-adress-h-personal-a (orig-fn)
:around #'+mude-set-from-address-h
(let* ((msg-addrs
(and mude-compose-parent-message
(delq nil
(mapcar
(lambda (adr) (plist-get adr :email))
(append (mu4e-message-field mude-compose-parent-message
— :to)
(mu4e-message-field mude-compose-parent-message
— :cc)
(mu4e-message-field mude-compose-parent-message
— :from))))))
(personal-addrs
(if (or mude-contexts +mude-personal-addresses)
(and (> (length +mude-personal-addresses) 1)
+mude-personal-addresses)
(mu4e-personal-addresses)))
(personal-domain-addr
(cl-some
(lambda (email)
(and (string-match-p "@\\(7:tec\\.\\)?tecosaur\\.net>7$"
email)
email))
msg-addrs)))
(if (and personal-domain-addr
(not (cl-intersection msg-addrs personal-addrs :test #'equal)))
(setq user-mail-address personal-domain-addr)
(funcall orig-fn))))

Speaking of, it would be good to put emails sent from @tecosaur.net in the account-
specific sent directory, not the catch-all.

(defun +mude-account-sent-folder (&optional msg)
(let ((from (if msg
(plist-get (car (plist-get msg :from)) :email)
(save-restriction

(mail-narrow-to-head)

APPLICATIONS Mail 163

(mail-fetch-field "from")))))
(if (and from (string-match-p "@tecosaur\\.net>?\\'" from))
"/tecosaur-net/Sent"
"/sent")))

(setq mude-sent-folder #'+mude-account-sent-folder)

When composing an email, I think it would make more sense to start off in insert mode
than normal mode, which can be accomplished via a compose hook.

(defun +mude-evil-enter-insert-mode ()
(when (eq (bound-and-true-p evil-state) 'normal)
(call-interactively #'evil-append)))

(add-hook 'mude-compose-mode-hook #'+mude-evil-enter-insert-mode 90)

3. Working with the Org mailing list
a) Adding X-Woof headers

I'm fairly active on the Org mailing list (ML). The Org ML has a linked bug/patch
tracker, https://updates.orgmode.org/ managed by Woof. However, I feel like I spend
too much time looking up what the appropriate headers are for updating the status
of bugs and patches. What I need, is some sort of convenient tool. Let’s write one.

First, a function that asks what I want to do and returns the appropriate X-Woof
header.

(defun +mude-get-woof-header ()
(pcase (read-char
(format "\
hs
%s Declare s Applied %s Aborted
hs
%s Confirm %s Fixed
hs
%s Request %s Resolved

%s remove X-Woof header"

(propertize "Patch" 'face 'outline-3)
(propertize "p" 'face '(bold consult-key))
(propertize "a" 'face '(bold consult-key))
(propertize "c" 'face '(bold consult-key))
(propertize "Bug" 'face 'outline-3)
(propertize "b" 'face '(bold consult-key))
(propertize "f" 'face '(bold consult-key))
(propertize "Help" 'face 'outline-3)
(propertize "h" 'face '(bold consult-key))
(propertize "r" 'face '(bold consult-key))

https://updates.orgmode.org/
https://github.com/bzg/woof

APPLICATIONS Mail 164

(propertize "x" 'face '(bold error))))
(?p "X-Woof-Patch: confirmed")
(?a "X-Woof-Patch: applied")
(?c "X-Woof-Patch: cancelled")
(?b "X-Woof-Bug: confirmed")
(?f "X-Woof-Bug: fixed")
(?h "X-Woof-Help: confirmed")
(?r "X-Woof-Help: cancelled")
(?x 'delete)))

Now we just need a function which will add such a header to a buffer

(defun +mude-insert-woof-header ()
"Insert an X-Woof header into the current message."
(interactive)
(when-let ((header (+mude-get-woof-header)))
(save-excursion
(goto-char (point-min))
(search-forward "--text follows this line--")
(unless (eq header 'delete)
(beginning-of-line)
(insert header "\n'")
(forward-line -1))
(when (re-search-backward "~X-Woof-" nil t)
(kill-whole-line)))))

(map! :map mude-compose-mode-map
:localleader

:desc "Insert X-Woof Header" "w" #'+mude-insert-woof-header)

(map! :map org-msg-edit-mode-map
:after org-msg
:localleader

:desc "Insert X-Woof Header" "w" #'+mude-insert-woof-header)

Lovely! That should make adding these headers a breeze.

b) Patch workflow

Testing patches from the ML is currently more hassle than it needs to be. Let’s change
that.

(after! mude
(defvar +org-ml-target-dir
(expand-file-name "lisp/org/" doom-user-dir))
(defvar +org-ml-max-age 600
"Nazimum permissible age in seconds.')
(defvar +org-ml--cache-timestamp 0)
(defvar +org-ml--cache nil)

APPLICATIONS Mail 165

(define-minor-mode +org-ml-patchy-mood-mode
"dpply patches to Org in bulk."
:global t
(let ((action (cons "apply patch to org" #'+org-ml-apply-patch)))
(if +org-ml-patchy-mood-mode
(add-to-list 'mude-view-actions action)
(setq mude-view-actions (delete action mude-view-actions)))))

(defun +org-ml-apply-patch (msg)
"dpply the patch in the current message to Org."
(interactive)
(unless msg (setq msg (mude-message-at-point)))
(with-current-buffer (get-buffer-create "*Shell: Org apply patchesx")

(erase-buffer)

(let* ((default-directory +org-ml-target-dir)
(exit-code (call-process "git" nil t nil "am"
<~ (mu4e-message-field msg :path))))

(magit-refresh)
(when (not (= 0 exit-code))
(+popup/buffer)))))

(defun +org-ml-current-patches ()
"Get the currently open patches, as a list of alists.
Entries of the form (subject . id)."
(delq nil
(mapcar
(lambda (entry)
(unless (plist-get entry :fixed)
(cons
(format "-8s s"
(propertize
(replace-regexp-in-string "T.*" ""
(plist-get entry :date))
'face 'font-lock-doc-face)
(propertize
(replace-regexp-in-string "\\[PATCH\\] 7" ""
(plist-get entry
< :summary))
'face 'font-lock-keyword-face))
(plist-get entry :id))))
(with-current-buffer (url-retrieve-synchronously
— "https://updates.orgmode.org/data/patches")
(goto-char url-http-end-of-headers)
(json-parse-buffer :object-type 'plist)))))

(defun +org-ml-select-patch-thread ()
"Find and apply a proposed Org patch."

APPLICATIONS Mail 166

(interactive)
(let* ((current-workspace (+workspace-current))
(patches (progn
(when (or (mot +org-ml--cache)
(> (- (float-time)
<> +org-ml--cache-timestamp)
+torg-ml-max-age))
(setq +org-ml--cache (+org-ml-current-patches)
+torg-ml--cache-timestamp (float-time)))
+org-ml--cache))
(msg-id (cdr (assoc (completing-read
"Thread: " (mapcar #'car patches))
patches))))
(+workspace-switch +mude-workspace-name)
(mude-view-message-with-message-id msg-id)
(unless +org-ml-patchy-mood-mode
(add-to-list 'mude-view-actions
(cons "apply patch to org"
< #'+org-ml-transient-mude-action)))))

(defun +org-ml-transient-mude-action (msg)
(setq mude-view-actions
(delete (cons "apply patch to org"
< #'+org-ml-transient-mude-action)
mude-view-actions))
(+workspace/other)
(magit-status +org-ml-target-dir)
(+org-ml-apply-patch msg)))

¢) Mail list archive links

The other thing which it’s good to be easily able to do is grab a link to the current
message on https://list.orgmode.org.

(after! mude
(defun +mu4e-ml-message-link (msg)
"Copy the link to MSG on the mailing list archives.”
(let* ((list-addr (or (mude-message-field msg :list)
(thread-last (append (mude-message-field-raw msg
— :list-post)
(mu4e-message-field msg :to)
(mu4e-message-field msg
— :cc))
(mapcar (lambda (e) (plist-get e
— :email)))

(mapcar (lambda (addr)

https://list.orgmode.org

APPLICATIONS Mail 167

(when (string-match-p
— "emacs.*@gnu\\.org$"
— addr)

< (replace-regexp-in-string
= "@" "." addr))))
(delq nil)
(car))))
(msg-url
(pcase list-addr
("emacs-orgmode.gnu.org"
(format "https://list.orgmode.org/ls" (mude-message-field
< msg :message-id)))
(_ (user-error "Mailing list %s not supported" list-addr)))))
(gui-select-text msg-url)
(message "Link %s copied to clipboard"
(propertize msg-url 'face '((:weight normal :underline nil)
— 1link)))
msg-url))

(add-to-list 'mude-view-actions (cons "link to message ML"
< #'+mude-ml-message-link) t))

In a similar manner, when clicking on such a link (say when someone uses a link to
the archive to refer to an earlier email) I'd much rather look at it in mu4e.

(defun +browse-url-orgmode-ml (url &optional _)

"Open an orgmode list url using notmuch."

(let ((id (and (or (string-match

< "~https?://orgmode\\.org/list/\\([~/I+\\)" url)
(string-match
— "~https?://1ist\\.orgmode\\.org/\\([~/1+\\)" url))

(match-string 1 url))))
(mude-view-message-with-message-id id)))

(add-to-list 'browse-url-handlers (cons "~https?://orgmode\\.org/list"

< #'+browse-url-orgmode-ml))

(add-to-list 'browse-url-handlers (cons "“https?://list\\.orgmode\\.org/"
< #'+browse-url-orgmode-ml))

d) Setup when composing a new email

Thanks to having a dedicated address for my interactions with the Org ML, and
Doom’s +mude-set-from-address-h, we can tell at the end of compose setup
whether I'm composing an email to the Org ML and then do alittle setup for convenience,
namely:

« Pre-fill the To address

APPLICATIONS Mail 168

Ensure that org-msg is set up to send plaintext only
« Setdefault-directorytomylocal Orgrepository (where patch files are generated)

« Move (point) to the Subject: line

Use a special Org-ML-specific signature

(defun +mude-compose-org-ml-setup ()
(when (string-match-p "\\ orgmode@" user-mail-address)
(goto-char (point-min))
(save-restriction
(mail-narrow-to-head)
(when (string-empty-p (mail-fetch-field "to"))
(re-search-forward "~To: .*§")
(replace-match "To: emacs-orgmode@gnu.org")
(advice-add 'message-goto-to :after
< #'+mude-goto-subject-not-to-once)))
(when (and org-msg-mode
(re-search-forward "~:alternatives: (\\(utf-8 html\\))" nil
= %))
(replace-match "utf-8" t t nil 1))
(if org-msg-mode
(let ((final-elem (org-element-at-point (point-max))))

(wvhen (equal (org-element-property :type final-elem) "signature")
(goto-char (org-element-property :contents-begin final-elem))
(delete-region (org-element-property :contents-begin
< final-elem)

(org-element-property :contents-end final-elem))
(setq-local org-msg-signature
(format
— "\n\n#+begin_signature\nJs\n#+end_signature"
(cdr +mude-org-ml-signature)))
(insert (cdr +mude-org-ml-signature) "\n'")))
(goto-char (point-max))
(insert (car +mude-org-ml-signature)))
(setq default-directory
(file-name-concat doom-user-dir "lisp/org/"))))

(defun +mude-goto-subject-not-to-once ()
(message-goto-subject)
(advice-remove 'message-goto-to #'+mude-goto-subject-not-to-once))

Now let’s set up that signature.

(defvar +mude-org-ml-signature
(cons
"All the best,

Timothy

APPLICATIONS Mail 169

==\
Timothy (‘tecosaur’/‘TEC’), Org mode contributor.
Learn more about Org mode at <https://orgmode.org/>.
Support Org development at <https://liberapay.com/org-mode>,
or support my work at <https://liberapay.com/tec>.
"
"All the best,\\\\
0Chtml : @@Timothy@Chtml : 0@

-\u200b- \\\\

Timothy (‘tecosaur’/‘TEC’), Org mode contributor.\\\\

Learn more about Org mode at https://orgmode.org/.\\\\

Support Org development at https://liberapay.com/org-mode,\\\\
or support my work at https://liberapay.com/tec.")

"Plain and Org version of the org-ml specific signature.')

Now to make this take effect, we canjustadd ita bitlater oninmude-compose-mode-hook
(after org-msg-post-setup) by setting a hook depth of 1.

(add-hook 'mude-compose-mode-hook #'+mude-compose-org-ml-setup 1)

4.5.5 Org Msg

Doom does a fantastic stuff with the defaults with this, so we only make a few minor tweaks.
First, some stylistic things:

(setq org-msg-greeting-fmt "\nHiJs,\n\n"
org-msg-signature "\n\n#+begin_signature\nAll the
— best, \\\\\n@0html: Q@@Timothy@Chtml :@@\n#+end_signature")

We also want to set the accent colour used in the Doom mu4e module’s construction of the default
org-msg style.

(setq torg-msg-accent-color "#la5fb4")

Now, it would be nice to easily jump to and between the ends of the message body, so let’'s make
a function for this.

(defun +org-msg-goto-body (&optional end)
"Go to either the beginning or the end of the body.
END can be the symbol top, bottom, or nil to toggle."
(interactive)
(let ((initial-pos (point)))
(org-msg-goto-body)
(when (or (eq end 'top)

APPLICATIONS Mail 170

(and (or (memq initial-pos ; Already at bottom
(1ist (point) (1- (point))))
(<= initial-pos ; Above message body
(save-excursion
(message-goto-body)
(point))))
(not (eq end 'bottom))))
(message-goto-body)
(re-search-forward

(format (regexp-quote org-msg-greeting-fmt) ; s is unaffected.

(concat "\\(7: " (regexp-quote (org-msg-get-to-name)) "\\)7"))))))

We can replace the evil binding of mu4e - compose-goto-bottom with this function.

(map! :map org-msg-edit-mode-map
:after org-msg

:n "G" #'+torg-msg-goto-body)

It would also be good to call this when replying to a message. This has to be implemented as

advice as the compose hooks are run before mude~compose-handler moves the point with
message-goto-<location>.

(defun +org-msg-goto-body-when-replying (compose-type &rest _)
"Call "~ +org-msg-goto-body ' when the current message ts a reply."
(when (and org-msg-edit-mode (eq compose-type 'reply))

(+org-msg-goto-body)))

(advice-add 'mu4e”compose-handler :after #'+org-msg-goto-body-when-replying)

171

CHAPTER

Language configuration

5.1 General

5.1.1 File Templates

For some file types, we overwrite defaults in the snippets directory, others need to have a template

assigned.
(set-file-template! "\\.tex$" :trigger "__" :mode 'latex-mode)
(set-file-template! "\\.org$" :trigger "__" :mode 'org-mode)

(set-file-template! "/LICEN[CS]E$" :trigger '+file-templates/insert-license)

5.2 Plaintext

5.2.1 Ansicolours

It’s nice to see ANSI colour codes displayed, however we don't want to disrupt ANSI codes in Org
src blocks.

(after! text-mode
(add-hook! 'text-mode-hook
(unless (derived-mode-p 'org-mode)
;5 Apply ANSI color codes
(with-silent-modifications
(ansi-color-apply-on-region (point-min) (point-max) t)))))

5.2.2 Margin without line numbers

Display-wise, somehow I don't mind code buffers without any margin on the left, but it feels a
bit off with text buffers once the padding provided by line numbers is stripped away.

(defvar +text-mode-left-margin-width 1
"The *left-margin-width ' to be used in " tezt-mode ' buffers."”)

(defun +setup-text-mode-left-margin ()

LANGUAGE CONFIGURATION Oryg 172

(when (and (derived-mode-p 'text-mode)
(not (and (bound-and-true-p visual-fill-column-mode)
visual-fill-column-center-text))
(eq (current-buffer) ; Check current buffer is active.
(window-buffer (frame-selected-window))))
(setq left-margin-width (if display-line-numbers
0 +text-mode-left-margin-width))
(set-window-buffer (get-buffer-window (current-buffer))
(current-buffer))))

Now we just need to hook this up to all the events which could either indicate a change in the
conditions or require the setup to be re-applied.

(add-hook 'window-configuration-change-hook #'+setup-text-mode-left-margin)
(add-hook 'display-line-numbers-mode-hook #'+setup-text-mode-left-margin)

(add-hook 'text-mode-hook #'+setup-text-mode-left-margin)

There’s onelittle niggle with Doom, asdoom/toggle-line-numbers doesntrundisplay-line-numbers-mode-ho
so some advice is needed.

(defadvice! +doom/toggle-line-numbers--call-hook-a ()

:after #'doom/toggle-line-numbers

(run-hooks 'display-line-numbers-mode-hook))
Lastly, I think I actually like this enough that I'll go ahead and remove line numbers in text mode.

(remove-hook 'text-mode-hook #'display-line-numbers-mode)

5.3 Org

I really like org mode, I've given some thought to why, and below is the result.

Format Fine- Initial Syntax Editor Integrations Ease-of- Versatility
grained easeofuse simplicity Support referencing
control
Word 2 4 4 2 3 2 2
BTEX 4 1 1 3 2 4 3
Org Mode 4 2 3.5 1 4 4 4
Markdown 1 3 3 4 3 3 1
Markdown 2.5 2.5 2.5 3 3 3 2

+ Pandoc

LANGUAGE CONFIGURATION Oryg 173

Fine-grained control

Initial ease of use

S?ntax simplicity

> <

Integrations Editor Support

Word LaTex 0Org Mode 1 Markdown C— Markdown + Pandoc

Beyond the elegance in the markup language, tremendously rich integrations with Emacs allow

for some fantastic features, such as what seems to be the best support for literate programming
of any currently available technology.

— Code — — Raw Code — Computer
Ideas - I— Org Mode -

— Text — — Document — People

An . org file can contain blocks of code (with noweb templating support), which can be tangled
to dedicated source code files, and woven into a document (report, documentation, presentation,
etc.) through various (extensible) methods. These source blocks may even create images or other
content to be included in the document, or generate source code.

.pdf
pdfLaTeX
.tex
—L style.scss Weaving
graphc.png — | embedded TeX (Documents)

https://orgmode.org/features.html
https://en.wikipedia.org/wiki/Literate_programming
https://en.wikipedia.org/wiki/Noweb
https://orgmode.org/manual/Extracting-Source-Code.html
https://orgmode.org/manual/Extracting-Source-Code.html

LANGUAGE CONFIGURATION Oryg

174
image.jpeg - filters | .css
figure.png —— PR[1JJECT.ORG —filters —+——<4— .html
l || | embedded htm1
resﬂll— | F———filters Xt
execution | ||| —— filters .md
code blocks ”H .

I .sh Tangling

‘ .hs (Code)
el

5.3.1 System config

1. Mime types

Org mode isn't recognised as it's own mime type by default, but that can easily be changed
with the following file. For system-wide changes try /usr/share/mime/packages/org.xml.

<mime-info xmlns='http://www.freedesktop.org/standards/shared-mime-info'>
<mime-type type="text/org">
<comment>Emacs Org-mode File</comment>
<glob pattern="*.org"/>
<alias type='"text/org"/>
</mime-type>
</mime-info>

What'’s nice is that Papirus now has an icon for text/org. One simply needs to refresh
their mime database

update-mime-database ~/.local/share/mime
Then set Emacs as the default editor
xdg-mime default emacs.desktop text/org
Once again, we will add doctor checks around this.

(if (string= (shell-command-to-string "xdg-mime query default text/org") "")
(warn! "text/org is not a registered mime type.")

https://github.com/PapirusDevelopmentTeam/papirus-icon-theme/commit/a10fb7f2423d5e30b9c4477416ccdc93c4f3849d

LANGUAGE CONFIGURATION Oryg 175

(unless (string= (shell-command-to-string "xdg-mime query default text/org")
"emacs-client.desktop\n")
(warn! "Emacs(client) is not set up as the text/org handler.")))

2. Gitdiffs

Protesilaos wrote a very helpful article in which he explains how to change the git diff
chunk heading to something more useful than just the immediate line above the hunk —
like the parent heading.

This can be achieved by firstadding anew diff mode togitin ~/.config/git/attributes
*.org diff=org
Then adding a regex foritto ~/.config/git/config

[diff "org"]
xfuncname = "~ (*+ +.%)$"

5.3.2 Packages

1. Orgitself
There are actually three possible package statements I may want to use for Org.

If 'm on a machine where I can push changes, I want to be able to develop Org. I can check
this by checking the content of the SSH key ~/.ssh/id_ed25519.pub.

a) Ifthis key exists and there isn't a repo at $doom-user-dir/lisp/org with the right
remote, we should install it as such.

b) If the key exists and repo are both set up, the package should just be ignored.

c) If the key does not exist, the Org’s HEAD should just be used

To account for this situation properly, we need a short script to determine the correct
package statement needed.

(or (require 'doom (expand-file-name "lisp/doom.el"
(or (bound-and-true-p doom-emacs-dir)
user-emacs-directory)))
(setq doom-local-dir
(expand-file-name ".local/" (or (bound-and-true-p doom-emacs-dir)
user-emacs-directory))))
(let ((dev-key-p (and (file-exists-p "7/.ssh/id_ed25519.pub")
(= 0 (shell-command "cat ~/.ssh/id_ed25519.pub | grep -q
AAAAC3NzaC11ZDIINTESAAAATOZZqcJOLAN+QFHKyW8ST2zz750+8Tdv09IT5geXpQVt"))))

https://protesilaos.com/codelog/2021-01-26-git-diff-hunk-elisp-org/

LANGUAGE CONFIGURATION Om 176

(recipe-common '(:files (:defaults "etc")
:build t
:pre-build
(with-temp-file "lisp/org-version.el"
(require 'lisp-mnt)
(let ((version ;; (lm-version "lisp/org.el")
(with-temp-buffer
(insert-file-contents "lisp/org.el')
(1m-header "version")))
(git-version (string-trim
(with-temp-buffer
(call-process "git" nil t nil
"rev-parse"
— "--short"
< "HEAD")
(buffer-string)))))
(insert (format "(defun org-release () \"The release
— version of Org.\" %S)\n"
version)
(format "(defun org-git-version () \"The
< truncate git commit hash of Org mode.\"
= %S8)\n"
git-version)

"(provide 'org-version)\n"))))))
(with-temp-buffer

(insert
(pp " (package! org
:recipe (,@(if dev-key-p
(l1ist :host nil :repo

< "tec@git.savannah.gnu.org:/srv/git/emacs/org-mode.git"

— :local-repo "lisp/org"
:fork (list :host nil :repo

< "git@ssh.tecosaur.net:tec/org-mode.git"

< :branch "dev" :remote "tecosaur"))
(list :host nil :repo

< "https://code.tecosaur.net/mirrors/org-mode.git"

— :remote "mirror"
:fork (list :host nil :repo
[

"https://code.tecosaur.net/tec/org-mode.git"
< :branch "dev" :remote "tecosaur")))
,@recipe-common)
:pin nil)))
(untabify (point-min) (point-max))
(buffer-string)))

<<org-pkg-statement () >>
(unpin! org) ; there be bugs
(package! org-contrib

LANGUAGE CONFIGURATION Om 177

;3 The “sr.ht' repo has been a bit flaky as of late.

:recipe (:host github :repo "emacsmirror/org-contrib"
:files ("lisp/*.el"))

:pin "8d14a600a2069ffc494edfc9al2b8e5fc8840bf1")

2.. Visuals
a) Org Modern

Fontifying org-mode buffers to be as pretty as possible is of paramount importance,
and Minad’s lovely org-modern goes a long way in this regard.

(package! org-modern :pin "a58534475b4312b0920aa9d3824272470c8e3500")
...with a touch of configuration. ..

(use-package! org-modern
:hook (org-mode . org-modern-mode)
:config
(setq org—modern—star I(IIH nnonnonnonnonnonn nn)
org-modern-table-vertical 1

org-modern-table-horizontal 0.2

org-modern-list '((43 . "")
(45 . ||_||)
(42 . n.n))

org-modern-todo-faces

'(("TODD" :inverse-video t :inherit org-todo)
("PROJ" :inverse-video :inherit +org-todo-project)
("STRT" :inverse-video t :inherit +org-todo-active)
("[-1" :inverse-video t :inherit +org-todo-active)
:inherit +org-todo-onhold)
:inherit +org-todo-onhold)
:inherit +org-todo-onhold)

:inherit +org-todo-cancel)

("HOLD" :inverse-video
("WAIT" :inverse-video
("[?7]" :inverse-video
("KILL" :inverse-video

c ot ot o o o o o o

("NO" :inverse-video t :inherit +org-todo-cancel))
org-modern-footnote
(cons nil (cadr org-script-display))
org-modern-block-fringe nil
org-modern-block-name
"t . t)

("src" "»" "«")

("example" "»-" "-¢")

("quote" "" ")

("export" "@" "€"))
org-modern-progress nil
org-modern-priority nil
org-modern-horizontal-rule (make-string 36 7-)

org-modern-keyword

((t . t)

LANGUAGE CONFIGURATION Om 178

("title" . "")

("subtitle" . "")

("author" . "")

("email" . "")

("date" . "")

("property" . "")
("options" . #("" 0 1 (display (height 0.75))))
("startup" . "")

"macro" . "")

("bind" . "")
("bibliography" . "")
("print_bibliography" . "")
("cite_export" . "")
("print_glossary" . "")
("glossary_sources" . "")
("include" . "")
("setupfile" . "")
("html_head" . "")

("html" . "")
("latex_class" . "")
("latex_class_options" . "")
("latex_header" . "")
("latex_header_extra" . "")
("latex" . "")
("beamer_theme" . "")
("beamer_color_theme" . "")
("beamer_font_theme" . "")
("beamer_header" . "")
("beamer" . "")
("attr_latex" . "")
("attr_html" . "")
("attr_org" . "")

(ezli® , moY

("name" . "")

("header" . ">")

("caption" . "")

("results" . "")))

(custom-set-faces! '(org-modern-statistics :inherit
< org-checkbox-statistics-todo)))

Since org-modern’s tag face supplants Org’s tag face, we need to adjust the spell-
check face ignore list

(after! spell-fu
(cl-pushnew 'org-modern-tag (alist-get 'org-mode

<> +spell-excluded-faces-alist)))

b) Emphasis markers

LANGUAGE CONFIGURATION Om 179

While org-hide-emphasis-markers is very nice, it can sometimes make edits
which occur at the border a bit more fiddley. We can improve this situation without
sacrificing visual amenities with the org-appear package.

(package! org-appear :recipe (:host github :repo "awthl13/org-appear")
:pin "32eeb0f8fdfa449bbc235617549c1bccb503cb09")

(use-package! org-appear
thook (org-mode . org-appear-mode)
:config
(setq org-appear-autoemphasis t
org-appear-autosubmarkers t
org-appear-autolinks nil)
;3 for proper first-time setup, ~org-appear--set-elements'
;; needs to be run after other hooks have acted.

(run-at-time nil nil #'org-appear--set-elements))

c) Heading structure

Speaking of headlines, a nice package for viewing and managing the heading structure
has come to my attention.

(package! org-ol-tree :recipe (:host github :repo "Townk/org-ol-tree')
:pin "207c748aabfea8626be619e8c55bdb1c16118¢25")

We'll bind this to 0 on the org-mode localleader, and manually apply a PR recognising
the pgtk window system.

(use-package! org-ol-tree

:commands org-ol-tree

:config

(setq org-ol-tree-ui-icon-set

(if (and (display-graphic-p)
(fboundp 'all-the-icons-material))
'all-the-icons
'unicode))

(org-ol-tree-ui--update-icon-set))

(map! :map org-mode-map
;after org
:localleader

:desc "Outline" "0" #'org-ol-tree)
3. Extra functionality

a) Julia support

ob-juliais currently a bit borked, but there’s an effort to improve this.

https://github.com/Townk/org-ol-tree/pull/13
https://github.com/Townk/org-ol-tree/pull/13

LANGUAGE CONFIGURATION Om 180

(package! ob-julia :recipe (:local-repo "lisp/ob-julia" :files ("*.el"

< "julia")))

(use-package! ob-julia
:commands org-babel-execute:julia
:config
(setq org-babel-julia-command-arguments
" ("--sysimage"
, (when-let ((img "~/.local/lib/julia.so")
(exists? (file-exists-p img)))
(expand-file-name img))
"--threads"
, (number-to-string (- (doom-system-cpus) 2))

- -banner=no")))

b) HTTP requests

I like the idea of being able to make HTTP requests with Babel.

(package! ob-http :pin "b1428ea2a63bcb510e7382albf5fe82b19c104a7")

(use-package! ob-http
:commands org-babel-execute:http)

¢) RSS feeds

I need this for blog publishing. It used to be bundled with Org, but now it’s pretty
much abandoned.

(package! ox-rss :pin "d2964eca3614f84db35b498d065862a1e341868d")

d) Transclusion

There’s a really cool package in development to transclude Org document content.

(package! org-transclusion :recipe (:host github :repo
< '"nobiot/org-transclusion")
:pin "e9728b0b14b5c2e5d3b68af98f772ed99e136b48")

(use-package! org-transclusion
:commands org-transclusion-mode
:init
(map! :after org :map org-mode-map
"<f12>" #'org-transclusion-mode))

e) Heading graph

Came across thisand ... it’s cool

LANGUAGE CONFIGURATION Oryg 181

(package! org-graph-view :recipe (:host github :repo
— "alphapapa/org-graph-view")
:pin "172157aeel1131ea59f0bd724a10abfdbccbd860e")

f) Cooking recipes

g

h)

I need this in my life. It take a URL to a recipe from a common site, and inserts an
org-ified version at point. Isn't that just great.

(package! org-chef :pin "1710b54441ed744dcdfb125d08fb88cfaf452£10")

Loading after org seems a bit premature. Let’s just load it when we try to use it, either
by command or in a capture template.

(use-package! org-chef

:commands (org-chef-insert-recipe org-chef-get-recipe-from-url))
Importing with Pandoc

Sometimes I'm given non-org files, that’s very sad. Luckily Pandoc offers a way to
make that right again, and this package makes that even easier to do.

(package! org-pandoc-import :recipe
(:local-repo "lisp/org-pandoc-import" :files ("*.el" "filters"
< "preprocessors")))

(use-package! org-pandoc-import
:after org)

Glossaries and more

For glossary-type entries, there’s a nice package for this 'm developing.
(package! org-glossary :recipe (:local-repo "lisp/org-glossary"))

Other than hooking this to org-mode, we also want to set a collection root and
improve the WTEX usage references with cleveref’s \labelcpageref command.

(use-package! org-glossary
:hook (org-mode . org-glossary-mode)
:config
(setq org-glossary-collection-root "~/.config/doom/misc/glossaries/")
(defun +org-glossary--latex-cdef (backend info term-entry form &optional
<> ref-index plural-p capitalized-p extra-parameters)
(org-glossary--export-template
(if (plist-get term-entry :uses)
"x%d*\\emsp{}%v\\ensp{}@0latex:\\labelcpageref{0Q/b@Q@latex:}0Q\n"
"x%d*x\\emsp{}%v\n")

LANGUAGE CONFIGURATION Om 182

backend info term-entry ref-index
plural-p capitalized-p extra-parameters))
(org-glossary-set-export-spec
'latex t
:backref "gls-/K-use-Jr"
:backref-seperator ","
:definition-structure #'+torg-glossary--latex-cdef))

i) Document comparison

It's quite nice to compare Org files, and the richest way to compare content is probably
latexdiff. There are a few annoying steps involved here, and so I've written a
package to streamline the process.

(package! orgdiff :recipe (:local-repo "lisp/orgdiff"))

The only little annoyance is the fact that latexdiff uses #FF0000 and #0000FF as the
red/blue change indication colours. We can make this a bit nicer by post-processing
the latexdiff result.

(use-package! orgdiff
:defer t
:config
(defun +orgdiff-nicer-change-colours ()
(goto-char (point-min))
;3 Set red/blue based on whether chameleon is being used
(if (search-forward "J% make document follow Emacs theme" nil t)
(setq red (substring (doom-blend 'red 'fg 0.8) 1)
blue (substring (doom-blend 'blue 'teal 0.6) 1))
(setq red "c82829"
blue "00618a"))
(when (and (search-forward "),DIF PREAMBLE EXTENSION ADDED BY LATEXDIFF"
— nil t)
(search-forward "\\RequirePackage{color}" nil t))
(wvhen (re-search-forward "definecolor{red}{rgb}{1,0,0}" (cdr
< (bounds-of-thing-at-point 'line)) t)
(replace-match (format "definecolor{red}{HTML}{/s}" red)))
(wvhen (re-search-forward "definecolor{blue}{rgb}{0,0,1}" (cdr
< (bounds-of-thing-at-point 'line)) t)
(replace-match (format "definecolor{blue}{HTML}{%s}" blue)))))
(setq orgdiff-latexdiff-args '("--append-safecmd=acr,acrs"))
(add-to-list 'orgdiff-latexdiff-postprocess-hooks
< #'+orgdiff-nicer-change-colours))

j) Org music

It’s nice to be able to link to music

LANGUAGE CONFIGURATION Om 183

(package! org-music :recipe (:local-repo "lisp/org-music"))

(use-package! org-music
;after org
:config
(setq org-music-mpris-player "Lollypop"
org-music-track-search-method 'beets
org-music-beets-db "~ /Music/library.db"))

5.3.3 Behaviour

1. Tweaking defaults
(setq org-directory (expand-file-name "org" (xdg-data-home)) ; Let's put files
— here.
org-agenda-files (list org-directory) ; Seems like the
— obvious place.
org-use-property-inheritance t ; It's convenient
— to have properties inherited.
org-log-done 'time ; Having the time a
— item is done sounds convenient.
org-list-allow-alphabetical t
— list bullets.

; Have a. A. a) A)

org-catch-invisible-edits 'smart ; Try not to

— accidently do weird stuff in invisible regions.
org-export-with-sub-superscripts '{} ; Don't treat lone
< _ / - as sub/superscripts, require _{} / ~{}.
org-export-allow-bind-keywords t ; Bind keywords can
— be handy

org-image-actual-width '(0.9)) ; Make the

— in-buffer display closer to the exported result..
I also like the : comments header-argument, so let’s make that a default.

(setq org-babel-default-header-args

'((:session . "none'")
(:results . "replace")
(:exports . "code")
(:cache . "no")
(:noweb . "no")
(:hlines . "no")
(:tangle . "no")
(:comments . "link")))

By default, visual-line-modeisturned on,and auto-fill-mode off by ahook. However
this messes with tables in Org-mode, and other plaintext files (e.g. markdown, KTEX) so

LANGUAGE CONFIGURATION Oryg 184

I'll turn it off for this, and manually enable it for more specific modes as desired.

(remove-hook 'text-mode-hook #'visual-line-mode)
(add-hook 'text-mode-hook #'auto-fill-mode)

There also seem to be a few keybindings which use hjk1, but miss arrow key equivalents.

(map! :map evil-org-mode-map
:after evil-org
:n "g <up>" #'org-backward-heading-same-level
n "g <down>" #'org-forward-heading-same-level
:n "g <left>" #'org-up-element
n "g <right>" #'org-down-element)

2. Extra functionality

a) The utility of zero-width spaces

Occasionally in Org you run into annoyances where you want to have two seperate
blocks right together without a space. For example, to emphasise part of a word, or
put a currency symbol immediately before an inline source block. There is a solution
to this, it just sounds slightly hacky — zero width spaces. Because this is Emacs, we
can make this feel much less hacky by making a minor addition to the Org key map

(map! :map org-mode-map
:nie "M-SPC M-SPC" (cmd! (insert "\u200B")))

We then want to stop the space from being included in exports, which is done here.

b) List bullet sequence
I think it makes sense to have list bullets change with depth

(setq org-list-demote-modify-bullet '(("+" . "-") ("=" . "+") ("x" . "+")
(”1.” . Ha‘H)))

¢) Easier file links

While org-insert-1link is all very well and good, a large portion of the time I want
to insert a file, and so it would be good to have a way to skip straight to that and
avoid the description prompt. Looking at org-link-parameters, we can see that
the "file" link type uses the completion function org-link-complete-file, so
let’s use that to make a little file-link inserting function.

(defun +org-insert-file-link ()
"Insert a file link. At the prompt, enter the filename."
(interactive)
(org-insert-link nil (org-link-complete-file)))

LANGUAGE CONFIGURATION Oryg 185

Now we'll just add that under the Org mode link localleader for convenience.

(map! :after org
:map org-mode-map
:localleader
"1l f" #'+org-insert-file-1link)

d) Citation
Extending the :tools biblio module.

References in Org are fairly easy now, thanks to org-cite. The :tools biblio
module gives a fairly decent basic setup, but it would be nice to take it a bit further.
This mostly consists of tweaking settings, but there is one extra package I'll grab for
prettier in-buffer citations.

(package! org-cite-csl-activate :recipe (:host github :repo
"andras-simonyi/org-cite-csl-activate") :pin
"ccadbdcdfdlb4cbOceal32324cc1912e0£1900b6")

In particular, by setting org-cite-csl-activate-use-document-style, we can
have the in-buffer displayed citations be the same as the exported form. Isn’t that
lovely!

Unfortunately, there’s currently a potential for undesirable buffer modifications, so
we'll put all the activation code behind a function we can call when we want it.

(use-package! oc-csl-activate
:after oc
:config
(setq org-cite-csl-activate-use-document-style t)
(defun +org-cite-csl-activate/enable ()

(interactive)

(setq org-cite-activate-processor 'csl-activate)

(add-hook! 'org-mode-hook '((lambda () (cursor-sensor-mode 1))

<> org-cite-csl-activate-render-all))

(defadvice! +org-cite-csl-activate-render-all-silent (orig-fn)
:around #'org-cite-csl-activate-render-all
(with-silent-modifications (funcall orig-fn)))

(wvhen (eq major-mode 'org-mode)

(with-silent-modifications
(save-excursion
(goto-char (point-min))
(org-cite-activate (point-max)))
(org-cite-csl-activate-render-all)))
(fmakunbound #'+org-cite-csl-activate/enable)))

Now that oc-csl-activate is set up, let’s go ahead and customise some of the
packages already loaded. For starters, we can make use of the my Zotero files with

LANGUAGE CONFIGURATION Oryg 186

citar, and make the symbols a bit prettier.

(after! citar
(setq org-cite-global-bibliography
(let ((libfile-search-names '("library.json" "Library.json"
< "library.bib" "Library.bib"))
(libfile-dir "~ /Zotero")
paths)
(dolist (libfile libfile-search-names)
(wvhen (and (not paths)
(file-exists-p (expand-file-name libfile
< libfile-dir)))
(setq paths (list (expand-file-name libfile libfile-dir)))))
paths)
citar-bibliography org-cite-global-bibliography
citar-symbols

“((file , (nerd-icons-faicon "nf-fa-file_o" :face 'merd-icons-green

— :v-adjust -0.1) . " ")
(note ,(nerd-icons-octicon "nf-oct-note" :face 'nerd-icons-blue
< :v-adjust -0.3) . " ")
(link , (nerd-icoms-octicon "nf-oct-link" :face 'nerd-icons-orange
< :v-adjust 0.01) . " "))))

We can also make the Zotero CSL styles available to use.

(after! oc-csl

(setq org-cite-csl-styles-dir "~ /Zotero/styles"))

Since CSL works so nicely everywhere, we might as well use it as the default citation
export processor for everything.

(after! oc

(setq org-cite-export-processors '((t csl))))

Then, for convenience we'll cap things off by putting the citation command under
Org's localleader.

(map! :after org
:map org-mode-map
:localleader

:desc "Insert citation" "@" #'org-cite-insert)

Lastly, just in case I come across any old citations of mine, I think it would be nice to
have a function to convert org-ref citations to org-cite forms.

(after! oc
(defun org-ref-to-org-cite ()

"4ttempt to comvert org-ref citations to org-cite syntax."

LANGUAGE CONFIGURATION Om 187

(interactive)

(let* ((cite-conversions '(("cite" . "//b") ("Cite" . "//bc")
("nocite" . "/n")
("citep" . "") ("citepx" . "//f")
("parencite" . "") ("Parencite" . "//c")
("citeauthor" . "/a/f") ("citeauthor*" .
— "/a")
("citeyear" . "/ma/b")
("Citep" . "//c") ("Citealp" . "//bc")
("Citeauthor" . "/a/cf") ("Citeauthor*"
— "/a/c")
("autocite" . "") ("Autocite" . "//c")
("notecite" . "/1/b") ("Notecite" . "/1/bc")
("pnotecite" . "/1") ("Pnotecite" .
< "/1/bc")))

(cite-regexp (rx (regexp (regexp-opt (mapcar #'car
<> cite-conversions) t))
":" (group (+ (not (any "\n
- >-)13"))))))
(save-excursion
(goto-char (point-min))
(wvhile (re-search-forward cite-regexp nil t)
(message (format "[citels:Q%s]"
(cdr (assoc (match-string 1)
<> cite-conversions))
(match-string 2)))
(replace-match (format "[citels:@)s]"
(cdr (assoc (match-string 1)
<> cite-conversions))
(match-string 2))))))))

e) cdlatex environments

Ipreferauto-activating-snippetstocdlatex,butdolikeorg-cdlatex-environment-indent
(bound to C-c }). I almost always want to edit them afterwards though, so let’s make
that happen by default.

(defadvice! +org-edit-latex-env-after-insert-a (&rest _)
:after #'org-cdlatex-environment-indent
(org-edit-latex-environment))

Atsome pointin the future it could be good to investigate splitting org blocks. Likewise
this looks good for symbols.

f) LSP support in src blocks

Now, by default, LSPs don't really function at all in src blocks.

https://scripter.co/splitting-an-org-block-into-two/
https://archive.casouri.cat/note/2020/insert-math-symbol-in-emacs/

LANGUAGE CONFIGURATION Om 188

(cl-defmacro lsp-org-babel-enable (lang)
"Support LANG in org source code block."
(setq centaur-lsp 'lsp-mode)
(cl-check-type lang string)
(let* ((edit-pre (intern (format "org-babel-edit-prep:’%s" lang)))

(intern-pre (intern (format "lsp--/s'" (symbol-name edit-pre)))))
" (progn
(defun ,intern-pre (info)
(let ((file-name (->> info caddr (alist-get :file))))
(unless file-name
(setq file-name (make-temp-file 'babel-lsp-")))
(setq buffer-file-name file-name)
(1sp-deferred)))
(put ',intern-pre 'function-documentation
(format "Enable lsp-mode in the buffer of org source block
= (%S) L
(upcase ,lang)))
(if (fboundp ',edit-pre)
(advice-add ',edit-pre :after
(progn
(defun ,edit-pre (info)

',intern-pre)

(,intern-pre info))

',edit-pre 'function-documentation

(put
(format "Prepare local buffer environment for org source
— block (%s)."
(upcase ,lang))))))))
(defvar org-babel-lang-list
'("go" "python" "ipython" "bash" "sh"))
(dolist (lang org-babel-lang-list)
(eval " (1sp-org-babel-enable ,lang)))

g) View exported file

'localeader v hasno pre-existing binding, so I may as well use it with the same
functionality as in BTgX. Let’s try viewing possible output files with this.

(map! :map org-mode-map
:localleader

:desc "View exported file" "v" #'org-view-output-file)

(defun org-view-output-file (&optional org-file-path)

"Visit buffer open on the first output file (if any) found, using

— “org-view-output-file-extensions '"

(interactive)

(let* ((org-file-path (or org-file-path (buffer-file-name) ""))
(dir (file-name-directory org-file-path))
(basename (file-name-base org-file-path))
(output-file nil))

LANGUAGE CONFIGURATION Om 189

(dolist (ext org-view-output-file-extensions)
(unless output-file
(when (file-exists-p
(concat dir basename ".'" ext))
(setq output-file (concat dir basename "." ext)))))
(if output-file
(if (member (file-name-extension output-file)
< org-view-external-file-extensions)
(browse-url-xdg-open output-file)
(pop-to-buffer (or (find-buffer-visiting output-file)
(find-file-noselect output-file))))
(message "No exported file found"))))

(defvar org-view-output-file-extensions '("pdf" "md" "rst" "txt" "tex"
— "html")
"Search for output files with these extensions, in order, viewing the
< first that matches")
(defvar org-view-external-file-extensions '("html")

"File formats that should be opened ezternally.")

3. Super agenda

The agenda is nice, but a souped up version is nicer.

(package! org-super-agenda :pin "fb20ad9c8a9705aa05d40751682beae2d094e0fe")

(use-package! org-super-agenda
:commands org-super-agenda-mode)

(after! org-agenda
(let ((inhibit-message t))

(org-super-agenda-mode)))

(setq org-agenda-skip-scheduled-if-done t
org-agenda-skip-deadline-if-done t
org-agenda-include-deadlines t
org-agenda-block-separator nil
org-agenda-tags-column 100 ;; from testing this seems to be a good value
org-agenda-compact-blocks t)

(setq org-agenda-custom-commands
'(("o" "QOverview"
((agenda "" ((org-agenda-span 'day)
(org-super-agenda-groups

'((:name "Today"
itime-grid t
:date today
:todo "TODAY"

LANGUAGE CONFIGURATION Om 190

:scheduled today
torder 1)))))
(alltodo "" ((org-agenda-overriding-header "")
(org-super-agenda-groups
'((:name "Next to do"
:todo "NEXT"
rorder 1)

(:name "Important"
:tag "Important"
ipriority "A"
:order 6)

(:name "Due Today"
:deadline today
rorder 2)

(:name "Due Soon"
:deadline future
:order 8)

(:name "Overdue"
:deadline past
:face error
torder 7)

(:name "Assignments"
:tag "Assignment"
:order 10)

(:name "Issues"
:tag "Issue"
rorder 12)

(:name "Emacs"

:tag "Emacs"
torder 13)

(:name "Projects"
:tag "Project"
rorder 14)

(:name "Research"
:tag "Research"
torder 15)

(:name "To read"
:tag "Read"

:order 30)

(:name "Waiting"
:todo "WAITING"
:order 20)

(:name "University"
:tag "uni"
rorder 32)

(:name "Trivial"
rpriority<= "E"
:tag ("Trivial" "Unimportant")

LANGUAGE CONFIGURATION Om 191

:todo ("SOMEDAY")
:order 90)
(:discard (:tag ("Chore" "Routine" "Daily")))))))))))

4. Capture

Let’s setup some org-capture templates, and make them visually nice to access.

Select a capture template

t & Personal todo

n [J Personal note

u> 7= University..

e & Email

i> @ Interesting..

k> 4 Tasks.

p> Project..

o> Centralised project templates..
qg () Abort

doct (Declarative Org Capture Templates) seems to be a nicer way to set up org-capture.

(package! doct
:recipe (:host github :repo "progfolio/doct")
:pin "5cab660dab653ad88c07b0493360252f6ed1d898")

(use-package! doct
:commands doct)

(after! org-capture
<<prettify-capture>>

(defun +doct-icon-declaration-to-icon (declaration)
"Convert :icom declaration to icon"
(let ((name (pop declaration))
(set (intern (concat "nerd-icons-" (plist-get declaration :set))))
(face (intern (concat "nerd-icons-" (plist-get declaration :color))))
(v-adjust (or (plist-get declaration :v-adjust) 0.01)))
(apply set ~(,name :face ,face :v-adjust ,v-adjust))))

(defun +doct-iconify-capture-templates (groups)
"4dd declaration's :icon to each template group in GROUPS."
(let ((templates (doct-flatten-lists-in groups)))
(setq doct-templates (mapcar (lambda (template)

LANGUAGE CONFIGURATION Om 192

(when-let* ((props (nthedr (if (= (length
< template) 4) 2 5) template))
(spec (plist-get (plist-get
< props :doct) :icom)))
(setf (nth 1 template) (concat

<~ (+doct-icon-declaration-to-icon spec)

n \t n
(nth 1
< template))))
template)
templates))))

(setq doct-after-conversion-functions '(+doct-iconify-capture-templates))
(defvar +org-capture-recipies "“/Desktop/TEC/Organisation/recipies.org")

(defun set-org-capture-templates ()
(setq org-capture-templates
(doct " (("Personal todo" :keys "t"
ticon ("nf-oct-checklist" :set "octicon" :color "green")
:file +org-capture-todo-file

:prepend t

:headline "Inbox"

:type entry

:template ("x TODO %7"
"%i %ha"))

("Personal note" :keys "n"
ticon ("nf-fa-sticky_note_o" :set "faicon" :color "green")
:file +org-capture-todo-file
:prepend t
:headline "Inbox"
:type entry
:template ("* 77"
"%i %hat))
("Email" :keys "e"
ticon ("nf-fa-envelope" :set "faicon" :color "blue")
:file +org-capture-todo-file
:prepend t
:headline "Inbox"
:type entry
:template ("x TODO %~ {typelreply tolcontact} %\\3 %7 :email:"
"Send an email %~ {urgancy|soon|ASAP|anon|at some
< point|eventually} to % {recipiant}"
"about %~{topicl}"
"WU %Ki ha'))
("Interesting" :keys "i"
:icon ("nf-fa-eye" :set "faicon" :color "lcyan")
:file +org-capture-todo-file

LANGUAGE CONFIGURATION Om 193

:prepend t
:headline "Interesting"
:type entry
:template ("* [] %{desc}%? :%{i-type}:"
"%i %ha')
:children (("Webpage" :keys "w"
:icon ("nf-fa-globe" :set "faicon" :color
— '"green")
:desc "} (org-cliplink-capture) "
:i-type "read:web")
("Article" :keys "a"
:icon ("nf-fa-file_text_o" :set "faicon" :color
— "yellow")
:desc ""
:i-type "read:reaserch")
("\tRecipie" :keys "r"
:icon ("nf-fa-spoon" :set "faicon" :color
— "dorange")
:file torg-capture-recipies
:headline "Unsorted"
:template "% (org-chef-get-recipe-from-url)")
("Information" :keys "i"
:icon ("nf-fa-info_circle" :set "faicon" :color
— "blue")
:desc ""
:i-type "read:info")
("Idea" :keys "I"
:icon ("nf-md-chart_bubble" :set "mdicon" :color
— "silver")
:desc ""
ti-type "idea")))
("Tasks" :keys "k"
:icon ("nf-oct-inbox" :set "octicon" :color "yellow")
:file +org-capture-todo-file
:prepend t
:headline "Tasks"
:type entry
:template ("x TODO %7 % G/{extral}"
"%i ha')
:children (("General Task" :keys "k"
:icon ("nf-oct-inbox" :set "octicon" :color
— "yellow")
rextra "")
("Task with deadline" :keys "d"
:icon ("nf-md-timer" :set "mdicon" :color
< '"orange" :v-adjust -0.1)
:extra "\nDEADLINE: %~ {Deadline:}t")
("Scheduled Task" :keys "s"

LANGUAGE CONFIGURATION Om 194

ticon ("nf-oct-calendar" :set "octicon" :color
— '"orange")
:extra "\nSCHEDULED: 7~{Start time:}t")))
("Project" :keys "p"
ticon ("nf-oct-repo" :set "octicon" :color "silver")
:prepend t
:type entry
:headline "Inbox"
:template ("* J{time-or-todol} %7"
Il'/.ill
)
:file ""
:custom (:time-or-todo "")
:children (("Project-local todo" :keys "t"
:icon ("nf-oct-checklist" :set "octicon" :color
— '"green")
:time-or-todo "TODO"
:file +org-capture-project-todo-file)
("Project-local note" :keys "n"
:icon ("nf-fa-sticky_note" :set "faicon" :color
— "yellow")
:time-or-todo "JU"
:file +org-capture-project-notes-file)
("Project-local changelog" :keys '"c"
:icon ("nf-fa-list" :set "faicon" :color "blue")
:time-or-todo "JU"
:heading "Unreleased"
:file +org-capture-project-changelog-file)))
("\tCentralised project templates"
:keys "o"
:type entry
:prepend t
:template ("* %{time-or-todol} 77"
Il'/'ill
L)
:children (("Project todo"
:keys "t"
:prepend nil
:time-or-todo "TODO"
:heading "Tasks"
:file +org-capture-central-project-todo-file)
("Project note"
:keys "n"
:time-or-todo "JU"
:heading "Notes"
:file +org-capture-central-project-notes-file)
("Project changelog"
:keys "c"

LANGUAGE CONFIGURATION Om 195

:time-or-todo "JU"

:heading "Unreleased"

:file

<> +org-capture-central-project-changelog-file)))))))

(set-org-capture-templates)
(unless (display-graphic-p)
(add-hook 'server-after-make-frame-hook
(defun org-capture-reinitialise-hook ()
(when (display-graphic-p)
(set-org-capture-templates)
(remove-hook 'server-after-make-frame-hook
#'org-capture-reinitialise-hook))))))

It would also be nice to improve how the capture dialogue looks

(defun org-capture-select-template-prettier (&optional keys)
"Select a capture template, in a prettier way than default
Lisp programs can force the template by setting KEYS to a string."
(let ((org-capture-templates
(or (org-contextualize-keys
(org-capture-upgrade-templates org-capture-templates)
org-capture-templates-contexts)
"(("t" "Task" entry (filetheadline "" "Tasks")
"+ TODO %7\n %u\n %a")))))
(if keys
(or (assoc keys org-capture-templates)
(error "No capture template referred to by \"is\" keys" keys))
(org-mks org-capture-templates

"Select a capture template\n !
"Template key: "
“(("q" ,(concat (nerd-icons-octicon "nf-oct-stop'" :face
< 'nerd-icons-red :v-adjust 0.01) "\tAbort")))))))
(advice-add 'org-capture-select-template :override

<~ #'org-capture-select-template-prettier)

(defun org-mks-pretty (table title &optional prompt specials)
"Select a member of an alist with multiple keys. Prettified.

TABLE ©s the alist which should contain entries where the car is a string.
There should be two types of entries.

1. prefiz descriptions like (\"a\" \"Description|")

'

This indicates that “a' is a prefiz key for multi-letter selection, and

that there are entries following with keys like |"ab\", \|"az\"...

2. Select-able members must have more than two elements, with the first

being the string of keys that lead to selecting it, and the second a

LANGUAGE CONFIGURATION Om 196

short description string of the item.

The command will then make a temporary buffer listing all entries

that can be selected with a single key, and all the single key

prefizes. Khen you press the key for a single-letter entry, it is selected.
When you press a prefiz key, the commands (and maybe further prefizes)
under this key will be shown and offered for selection.

TITLE w2ll be placed over the selection in the temporary buffer,
PROMPT wxll be used when prompting for a key. SPECIALS is an
alist with (\"key\" \"description\") entries. KWhen one of these
15 selected, only the bare key is returned.”
(save-window-excursion
(let ((inhibit-quit t)
(buffer (org-switch-to-buffer-other-window "*0rg Select*"))
(prompt (or prompt "Select: "))
case-fold-search
current)
(unwind-protect
(catch 'exit
(while t
(setq-local evil-normal-state-cursor (list nil))
(erase-buffer)
(insert title "\n\n")
(let ((des-keys nil)
(allowed-keys '("\C-g"))
(tab-alternatives '("\s" "\t" "\z"))
(cursor-type nil))
;3 Populate allowed keys and descriptions keys
;3 available with CURRENT selector.
(let ((re (format "\\“%s\\C.\\D\\'"
(if current (regexp-quote current) "'")))
(prefix (if current (concat current " ") "")))
(dolist (entry table)
(pcase entry
;3 Description.
(" (, (and key (pred (string-match re))) ,desc)
(let ((k (match-string 1 key)))
(push k des-keys)
;; Keys ending in tab, space or RET are equivalent.
(if (member k tab-alternatives)
(push "\t" allowed-keys)
(push k allowed-keys))
(insert (propertize prefix 'face
< 'font-lock-comment-face) (propertize k 'face 'bold)
< (propertize "»>" 'face 'font-lock-comment-face) " "
<~ desc "..." "\n")))

;; Usable entry.

LANGUAGE CONFIGURATION Om 197

(" (, (and key (pred (string-match re))) ,desc . ,_)
(let ((k (match-string 1 key)))
(insert (propertize prefix 'face
<> 'font-lock-comment-face) (propertize k 'face 'bold)

sy " " desc n\nn)
(push k allowed-keys)))
(_ nil))))

;5 Insert special entries, if any.

(when specials

(insert " \n")
(pcase-dolist (" (,key ,description) specials)
(insert (format "%s ’s\n" (propertize key 'face '(bold
<> nerd-icons-red)) description))
(push key allowed-keys)))
;3 Display UI and let user select an entry or
;3 a sub-level prefix.
(goto-char (point-min))
(unless (pos-visible-in-window-p (point-max))
(org-fit-window-to-buffer))
(let ((pressed (org--mks-read-key allowed-keys
prompt
(not (pos-visible-in-window-p
— (1- (point-max)))))))
(setq current (concat current pressed))
(cond
((equal pressed "\C-g") (user-error "Abort"))
;5 Selection is a prefix: open a new menu.
((member pressed des-keys))
;3 Selection matches an association: return it.
((let ((entry (assoc current table)))
(and entry (throw 'exit entry))))
;3 Selection matches a special entry: return the
;; selection prefix.
((assoc current specials) (throw 'exit current))
(t (error "No entry available")))))))
(when buffer (kill-buffer buffer))))))
(advice-add 'org-mks :override #'org-mks-pretty)

The org-capture bin is rather nice, but I'd be nicer with a smaller frame, and no modeline.

(setf (alist-get 'height +org-capture-frame-parameters) 15)
;5 (alist-get 'name +org-capture-frame-parameters) " Capture") ;; ATM hardcoded
— in other places, so changing breaks stuff
(setq torg-capture-fn
(lambda ()
(interactive)
(set-window-parameter nil 'mode-line-format 'none)

(org-capture)))

LANGUAGE CONFIGURATION Om 198

5. Roam

a) Basic settings

I'll just set this to be within Organisation folder for now, in the future it could be
worth seeing if I could hook this up to a Nextcloud instance.

(setq org-roam-directory "~/Desktop/TEC/Organisation/Roam/")

That said, if the directory doesn't exist we likely don't want to be using roam. Since
we don't want to trigger errors (which will happen as soon as roam tries to initialise),
let’s not load roam.

(package! org-roam :disable t)

b) Modeline file name

All those numbers! It's messy. Let’s adjust this in a similar way that I have in the
Window title.

(defadvice! doom-modeline--buffer-file-name-roam-aware-a (orig-fun)
raround #'doom-modeline-buffer-file-name ; takes mno args
(if (string-match-p (regexp-quote org-roam-directory) (or
< buffer-file-name ""))

(replace-regexp-in-string

= "\\NCZ NN #/AND AN CL0-9T \N{AN NI\ AN CLO-9T\N{2\\FN D AN (L0-91\\{2\\F\\) [0-9] *-"
"(\\1-\\2-\\3) "

(subst-char-in-string ?_ ? buffer-file-name))

(funcall orig-fun)))

¢) Graph view

Org-roam is nice by itself, but there are so extra nice packages which integrate with

It.

(package! org-roam-ui :recipe (:host github :repo "org-roam/org-roam-ui"
< :files ("*.el" "out")) :pin "5ac74960231dbObf7783c2ba7a19a60f582e91ab")
(package! websocket :pin "40c208eaab99999d7cle4bea883648da24c03be3")

— dependency of "org-roam-ui'

(use-package! websocket

:after org-roam)

(use-package! org-roam-ui
:after org-roam
:commands org-roam-ui-open
:hook (org-roam . org-roam-ui-mode)

:config

https://nextcloud.com/

LANGUAGE CONFIGURATION Om 199

(require 'org-roam) ; in case autoloaded
(defun org-roam-ui-open ()
"Ensure the server ts active, then open the roam graph."
(interactive)
(unless org-roam-ui-mode (org-roam-ui-mode 1))
(browse-url-xdg-open (format "http://localhost:%d" org-roam-ui-port))))

6. Nicer org-return

Once again, from unpackaged.el

(defun unpackaged/org-element-descendant-of (type element)

"Return non-nil <f ELENENT <s a descendant of TYPE.
TYPE should be an element type, like "item' or "paragraph'.
ELEMENT should be a list like that returned by " org-element-contezt '."

;3 MAYBE: Use “org-element-lineage'.

(when-let* ((parent (org-element-property :parent element)))

(or (eq type (car parent))
(unpackaged/org-element-descendant-of type parent))))

;5 s ###autoload
(defun unpackaged/org-return-dwim (&optional default)
"4 helpful replacement for “org-return-indent'. With prefiz, call

— “org-return-indent '.

On headings, move point to position after entry content. In
lists, insert a new item or end the list, with checkboz if
appropriate. In tables, insert a mew row or end the table."
;; Inspired by John Kitchin:
— http://kitchingroup.cheme.cmu.edu/blog/2017/04/09/A-better-return-in-org-mode/
(interactive "P")
(if default
(org-return t)
(cond
;; Act depending on context around point.

;5 NOTE: I prefer RET to not follow links, but by uncommenting this block,
< links will be
;3 followed.

;3 ((eq 'link (car (org-element-context)))
;5 33 Link: Open it.
;3 (org-open-at-point-global))

((org-at-heading-p)

;3 Heading: Move to position after entry content.

;3 NOTE: This is probably the most interesting feature of this function.
(let ((heading-start (org-entry-beginning-position)))

https://github.com/alphapapa/unpackaged.el#org-return-dwim

LANGUAGE CONFIGURATION Om 200

(goto-char (org-entry-end-position))
(cond ((and (org-at-heading-p)
(= heading-start (org-entry-beginning-position)))
;; Entry ends on its heading; add newline after
(end-of-line)
(insert "\n\n"))
(t
;; Entry ends after its heading; back up
(forward-line -1)
(end-of-line)
(when (org-at-heading-p)
;5 At the same heading
(forward-line)
(insert "\n")
(forward-line -1))
(while (not (looking-back "\\(7:[[:blank:]]17\n\\)\\{3\\}" nil))
(insert "\n"))
(forward-line -1)))))

((org-at-item-checkbox-p)
;3 Checkbox: Insert new item with checkbox.
(org-insert-todo-heading nil))

((org-in-item-p)
;3 Plain list. Yes, this gets a little complicated...
(let ((context (org-element-context)))
(if (or (eq 'plain-list (car context)) ; First item in list
(and (eq 'item (car context))
(not (eq (org-element-property :contents-begin context)
(org-element-property :contents-end context))))
(unpackaged/org-element-descendant-of 'item context)) ; Element
— in list item, e.g. a link
;; Non-empty item: Add new item.
(org-insert-item)
;; Empty item: Close the list.
;5 TODO: Do this with org functions rather than operating on the text.
— Can't seem to find the right function.
(delete-region (line-beginning-position) (line-end-position))
(insert "\n"))))

((when (fboundp 'org-inlinetask-in-task-p)
(org-inlinetask-in-task-p))
;5 Inline task: Don't insert a new heading.
(org-return t))

((org-at-table-p)
(cond ((save-excursion
(beginning-of-line)

LANGUAGE CONFIGURATION Oryg 201

;3 See “org-table-next-field'.
(cl-loop with end = (line-end-position)
for cell = (org-element-table-cell-parser)
always (equal (org-element-property :contents-begin
cell)
(org-element-property :contents-end cell))
while (re-search-forward "|" end t)))
;; Empty row: end the table.
(delete-region (line-beginning-position) (line-end-position))
(org-return t))
(t
;5 Non-empty row: call “org-return-indent'.
(org-return t))))
(t
;5 All other cases: call "“org-return-indent'.
(org-return t)))))

(map!
:after evil-org
:map evil-org-mode-map
:i [return] #'unpackaged/org-return-dwim)

7. Snippet Helpers

I often want to set src-block headers, and it’s a pain to
« type them out
« remember what the accepted values are
« oh, and specifying the same language again and again

We can solve this in three steps
« having one-letter snippets, conditioned on (point) being within a src header
« creating a nice prompt showing accepted values and the current default
« pre-filling the src-block language with the last language used

For header args, the keys I'll use are
o rfor :results
« efor :exports
. vfor:eval

« sfor :session

« dfor :dir

LANGUAGE CONFIGURATION Om 202

(defun +yas/org-src-header-p ()
"Determine whether “point ' %s within a src-block header or header-args."
(pcase (org-element-type (org-element-context))

('src-block (< (point) ; before code part of the src-block
(save-excursion (goto-char (org-element-property :begin
< (org-element-context)))

(forward-line 1)
(point))))

('inline-src-block (< (point) ; before code part of the inline-src-block
(save-excursion (goto-char (org-element-property
< :begin (org-element-context)))

(search-forward "J{")
(point))))

('keyword (string-match-p "~“header-args" (org-element-property :value
< (org-element-context))))))

Now let’s write a function we can reference in yasnippets to produce a nice interactive way
to specify header args.

(defun +yas/org-prompt-header-arg (arg question values)

"Prompt the user to set ARG header property to one of VALUES with QUESTION.
The default value is identified and indicated. If either default is selected,
or no selection is made: nil 1s returned."”

(let* ((src-block-p (not (looking-back "~#\\+property:[\t]+header-args:.*"

<> (line-beginning-position))))

(default
(or
(cdr (assoc arg
(if src-block-p
(nth 2 (org-babel-get-src-block-info t))
(org-babel-merge-params
org-babel-default-header-args
(let ((lang-headers
(intern (concat
— "org-babel-default-header-args:"
(+yas/org-src-lang)))))
(when (boundp lang-headers) (eval lang-headers

= 1)))))))
nn))

default-value)
(setq values (mapcar
(lambda (value)
(if (string-match-p (regexp-quote value) default)
(setq default-value
(concat value " "
(propertize "(default)" 'face

< 'font-lock-doc-face)))
value))

LANGUAGE CONFIGURATION Om 203

values))
(let ((selection (consult--read values :prompt question :default
< default-value)))
(unless (or (string-match-p "(default)$" selection)
(string= "" selection))
selection))))

Finally, we fetch the language information for new source blocks.

Since we're getting this info, we might as well go a step further and also provide the ability
to determine the most popular language in the buffer that doesn't have any header-args
set for it (with #+properties).

(defun +yas/org-src-lang ()
"Try to find the current language of the src/header at “point '.
Return nil otherwise.'
(let ((context (org-element-context)))
(pcase (org-element-type context)
('src-block (org-element-property :language context))
('inline-src-block (org-element-property :language context))
('keyword (when (string-match "~header-args:\\([~ J+\\)"
< (org-element-property :value context))

(match-string 1 (org-element-property :value context)))))))

(defun +yas/org-last-src-lang ()
"Return the language of the last src-block, if it exists.”
(save-excursion
(beginning-of-line)
(when (re-search-backward "~[\t]*#\\+begin_src" nil t)

(org-element-property :language (org-element-context)))))

(defun +yas/org-most-common-no-property-lang ()
"Find the lang with the most source blocks that has no global header-args,
— else nal."
(let (src-langs header-langs)
(save-excursion
(goto-char (point-min))
(wvhile (re-search-forward "~ [\t]#*#\\+begin_src" nil t)
(push (+yas/org-src-lang) src-langs))
(goto-char (point-min))
(while (re-search-forward "~ [\t]##\\+property: +header-args" nil t)
(push (+yas/org-src-lang) header-langs)))

(setq src-langs
(mapcar #'car
;3 sort alist by frequency (desc.)
(sort

;3 generate alist with form (value . frequency)

LANGUAGE CONFIGURATION Oryg 204

(cl-loop for (n . m) in (seq-group-by #'identity src-langs)
collect (cons n (length m)))
(lambda (a b) (> (cdr a) (cdr b))))))

(car (cl-set-difference src-langs header-langs :test #'string=))))

8. Translate capital keywords (old) to lower case (new)

Everyone used to use #+CAPITAL keywords. Then people realised that #+lowercase is
actually both marginally easier and visually nicer, so now the capital version is just used in
the manual.

Ory is standardized on lower case. Uppercase is used in the manual as a poor man’s bold,
and supported for historical reasons. — Nicolas Goaziou on the Org ML

To avoid sometimes having to choose between the hassle out of updating old documents
and using mixed syntax, I'll whip up a basic transcode-y function. It likely misses some
edge cases, but should mostly work.

(defun org-syntax-convert-keyword-case-to-lower ()
"Convert all #+KEYWORDS to #+keywords."
(interactive)
(save-excursion
(goto-char (point-min))
(let ((count 0)
(case-fold-search nil))
(while (re-search-forward "~ [\t]*#\\+[A-Z_]+" nil t)
(unless (string-match-p "RESULTS" (match-string 0))
(replace-match (downcase (match-string 0)) t)
(setq count (1+ count))))
(message "Replaced J%d occurances" count))))

9. Extralinks
a) xked

Because xked is cool, let’'s make it as easy and fun as possible to insert them. Saving
seconds adds up after all! (but only so much)

(org-link-set-parameters "xkcd"
:image-data-fun #'+org-xkcd-image-fn
:follow #'+org-xkcd-open-fn
:export #'+org-xkcd-export
:complete #'+org-xkcd-complete)

(defun +org-xkcd-open-fn (1link)
(+org-xkcd-image-fn nil link nil))

(defun +org-xkcd-image-fn (protocol link description)

https://orgmode.org/list/87tuuw3n15.fsf@nicolasgoaziou.fr

LANGUAGE CONFIGURATION Om 205

"Get image data for zkcd num LINK"
(let* ((xkcd-info (+xkcd-fetch-info (string-to-number link)))
(img (plist-get xkcd-info :img))
(alt (plist-get xkcd-info :alt)))
(message alt)
(+org-image-file-data-fn protocol (xkcd-download img (string-to-number
<> 1link)) description)))

(defun +org-xkcd-export (num desc backend _com)
"Convert zkcd to html/LaTeX form"
(let* ((xkcd-info (+xkcd-fetch-info (string-to-number num)))
(img (plist-get xkcd-info :img))
(alt (plist-get xkcd-info :alt))
(title (plist-get xkcd-info :title))
(file (xkcd-download img (string-to-number num))))
(cond ((org-export-derived-backend-p backend 'html)
(format "<img class='invertible' src='Js' title=\"}s\"
<~ alt='Ys'>" img (subst-char-in-string ?\" ?¢‘ alt) title))
((org-export-derived-backend-p backend 'latex)
(format "\\begin{figurel}[!htb]
\\centering
\\includegraphics[scale=0.4]1{)s}%s
\\end{figure}" file (if (equal desc (format "xkcd:%s'" num)) ""
(format "\n \\caption*{\\label{xkcd:%s} 7%s}"
num
(or desc

(format "\\textbf{%s} %s" title alt))))))
(t (format "https://xkcd.com/%s" num)))))

(defun +org-xkcd-complete (&optional arg)
"Complete zkcd using ~ +zkcd-stored-info '"
(format "xkcd:%d" (+xkcd-select)))

b) YouTube

The [[yt:...]] links preview nicely, but don't export nicely. Thankfully, we can fix
that.

(org-link-set-parameters "yt" :export #'+org-export-yt)
(defun +org-export-yt (path desc backend _com)
(cond ((org-export-derived-backend-p backend 'html)
(format "<iframe width='440' \
height='335"' \
src='https://wuw.youtube.com/embed/%s"' \
frameborder='0"' \
allowfullscreen>}s</iframe>" path (or "" desc)))
((org-export-derived-backend-p backend 'latex)

LANGUAGE CONFIGURATION Oryg 206

(format "\\href{https://youtu.be/%s}{%s}" path (or desc
— '"youtube")))
(t (format "https://youtu.be/%s" path))))

10. Fix problematic hooks

When one of the org-mode-hook functions errors, it halts the hook execution. This is
problematic, and there are two hooks in particular which cause issues. Let’s make their
failure less eventful.

(defadvice! shut-up-org-problematic-hooks (orig-fn &rest args)
raround #'org-fancy-priorities-mode

(ignore-errors (apply orig-fn args)))

11. Flycheck with org-lint

Org may be simple, but that doesn't mean there’s no such thing as malformed Org. Thankfully,
malformed Org is a much less annoying affair than malformed zipped XML (looks at
DOCX/ODT...), particularly because there’s a rather helpful little tool called org-1lint
bundled with Org that can tell you about your mistakes.

Flycheck doesn't currently support Org, and there’s aren't any packages to do so ;. However,
in an issue on org-lint there is some code which apparently works. Surely this is what
the clipboard was invented for? With that said, let’s regurgitate the code, cross our fingers,
and hope it works.

(defconst flycheck-org-lint-form
(flycheck-prepare-emacs-lisp-form
(require 'org)
(require 'org-lint)
(require 'org-attach)
(let ((source (car command-line-args-left))
(process-default-directory default-directory))
(with-temp-buffer
(insert-file-contents source 'visit)
(setq buffer-file-name source)
(setq default-directory process-default-directory)
(delay-mode-hooks (org-mode))
(setq delayed-mode-hooks nil)
(dolist (err (org-lint))
(let ((inf (cl-second err)))
(princ (elt inf 0))
(princ ": ")
(princ (elt inf 2))
(terpri)))))))

(defconst flycheck-org-lint-variables
' (org-directory

https://github.com/flycheck/flycheck/issues/1757#issuecomment-759546940

LANGUAGE CONFIGURATION Om 207

org-id-locations
org-id-locations-file
org-attach-id-dir
org-attach-use-inheritance
org-attach-id-to-path-function-list
org-link-parameters)

"Variables inherited by the org-lint subprocess.’)

(defconst flycheck-org-lint-babel-langs
'<<org-babel-list-langs()>>
"Languages that org-babel should know of.")

(defun flycheck-org-lint-variables-form ()
(require 'org-attach) ; Needed to make variables available
" (progn
,@(seq-map (lambda (opt) ~(setg-default ,opt ', (symbol-value opt)))
(seq-filter #'boundp flycheck-org-lint-variables))))

(defun flycheck-org-lint-babel-langs-form ()
" (progn
,@(mapcar
(lambda (lang)
" (defun , (intern (format "org-babel-execute:%s" lang)) (_body _params)
"Stub for org-lint."))
flycheck-org-lint-babel-langs)))

(eval ; To preveant eager macro expansion form loading flycheck early.
' (flycheck-define-checker org-lint
"Org buffer checker using ~org-lint '."
:command ("emacs" (eval flycheck-emacs-args)
"--eval" (eval (concat "(add-to-list 'load-path \""
(file-name-directory (locate-library "org"))
"\")")
"--eval" (eval (flycheck-sexp-to-string
(flycheck-org-lint-variables-form)))
"--eval" (eval (flycheck-sexp-to-string
(flycheck-org-lint-customisations-form)))
"--eval" (eval (flycheck-sexp-to-string
(flycheck-org-lint-babel-langs-form)))
"--eval" (eval flycheck-org-lint-form)
"--" source)
:error-patterns
((error line-start line ": " (message) line-end))
:modes org-mode))

Turns out it almost works. Running M-x flycheck-verify-setup after running that
snippet produces the following:

The following syntax checkers are not registered:

LANGUAGE CONFIGURATION Oryg 208

- org-lint
Try adding these syntax checkers to “flycheck-checkers'.

Well that’s very nice and helpful. We'll just do that «.
(add-to-list 'flycheck-checkers 'org-lint)

Itwas missing custom link types, but that’s easily fixed just by adding org-1link-parameters
toflycheck-org-lint-variables.

One remaining little annoyance is that it reports extra #+options that I've added to Org
as errors. So we need to tell org-1int about them without having it load my whole config.
Code duplication isn't great, but at least this isn't much.

(defun flycheck-org-lint-customisations-form ()
* (progn

(require '

ox)

(cl-pushnew '(:latex-cover-page nil "coverpage" nil)
(org-export-backend-options (org-export-get-backend 'latex)))

(cl-pushnew '(:latex-font-set nil "fontset" nil)

(org-export-backend-options (org-export-get-backend 'latex)))))

Alarger annoyance is that org-lint doesn't actually know what languages org-babel should
recognise, with Doom's lazy loading system. Since the list of languages should really only
change when packages are added/removed, we might as well statically determine a list of
all org-babel languages at configuration generation time.

(let (langs)
(dolist (dir load-path)
(when (file-directory-p dir)
(dolist (file (directory-files dir t "\\.elc?7$"))
(let ((basename (file-name-base file)))
(when (string-prefix-p "ob-'" basename)
(ignore-errors
(require (intern basename) file t)))))))
(mapatoms
(lambda (symb)
(when (functionp symb)
(let ((name (symbol-name symb)))
(let ((fn (symbol-function symb)))
(when (symbolp fn)
(setq symb (symbol-function symb)
fn (symbol-function symb)))
(when (and (string-suffix-p "-mode" name)
(autoloadp fn))
(ignore-errors (autoload-do-load fn))))
(cond

((string-prefix-p "org-babel-execute:" name)

LANGUAGE CONFIGURATION Oryg 209

(push (replace-regexp-in-string "~org-babel-execute:" "'" name)
langs))
((and (string-suffix-p "-mode" name)
(provided-mode-derived-p
symb 'prog-mode 'text-mode 'conf-mode))
(push (replace-regexp-in-string "-mode$" "'" name)
langs))))))
obarray)
(dolist (mode-mapping org-src-lang-modes)
(push (car mode-mapping) langs))
(mapcar #'intern
(sort (delete-dups langs) #'string<)))

This increases the tangle time by about 10-20%, but I think it’s worth it to be extra thorough.
If this really becomes a pain, we can always think about doing some sort of cache file based
on the load-path/packages installed.

5.3.4 Visuals

Here I try to do two things: improve the styling of the various documents, via font changes etc,
and also propagate colours from the current theme.

1. Font Display

Mixed pitch is great. As is +org-pretty-mode, let’s use them.
(add-hook 'org-mode-hook #'+org-pretty-mode)
Let’'s make headings a bit bigger

(custom-set-faces!

'(outline-1 :weight extra-bold :height 1.25)
' (outline-2 :weight bold :height 1.15)

' (outline-3 :weight bold :height 1.12)

' (outline-4 :weight semi-bold :height 1.09)
'(outline-5 :weight semi-bold :height 1.06)
'(outline-6 :weight semi-bold :height 1.03)
' (outline-8 :weight semi-bold)

' (outline-9 :weight semi-bold))

And the same with the title.

(custom-set-faces!
' (org-document-title :height 1.2))

It seems reasonable to have deadlines in the error face when they’re passed.

LANGUAGE CONFIGURATION Oryg 210

(setq org-agenda-deadline-faces
'((1.001 . error)
(1.0 . org-warning)
(0.5 . org-upcoming-deadline)
(0.0 . org-upcoming-distant-deadline)))

We can then have quote blocks stand out a bit more by making them italic.
(setq org-fontify-quote-and-verse-blocks t)

Org files can be rather nice to look at, particularly with some of the customisations here.
This comes at a cost however, expensive font-lock. Feeling like you're typing through
molasses in large files is no fun, but there is a way I can defer font-locking when typing to
make the experience more responsive.

(defun locally-defer-font-lock ()
"Set jit-lock defer and stealth, when buffer is over a certain size."
(when (> (buffer-size) 50000)
(setg-local jit-lock-defer-time 0.05
jit-lock-stealth-time 1)))

(add-hook 'org-mode-hook #'locally-defer-font-lock)

Apparently this causes issues with some people, but I haven't noticed anything problematic
beyond the expected slight delay in some fontification, so until I do I'll use the above.

2. Reduced text indent

Thanks to the various bits and bobs of setup we have here, the non-heading lines tend
to appear over-indented in org-indent-mode. We can adjust this by modifying the
generated text prefixes.

There’s another issue we can have when using mixed-pitch mode, where the line height is
set by the indent prefix displayed with the fixed-pitch font. This means that on o-indent
lines the line spacing can be different, which doesn’t look very good. We can also solve this
problem by modifying the generated text prefixes to but a fixed-pitch zero width space at
the start of o-indent lines instead of nothing.

(defadvice! +org-indent--reduced-text-prefixes ()
:after #'org-indent--compute-prefixes
(setq org-indent--text-line-prefixes
(make-vector org-indent--deepest-level nil))
(when (> org-indent-indentation-per-level 0)
(dotimes (n org-indent--deepest-level)
(aset org-indent--text-line-prefixes
n
(org-add-props

(concat (make-string (¥ n (1- org-indent-indentation-per-level))

LANGUAGE CONFIGURATION Oryg 211

?\s)
(if (> n 0)
(char-to-string org-indent-boundary-char)
"\u200b"))

nil 'face 'org-indent)))))

3. Fontifying inline src blocks

Org does lovely things with #+begin_src blocks, like using font-lock for language’s major-
mode behind the scenes and pulling out the lovely colourful results. By contrast, inline
src_ blocks are somewhat neglected.

I am not the first person to feel this way, thankfully others have taken to stackexchange
to voice their desire for inline src fontification. I was going to steal their work, but
unfortunately they didn't perform true source code fontification, but simply applied the
org-code face to the content.

We can do better than that, and we shall! Using org-src-font-lock-fontify-block we
canapplylanguage-appropriate syntax highlighting. Then, continuing onto {{{results(...)}}}
, it can have the org-block face applied to match, and then the value-surrounding
constructs hidden by mimicking the behaviour of prettify-symbols-mode.

Warning

This currently only highlights a single inline src block per line. I have no idea why it

stops, but I'd rather it didn’t. If you have any idea what’s going on or how to fix this

please get in touch.

(setq org-inline-src-prettify-results '("{" . ")"))
Doom theme’s extra fontification is more problematic than helpful.
(setq doom-themes-org-fontify-special-tags nil)

4. Symbols

It’s also nice to change the character used for collapsed items (by default . . .), I think is
better for indicating 'collapsed section’. and add an extra org-bullet to the default list of
four.

(setq org-ellipsis " "
org-hide-leading-stars t
org-priority-highest 7A
org-priority-lowest 7E
org-priority-faces

"((?A . 'merd-icons-red)
(?B . 'nerd-icons-orange)
(?C . 'nerd-icons-yellow)
(?D . 'nerd-icons-green)

(?E . 'nerd-icons-blue)))

https://stackoverflow.com/questions/20309842/how-to-syntax-highlight-for-org-mode-inline-source-code-src-lang/28059832

LANGUAGE CONFIGURATION

Oryg

212

It’s also nice to make use of the prettify-symbols-mode for a few Org syntactic tokens
which we'd like to prettify that aren’t covered by org-modern or any other settings.

(appendq! +ligatures-extra-symbols

(list :list_property ""
:em_dash "
:ellipses L0 0
rarrow_right oyt
rarrow_left Hett
rarrow_lr n
:properties "
:end "
:priority_a #(
:priority_b #(m
:priority_c #("
:priority_d #(

:priority_e

0 1 (face
0 1 (face
0 1 (face
0 1 (face

nerd-icons-red))
nerd-icons-orange))
nerd-icons-yellow))
nerd-icons-green))

#("92" 0 1 (face nerd-icons-blue))))

(defadvice! +org-init-appearance-h--no-ligatures-a ()

:list_property
:em_dash
:ellipsis
rarrow_right
;arrow_left
rarrow_1r
:properties
:end
:priority_a
:priority_b
:priority_c
:priority_d
:priority_e

:after #'+org-init-appearance-h
(set-ligatures! 'org-mode nil)
(set-ligatures! 'org-mode

n..n

n_su

ng_n

ng_sn

" :PROPERTIES: "
" :END: "

"[#Al"

"[#B1"

"Hc]

"[#D1"
"[#E1"))

While we're at it we may as well make tags prettier as well «

;3 (package! org-pretty-tags :pin "5c7521651b35ae9a7d3add4a66ae8ccl76aelc76")

;3 (use-package org-pretty-tags

55
55
55
N
55

—

:config

(setq org-pretty-tags-surrogate-strings

- (("uni"

'all-the-icons-

("HCC”

'all-the-icons-

, (all-the-icons-faicon
:v-adjust 0.01))
, (all-the-icons-material "computer"
:v-adjust 0.01))

purple

silver

"graduation-cap" :face

:face

LANGUAGE CONFIGURATION Om 213

38 ("assignment" . ,(all-the-icons-material "library_books" :face
< 'all-the-icons-orange :v-adjust 0.01))
89 ("test" . ,(all-the-icons-material '"timer" :face
— 'all-the-icons-red :v-adjust 0.01))
99 ("lecture" . ,(all-the-icons-fileicon "keynote" :face
— 'all-the-icons-orange :v-adjust 0.01))
89 ("email" . ,(all-the-icons-faicon "envelope" :face
— 'all-the-icons-blue :v-adjust 0.01))
29 ("read" . ,(all-the-icons-octicon '"book" :face
< 'all-the-icons-1lblue :v-adjust 0.01))
89 ("article" . ,(all-the-icons-octicon '"file-text" :face

< 'all-the-icons-yellow :v-adjust 0.01))
2 ("web" . ,(all-the-icons-faicon "globe" :face
< ‘'all-the-icons-green :v-adjust 0.01))

38 ("info" . ,(all-the-icons-faicon "info-circle" :face
< 'all-the-icons-blue :v-adjust 0.01))
S 9 ("issue" . ,(all-the-icons-faicon "bug" :face
< 'all-the-icons-red :v-adjust 0.01))
HH ("someday" . ,(all-the-icons-faicon "calendar-o" :face
< 'all-the-icons-cyan :v-adjust 0.01))
B ("idea" . ,(all-the-icons-octicon "light-bulb" :face
< ‘'all-the-icons-yellow :v-adjust 0.01))
58 ("emacs" . ,(all-the-icons-fileicon '"emacs" :face

< 'all-the-icons-lpurple :v-adjust 0.01))))
;5 (org-pretty-tags-global-mode))

5. KIEX Fragments
a) Prettier highlighting
First off, we want those fragments to look good.
(setq org-highlight-latex-and-related '(latex script entities))

However, by using native highlighting the org-block face is added, and that
doesn't look too great — particularly when the fragments are previewed.

Ideally org-src-font-lock-fontify-block wouldn't add the org-block face,
but we can avoid advising that entire function by just adding another face with
:inherit default which will override the background colour.

Inspecting org-do-latex-and-relatedshowsthat "latex" isthelanguage argument
passed, and so we can override the background as discussed above.

(require 'org-src)
(add-to-list 'org-src-block-faces '("latex" (:inherit default :extend t)))

b) Automatic previewing

It would be nice if fragments could automatically be previewed after being typed,

LANGUAGE CONFIGURATION Oryg 214

and the overlays automatically showed and hidden when moving the point in and
out of the BTgX fragments.

Thankfully, all we need to do to make thishappenisuse org-latex-preview-auto-mode.
(add-hook 'org-mode-hook #'org-latex-preview-auto-mode)
c) Prettier rendering
It’s nice to customise the look of BTEX fragments so they fit better in the text — like
this B> +3 - 25, 57
The default snippet preamble basically just sets the margins and text size, with

templatestobefilledinby org-latex-default-packages-alist and #+latex_header:
entries (but not #+latex_header_extra:).

\documentclass{article}
[DEFAULT-PACKAGES]
[PACKAGES]
\usepackage{xcolor}

To this, we make two additions:

« Selection of a maths font that fits better with displayed text.

« My collection mathematical notation conveniences.
(setq org-latex-preview-preamble
(concat
<<grab("latex-default-snippet-preamble")>>

"\n’% Custom font\n\\usepackage{arev}\n\n"
<<grab("latex-maths-conveniences")>>))

Since we can, instead of making the background colour match the default face, let’s
make it transparent.

;5 Calibrated based on the TeX font and org-buffer font.
(plist-put org-format-latex-options :zoom 0.93)

d) Rendering speed tests

We can either render from a dvi or pdf file, so let’'s benchmark latex and pdflatex.

latextime pdflatextime

135+2 ms 215+3 ms

On the rendering side, there are two . dvi-to-image converters which I am interested
in: dvipng and dvisvgm.

Using the above latex expression and benchmarking lead to the following results:

LANGUAGE CONFIGURATION Om 215

dvipngtime dvisvgmtime pdf2svgtime

89+2ms 178 +2 ms 12+2ms

Now let’s combine this to see what's best

Tool chain Total time Resulting file size
latex +dvipng 226 +2ms 7KiB
latex +dvisvgnm 392+4ms 8KiB

pdflatex +pdf2svg 230+2ms 16 KiB

So, let’s use dvipng for previewing I4TEX fragments in-Emacs, but dvisvgm for
Item 12.
Warning

Unfortunately, it seems that SVG sizing is annoying ATM, so let’s actually not do
this right now.
6. Org Plot

We can use some of the variables in org-plot to use the current doom theme colours.

(defvar +org-plot-term-size ' (1050 . 650)
"The size of the GNUPlot terminal, in the form (WIDTH . HEIGHT).")

(after! org-plot
(defun +org-plot-generate-theme (_type)
"Use the current Doom theme colours to gemerate a GnuPlot preamble."
(format "
fgt = \"textcolor rgb '%s'\" # foreground text
fgat = \"textcolor rgb 'Ys'\" # foreground alt text
fgl = \"linecolor rgb ')s'\" # foreground line
fgal = \"linecolor rgb 'Ys'\" # foreground alt line

foreground colors

set border lc rgb 'Is'

change text colors of tics
set xtics @fgt

set ytics @fgt

change text colors of labels
set title Q@fgt

set xlabel Q@fgt

set ylabel @fgt

change a text color of key
set key Q@fgt

line styles
set linetype 1 1w 2 lc rgb 'Us' # red
set linetype 2 1lw 2 lc rgb 'Us' # blue

LANGUAGE CONFIGURATION Om 216

set linetype 3 1lw 2 lc rgb 'l/s' # green
set linetype 4 1lw 2 lc rgb '/s' # magenta
set linetype 5 1lw 2 lc rgb '%s' # orange
set linetype 6 lw 2 lc rgb '/s' # yellow
set linetype 7 lw 2 lc rgb '/s' # teal
set linetype 8 1lw 2 lc rgb '%s' # violet

border styles
set tics out nomirror
set border 3

palette
set palette maxcolors 8
set palette defined (0 'Js',\

1 '%s',\
2 "%s',\
3 "%s',\
4 'Us',\
5 '%s',\
6 '%s',\
7 '%s')

(doom-color 'fg)
(doom-color 'fg-alt)
(doom-color 'fg)
(doom-color 'fg-alt)
(doom-color 'fg)

;3 colours
(doom-color 'red)
(doom-color 'blue)
(doom-color 'green)
(doom-color 'magenta)
(doom-color 'orange)
(doom-color 'yellow)
(doom-color 'teal)
(doom-color 'violet)
;; duplicated
(doom-color 'red)
(doom-color 'blue)
(doom-color 'green)
(doom-color 'magenta)
(doom-color 'orange)
(doom-color 'yellow)
(doom-color 'teal)

(doom-color 'violet)))

(defun +org-plot-gnuplot-term-properties (_type)
(format "background rgb '/s' size ¥s,%s"

LANGUAGE CONFIGURATION Oryg 217

(doom-color 'bg) (car +org-plot-term-size) (cdr

+org-plot-term-size)))

(setq org-plot/gnuplot-script-preamble #'+torg-plot-generate-theme)
(setq org-plot/gnuplot-term-extra #'+org-plot-gnuplot-term-properties))

5.3.5 Exporting

1. General settings

By default Org only exports the first three levels of headings as ... headings. This is rather
unfortunate as my documents frequently stray far beyond three levels of depth. The two
main formats I care about exporting to are KTgX and HTML. When using an article class,
KTEX headlines go from \section, \subsection, \subsubsection, and \paragraph
to \subgraph — five levels. HTMLs has six levels of headings (<h1> to <h6>), but first level
Org headings get exported as <h2> elements — leaving five usable levels.

As such, it would seem to make sense to recognise the first five levels of Org headings when
exporting.

(setq org-export-headline-levels 5) ; I like nesting

I'm also going to make use of an item in ox-extra so that I canadd an :ignore: tagto
headings for the content to be kept, but the heading itself ignored (unlike :noexport:
which ignored both heading and content). This is useful when I want to use headings to
provide a structure for writing that doesn't appear in the final documents.

(require 'ox-extra)

(ox-extras-activate '(ignore-headlines))

Since I (roughly) track Org HEAD, it makes sense to include the git version in the creator
string.

(setq org-export-creator-string
(format "Emacs %s (Org mode %s-%s)'" emacs-version (org-release)

(org-git-version)))
2. Acronym formatting

Ilike automatically using spaced small caps for acronyms. For strings I want to be unaffected
let’s use ; as a prefix to prevent the transformation —i.e. ; JFK (as one would want for
two-letter geographic locations and names).

This has to be implemented on a per-format basis, currently HTML and KIEX exports are
supported.

LANGUAGE CONFIGURATION Om 218

(defun org-export-filter-text-acronym (text backend _info)

"Wrap suspected acronyms in acronyms-specific formatting.
Treat sequences of 2+ capital letters (optionally succeeded by |"s\") as an
< acronym.
Ignore if preceeded by \";\" (for manual prevention) or \"\\\" (for LaTeX
— commands) .

I0D0 abstract backend implementations.”
(let ((base-backend
(cond
((org-export-derived-backend-p backend 'latex) 'latex)
;3 Markdown is derived from HTML, but we don't want to format it
((org-export-derived-backend-p backend 'md) nil)
((org-export-derived-backend-p backend 'html) 'html)))
(case-fold-search nil))
(when base-backend
(replace-regexp-in-string
"N\ 2\\b [A-Z] [A-Z]+s?\\ (7: [~A-Za-z]\\ I\\b\\) "
(lambda (all-caps-str)
(cond ((equal (aref all-caps-str 0) ?\\) all-caps-str)
— don't format LaTeX commands
((equal (aref all-caps-str 0) 7\;) (substring all-caps-str 1)) ;
— just remove not-acronym indicator char ";"
(t (let* ((final-char (if (string-match-p "[~A-Za-z]" (substring
< all-caps-str -1 (length all-caps-str)))
(substring all-caps-str -1 (length
< all-caps-str))
nil)) ; needed to re-insert the [~A-Za-z]
— at the end
(trailing-s (equal (aref all-caps-str (- (length
< all-caps-str) (if final-char 2 1))) 7?s))
(acr (if final-char
(substring all-caps-str 0 (if trailing-s -2
— -1))
(substring all-caps-str 0 (+ (if trailing-s -1
< (length all-caps-str)))))))
(pcase base-backend
('latex (concat "\\acr{" (downcase acr) "}" (when
< trailing-s "\\acrs{}") final-char))
('html (concat "" acr "" (when
< trailing-s "<small>s</small>") final-char)))))))
text t t))))

(add-to-list 'org-export-filter-plain-text-functions

#'org-export-filter-text-acronym)

;5 We won't use “org-export-filter-headline-functions' because it
;5 passes (and formats) the entire section contents. That's no good.

LANGUAGE CONFIGURATION Oryg 219

(defun org-html-format-headline-acronymised (todo todo-type priority text tags
< info)
"Like "org-html-format-headline-default-function ', but with acronym
— formatting."
(org-html-format-headline-default-function
todo todo-type priority (org-export-filter-text-acronym text 'html info) tags
< info))

(setq org-html-format-headline-function #'org-html-format-headline-acronymised)

(defun org-latex-format-headline-acronymised (todo todo-type priority text tags
< info)

"Like "org-latex-format-headline-default-function ', but with acronym

— formatting."

(org-latex-format-headline-default-function

todo todo-type priority (org-export-filter-text-acronym text 'latex info)

< tags info))
(setq org-latex-format-headline-function

< #'org-latex-format-headline-acronymised)

3. Nicer generated heading IDs
Thanks to alphapapa’s unpackaged.el.

By default, Org generated heading IDs like #org80f c2ab which ... works, but has two
issues

« It's completely uninformative, I have no idea what'’s being referenced

« If I export the same file, everything will change. Now, while without hardcoded
values it’s impossible to set references in stone, it would be nice for there to be a
decent chance of staying the same.

Both of these issues can be addressed by generating IDs like #language-configuration,
which is what I'll do here.

It's worth noting that alphapapa’s use of url-hexify-string seemed to cause me some
issues. Replacing that in a53899 resolved this for me. To go one step further, I create a
function for producing nice short links, like an inferior version of reftex-label.

(defvar org-reference-contraction-max-words 3
"Nazimum number of words in a reference reference.')

(defvar org-reference-contraction-max-length 35
"Mazimum length of resulting reference reference, including joining
< characters.")

(defvar org-reference-contraction-stripped-words
1 (cheﬂ HonH HinH Hoffﬂ |laH HforH HbyH HofH HandH ”iS” |lto|l |las|l)
"Superfluous words to be removed from a reference.')

(defvar org-reference-contraction-joining-char "-"

https://github.com/alphapapa/unpackaged.el#export-to-html-with-useful-anchors

LANGUAGE CONFIGURATION Org 220

"Character used to join words in the reference reference.")

(defun org-reference-contraction-truncate-words (words)
"Using " org-reference-contraction-maz-length ' as the total character 'budget '’
— for the WORDS

and truncate individual words to conform to this budget.

To arrive at a budget that accounts for words undershooting their requisite

— average length,

the number of characters in the budget freed by short words is distributed among
— the words

ecrceeding the average length. This adjusts the per-word budget to be the

— mazimum feasable for

this particular situation, rather than the universal mazimum average.

This budget-adjusted per-word mazimum length is given by the mathematical
— expression below:

maz length = \\floor{ \\frac{total length - chars for seperators - \\sum_{word
— \\leq average length} length(word) }{num(words) > average length} }"
;; trucate each word to a max word length determined by
(let* ((total-length-budget (- org-reference-contraction-max-length ; how
< many non-separator chars we can use
(1- (length words))))
(word-length-budget (/ total-length-budget ; max
— length of each word to keep within budget
org-reference-contraction-max-words))
(num-overlong (-count (lambda (word) ; how
— many words exceed that budget
(> (length word) word-length-budget))
words))
(total-short-length (-sum (mapcar (lambda (word) ; total
— length of words under that budget
(if (<= (length word)
< word-length-budget)
(length word) 0))
words)))
(max-length (/ (- total-length-budget total-short-length) H
— max(max-length) that we can have to fit within the budget
num-overlong)))
(mapcar (lambda (word)
(if (<= (length word) max-length)
word
(substring word O max-length)))
words)))

(defun org-reference-contraction (reference-string)

LANGUAGE CONFIGURATION Om 221

"Give a contracted form of REFERENCE-STRING that is only contains alphanumeric
— characters.
Strips ' joining ' words present in " org-reference-contraction-stripped-words ',
and then limits the result to the first "org-reference-contraction-maz-words '
— words.
If the total length ts > "org-reference-contraction-maz-length ' then individual
— words are
truncated to fit within the limit using
— “org-reference-contraction-truncate-words '."
(let ((reference-words
(cl-remove-if-not
(lambda (word)
(not (member word org-reference-contraction-stripped-words)))
(let ((str reference-string))
(setq str (downcase str))
(setq str (replace-regexp-in-string
< \NINNLCCTIANINNDNCETTANDNNINT Y N\ str)) 5 get
— description from org-link
(setq str (replace-regexp-in-string "[-/]+" " " str)) ; replace
— seperator-type chars with space
(setq str (puny-encode-string str))
(setq str (replace-regexp-in-string "~xn--\\(.*7\\)
— 7-7\\([a-z0-91+\\)$" "\\2 \\1" str)) ; rearrange punycode
(setq str (replace-regexp-in-string "["A-Za-z0-9]" "" str)) ; strip
< chars which need %-encoding in a uri
(split-string str " +")))))
(when (> (length reference-words)
org-reference-contraction-max-words)
(setq reference-words

(cl-subseq reference-words 0 org-reference-contraction-max-words)))

(when (> (apply #'+ (1- (length reference-words))
(mapcar #'length reference-words))
org-reference-contraction-max-length)
(setq reference-words (org-reference-contraction-truncate-words
< reference-words)))

(string-join reference-words org-reference-contraction-joining-char)))
Now here’s alphapapa’s subtly tweaked mode.

(define-minor-mode unpackaged/org-export-html-with-useful-ids-mode
"dttempt to export Org as HTHNL with useful link IDs.
Instead of random IDs like \'"#orgalb2c3\", use heading titles,
made unique when necessary."
:global t
(if unpackaged/org-export-html-with-useful-ids-mode

LANGUAGE CONFIGURATION Org 222

(advice-add #'org-export-get-reference :override
< #'unpackaged/org-export-get-reference)
(advice-remove #'org-export-get-reference
< #'unpackaged/org-export-get-reference)))
(unpackaged/org-export-html-with-useful-ids-mode 1) ; ensure enabled, and advice

— Irun

(defun unpackaged/org-export-get-reference (datum info)
"Like "org-export-get-reference ', except uses heading titles instead of random
< numbers."
(let ((cache (plist-get info :internal-references)))
(or (car (rassq datum cache))
(let* ((crossrefs (plist-get info :crossrefs))
(cells (org-export-search-cells datum))
;3 Preserve any pre-existing association between
;; a search cell and a reference, i.e., when some
;5 previously published document referenced a location
;3 within current file (see

;3 ~org-publish-resolve-external-link').

;; However, there is no guarantee that search cells are
;; unique, e.g., there might be duplicate custom ID or

;5 two headings with the same title in the file.

;5 As a consequence, before re-using any reference to
;; an element or object, we check that it doesn't refer
;3 to a previous element or object.
(new (or (cl-some
(lambda (cell)
(let ((stored (cdr (assoc cell crossrefs))))
(when stored
(let ((old (org-export-format-reference stored)))
(and (not (assoc old cache)) stored)))))
cells)
(when (org-element-property :raw-value datum)
;; Heading with a title
(unpackaged/org-export-new-named-reference datum
<> cache))
(wvhen (member (car datum) '(src-block table example
< fixed-width property-drawer))
;5 Nameable elements
(unpackaged/org-export-new-named-reference datum
< cache))
55 NOTE: This probably breaks some Org Export
;; feature, but if it does what I need, fine.
(org-export-format-reference
(org-export-new-reference cache))))
(reference-string new))

LANGUAGE CONFIGURATION Org 223

;3 Cache contains both data already associated to

;; a reference and in-use internal references, so as to make
;3 unique references.

(dolist (cell cells) (push (cons cell new) cache))

;; Retain a direct association between reference string and
;5 DATUM since (1) not every object or element can be given
;3 a search cell (2) it permits quick lookup.

(push (cons reference-string datum) cache)

(plist-put info :internal-references cache)
reference-string))))

(defun unpackaged/org-export-new-named-reference (datum cache)
"Return new reference for DATUN that is unique wn CACHE."
(cl-macrolet ((inc-suffixf (place)
" (progn
(string-match (rx bos
(minimal-match (group (1+ anything)))
(optional "--" (group (1+ digit)))
eos)
,place)
;5 HACK: “sl1' instead of a gensym.
(let* ((s1 (match-string 1 ,place))
(suffix-1 (match-string 2 ,place))
(suffix (if suffix-1 (string-to-number suffix-1)
— 0)))
(setf ,place (format "/s--%s" s1 (1+ suffix)))))))
(let* ((headline-p (eq (car datum) 'headline))
(title (if headline-p
(org-element-property :raw-value datum)
(or (org-element-property :name datum)
(concat (org-element-property :raw-value
(org-element-property
< :parent

— (org-element-property
< :parent
— datum)))))))
;5 get ascii-only form of title without needing percent-encoding
(ref (concat (org-reference-contraction (substring-no-properties
— title))
(unless (or headline-p (org-element-property :name
< datum))
(concat ","
(pcase (car datum)
('src-block "code')
('example '"example')
('fixed-width "mono')

('property-drawer "properties')

LANGUAGE CONFIGURATION Org 224

(_ (symbol-name (car datum))))
"--1"))))
(parent (when headline-p (org-element-property :parent datum))))
(wvhile (member ref (mapcar #'car cache))
;3 Title not unique: make it so.
(if parent
;; Append ancestor title.
(setf title (concat (org-element-property :raw-value parent)
"--" title)
;5 get ascii-only form of title without needing
— percent-encoding
ref (org-reference-contraction (substring-no-properties
— title))
parent (when headline-p (org-element-property :parent
<> parent)))
;3 No more ancestors: add and increment a number.
(inc-suffixf ref)))
ref)))

(add-hook 'org-load-hook #'unpackaged/org-export-html-with-useful-ids-mode)

We also need to redefine (org-export-format-reference) as it now may be passed a
string as well as a number.

(defadvice! org-export-format-reference-a (reference)
"Format REFERENCE into a string.

REFERENCE is a either a number or a string representing a reference,
as returned by " org-export-new-reference’.”
:override #'org-export-format-reference

(if (stringp reference) reference (format "orgl07x" reference)))

4. Strip zero width spaces

Zero width spaces are handy as a semantic separator, but not something we want passed
through to the exports.

(defun +org-export-remove-zero-width-space (text _backend _info)
"Remove zero width spaces from TEXT."
(unless (org-export-derived-backend-p 'org)
(replace-regexp-in-string "\u200B" "" text)))

(add-to-list 'org-export-filter-final-output-functions

< #'+org-export-remove-zero-width-space t)

5. Exporting Org code

With all our Org config and hooks, exporting an Org code block when using a font-lock
based method can produce undesirable results. To address this, we can tweak +org-babel-mode-alist

LANGUAGE CONFIGURATION Org 225

when exporting.

(defun +org-mode--fontlock-only-mode ()
"Just apply org-mode's font-lock once."
(let (org-mode-hook
org-hide-leading-stars
org-hide-emphasis-markers)
(org-set-font-lock-defaults)
(font-lock-ensure))
(setq-local major-mode #'fundamental-mode))

(defun +org-export-babel-mask-org-config (_backend)
"Use " +torg-mode--fontlock-only-mode ' instead of *org-mode'."
(setq-local org-src-lang-modes
(append org-src-lang-modes
(list (cons "org" #'+org-mode--fontlock-only)))))

(add-hook 'org-export-before-processing-hook
< #'+org-export-babel-mask-org-config)

5.3.6 HTML Export

Iwant to tweak a whole bunch of things. While I'll want my tweaks almost all the time, occasionally
I may want to test how something turns out using a more default config. With that in mind, a
global minor mode seems like the most appropriate architecture to use.

(define-minor-mode org-fancy-html-export-mode
"Toggle my fabulous org ezport tweaks. While this mode itself does a little bit,
the vast majority of the change in behaviour comes from switch statements <in:
- ‘org-html-template-fancier '
- ‘org-html--build-meta-info-extended '
- ‘org-html-src-block-collapsable '
- “org-html-block-collapsable '
- ‘org-html-table-wrapped '
- “org-html--format-toc-headline-colapseable '
- ‘org-html--toc-text-stripped-leaves '
- ‘org-exzport-html-headline-anchor '"
:global t
:init-value t
(if org-fancy-html-export-mode
(setq org-html-style-default org-html-style-fancy
org-html-meta-tags #'org-html-meta-tags-fancy
org-html-checkbox-type 'html-span)
(setq org-html-style-default org-html-style-plain
org-html-meta-tags #'org-html-meta-tags-default

LANGUAGE CONFIGURATION Om 226

org-html-checkbox-type 'html)))

1. Extra header content

We want to tack on a few more bits to the start of the body. Unfortunately, there doesn't
seem to be any nice variable or hook, so we'll just override the relevant function.

This is done to allow me to add the date and author to the page header, implement a
CSS-only light/dark theme toggle, and a sprinkle of Open Graph metadata.

(defadvice! org-html-template-fancier (orig-fn contents info)
"Return complete document string after HITML conversion.
CONTENTS @s the transcoded contents string. INF0O is a plist
holding ezport options. Adds a few exira things to the body
compared to the default implementation."
raround #'org-html-template
(if (or (not org-fancy-html-export-mode) (bound-and-true-p
< org-msg-export-in-progress))
(funcall orig-fn contents info)
(concat
(when (and (not (org-html-html5-p info)) (org-html-xhtml-p info))
(let* ((xml-declaration (plist-get info :html-xml-declaration))
(decl (or (and (stringp xml-declaration) xml-declaration)
(cdr (assoc (plist-get info :html-extension)
xml-declaration))
(cdr (assoc "html" xml-declaration))
D))
(wvhen (not (or (not decl) (string= "" decl)))
(format "Ys\n"
(format decl
(or (and org-html-coding-system
(fboundp 'coding-system-get)
(coding-system-get org-html-coding-system
<> 'mime-charset))
"is0-8859-1"))))))
(org-html-doctype info)
l|\n|l
(concat "<html"
(cond ((org-html-xhtml-p info)
(format
" xmlns=\"http://www.w3.o0rg/1999/xhtml\" lang=\"%s\"
— xml:lang=\"Vs\""
(plist-get info :language) (plist-get info :language)))
((org-html-html5-p info)
(format " lang=\"%s\"" (plist-get info :language))))
">\n")
"<head>\n"
(org-html--build-meta-info info)

https://ogp.me/

LANGUAGE CONFIGURATION Om

227

(org-html--build-head info)
(org-html--build-mathjax-config info)
"</head>\n"
"<body>\n<input type='checkbox' id='theme-switch'><div id='page'><label
< id='switch-label' for='theme-switch'></label>"
(let ((link-up (org-trim (plist-get info :html-link-up)))
(link-home (org-trim (plist-get info :html-link-home))))
(unless (and (string= link-up "") (string= link-home ""))
(format (plist-get info :html-home/up-format)
(or link-up link-home)
(or link-home link-up))))
;3 Preamble.
(org-html--build-pre/postamble 'preamble info)
;3 Document contents.
(let ((div (assq 'content (plist-get info :html-divs))))
(format "<%s id=\"%s\">\n" (nth 1 div) (nth 2 div)))
;5 Document title.
(when (plist-get info :with-title)
(let ((title (and (plist-get info :with-title)
(plist-get info :title)))
(subtitle (plist-get info :subtitle))
(html5-fancy (org-html--html5-fancy-p info)))
(when title
(format
(if html5-fancy
"<header class=\"page-header\">%s\n<hl
— class=\"title\">)s</h1>\n%s</header>"
"<hl class=\"title\">%s¥%s</h1>\n")
(if (or (plist-get info :with-date)
(plist-get info :with-author))
(concat "<div class=\"page-meta\">"
(when (plist-get info :with-date)
(org-export-data (plist-get info :date) info))
(wvhen (and (plist-get info :with-date) (plist-get info
< :with-author)) ", ")
(when (plist-get info :with-author)
(org-export-data (plist-get info :author) info))
"</div>\n")
")
(org-export-data title info)
(if subtitle
(format
(if htmlb-fancy
"<p class=\"subtitle\" role=\"doc-subtitle\">}s</p>\n"
(concat "\n" (org-html-close-tag "br" nil info) "\n"
"Y,s\n"))
(org-export-data subtitle info))
")

LANGUAGE CONFIGURATION Org 228

contents

(format "</%s>\n" (nth 1 (assq 'content (plist-get info :html-divs))))

;; Postamble.

(org-html--build-pre/postamble 'postamble info)

;; Possibly use the Klipse library live code blocks.

(when (plist-get info :html-klipsify-src)

(concat "<script>" (plist-get info :html-klipse-selection-script)

"</script><script src=\""
org-html-klipse-js
"\"></script><link rel=\"stylesheet\" type=\"text/css\" href=\""
org-html-klipse-css "\"/>"))

;5 Closing document.

"</div>\n</body>\n</html>")))

I think it would be nice if "Table of Contents" brought you back to the top of the page. Well,
since we've done this much advising already. ..

(defadvice! org-html-toc-linked (depth info &optional scope)
"Build a table of contents.

Just like “org-html-toc ', ewxcept the header is a link to |"#\".

DEPTH ©s an integer specifying the depth of the table. INFO is
a plist used as a communication channel. Optional argument SCOPE
25 an element defining the scope of the table. Return the table
of contents as a string, or nil if <t is empty."
:override #'org-html-toc
(let ((toc-entries
(mapcar (lambda (headline)
(cons (org-html--format-toc-headline headline info)
(org-export-get-relative-level headline info)))
(org-export-collect-headlines info depth scope))))
(when toc-entries
(let ((toc (concat "<div id=\"text-table-of-contents\">"
(org-html--toc-text toc-entries)
"</div>\n")))
(if scope toc
(let ((outer-tag (if (org-html--html5-fancy-p info)
"nav"
"div'")))
(concat (format "<¥%s id=\"table-of-contents\">\n" outer-tag)
(let ((top-level (plist-get info :html-toplevel-hlevel)))
(format "<hjd><a href=\"#\" style=\"color:inherit;
— text-decoration: nomne;\'">%s</h%d>\n"
top-level
(org-html--translate "Table of Contents" info)
top-level))
toc

LANGUAGE CONFIGURATION Org 229

(format "</%s>\n" outer-tag))))))))
Lastly, let’s pile on some metadata. This gives my pages nice embeds.

(defvar org-html-meta-tags-opengraph-image
'(:image "https://tecosaur.com/resources/org/nib.png"
:type "image/png"
:width "200"
:height "200"
:alt "Green fountain pen nib")
"Plist of og:image:PROP properties and their value, for use in
< “org-html-meta-tags-fancy '.")

(defun org-html-meta-tags-fancy (info)
"Use the INFO plist to construct the meta tags, as described in
— “org-html-meta-tags '."
(let* ((title (org-html-plain-text
(org-element-interpret-data (plist-get info :title)) info))
(author (and (plist-get info :with-author)
(let ((auth (plist-get info :author)))
55 Return raw Org syntax.
(and auth (org-html-plain-text
(org-element-interpret-data auth) info)))))
(author-first-last
(and (not (org-string-nw-p author))
(save-match-data
(if (string-match "\\"\\(.+7\\) +\\(.+?\\)\\'" author)
(cons (match-string 1 author)
(match-string 2 author))
(cons author nil))))))
(append
(list
(when (org-string-nw-p author)
(1ist "name" "author" author))
(when (org-string-nw-p (plist-get info :description))
(list "name" "description"
(plist-get info :description)))
' ("name" "generator" "org mode")
'("name" "theme-color" "#77aa99")
' ("property" "og:type
(list "property" "og:title" title)
(let ((subtitle (org-export-data (plist-get info :subtitle) info)))
(when (org-string-nw-p subtitle)

" M"article")

n . n

(list "property" "og:description" subtitle))))
(when org-html-meta-tags-opengraph-image
(list (list "property" "og:image" (plist-get

< org-html-meta-tags-opengraph-image :image))

LANGUAGE CONFIGURATION Org 230

(list "property" "og:image:type" (plist-get
<> org-html-meta-tags-opengraph-image :type))
(list "property" "og:image:width" (plist-get
<> org-html-meta-tags-opengraph-image :width))
(list "property" "og:image:height" (plist-get
< org-html-meta-tags-opengraph-image :height))
(list "property" "og:image:alt" (plist-get
< org-html-meta-tags-opengraph-image :alt))))
(list
(when (car author-first-last)
(list "property" "og:article:author:first_name" (car
< author-first-last)))
(when (cdr author-first-last)
(list "property" "og:article:author:last_name" (cdr author-first-last)))
(list "property" "og:article:published_time"
(format-time-string
"AFThThzZ"
(or
(when-let ((date-str (cadar (org-collect-keywords '("DATE")))))
(unless (string= date-str (format-time-string "/F"))
(ignore-errors (encode-time (org-parse-time-string
— date-str)))))
(if buffer-file-name
(file-attribute-modification-time (file-attributes
< buffer-file-name))
(current-time)))))
(when buffer-file-name
(list "property" "og:article:modified_time"
(format-time-string "/FT/T/z" (file-attribute-modification-time
< (file-attributes buffer-file-name)))))))))

(unless (functionp #'org-html-meta-tags-default)
(defalias 'org-html-meta-tags-default #'ignore))
(setq org-html-meta-tags #'org-html-meta-tags-fancy)

2. Custom CSS/JS

The default org HTML export is ... alright, but we can really jazz it up. lepisma.xyz has a

really nice style, and from and org export too! Suffice to say I've snatched it, with a few of
my own tweaks applied.

<link rel="icon" href="https://tecosaur.com/resources/org/nib.ico"
<~ type="image/ico" />

<link rel="preload" as="font" crossorigin="anonymous" type="font/woff2"
< href="https://tecosaur.com/resources/org/etbookot-roman-webfont.woff2">
<link rel="preload" as="font" crossorigin="anonymous" type="font/woff2"

< href="https://tecosaur.com/resources/org/etbookot-italic-webfont.woff2">

https://lepisma.xyz

LANGUAGE CONFIGURATION Om 231

<link rel="preload" as="font" crossorigin="anonymous" type="font/woff2"

— href="https://tecosaur.com/resources/org/Merriweather-TextRegular.woff2">
<link rel="preload" as="font" crossorigin="anonymous" type="font/woff2"

< href="https://tecosaur.com/resources/org/Merriwveather-TextItalic.woff2">
<link rel="preload" as="font" crossorigin="anonymous" type="font/woff2"

— href="https://tecosaur.com/resources/org/Merriweather-TextBold.woff2">

(setq org-html-style-plain org-html-style-default
org-html-htmlize-output-type 'css
org-html-doctype "html5"
org-html-html5-fancy t)

(defun org-html-reload-fancy-style ()
(interactive)
(setq org-html-style-fancy
(with-temp-buffer

(insert-file-contents (expand-file-name "misc/org-export-header.html"
<> doom-user-dir))
(goto-char (point-max))
(insert "<script>\n")
(insert-file-contents (expand-file-name "misc/org-css/main.js"
<> doom-user-dir))
(goto-char (point-max))
(insert "</script>\n<style>\n")
(insert-file-contents (expand-file-name "misc/org-css/main.min.css"
<> doom-user-dir))
(goto-char (point-max))
(insert "</style>")
(buffer-string)))

(when org-fancy-html-export-mode

(setq org-html-style-default org-html-style-fancy)))
(org-html-reload-fancy-style)

3. Collapsable src and example blocks

By wrapping the <pre> element in a <details> block, we can obtain collapsable blocks
with no CSS, though we will toss a little in anyway to have this looking somewhat spiffy.

Since this collapsability seems useful to have on by default for certain chunks of code, it
would be nice if you could set it with #+attr_html: :collapsed t.

It would be nice to also have a corresponding global / session-local way of setting this, but
I haven't quite been able to get that working (yet).

(defvar org-html-export-collapsed nil)
(eval '(cl-pushnew '(:collapsed "COLLAPSED" "collapsed"
< org-html-export-collapsed t)
(org-export-backend-options (org-export-get-backend 'html))))
(add-to-list 'org-default-properties "EXPORT_COLLAPSED")

LANGUAGE CONFIGURATION Org 232

We can take our src block modification a step further, and add a gutter on the side of the
src block containing both an anchor referencing the current block, and a button to copy
the content of the block.

(defadvice! org-html-src-block-collapsable (orig-fn src-block contents info)
"Wrap the usual <pre> block in a <details>"
raround #'org-html-src-block
(if (or (not org-fancy-html-export-mode) (bound-and-true-p
<> org-msg-export-in-progress))
(funcall orig-fn src-block contents info)
(let* ((properties (cadr src-block))
(lang (mode-name-to-lang-name
(plist-get properties :language)))
(name (plist-get properties :name))
(ref (org-export-get-reference src-block info))
(collapsed-p (member (or (org-export-read-attribute :attr_html
< src-block :collapsed)
(plist-get info :collapsed))
'("y" "yes" "t" t "true" "all"))))
(format
"<details id='Ys' class='code'’s><summary’s>}s</summary>
<div class='gutter'>
#
<button title='Copy to clipboard' onclick='copyPreToClipbord(this)'></button>\

</div>

hs

</details>"
ref
(if collapsed-p "" " open')
(if name " class='named'" "")
(concat

(wvhen name (concat "" name ""))
"" lang "")
ref
(if name
(replace-regexp-in-string (format "<pre\\(class=\"["\"J+\"\\)7?
— id=\"Us\">" ref) "<pre\\1>"
(funcall orig-fn src-block contents info))
(funcall orig-fn src-block contents info))))))

(defun mode-name-to-lang-name (mode)
(or (cadr (assoc mode
'(("asymptote" "Asymptote")

("awk" "Awk")

("c" "c")

("clojure" "Clojure")
("css" "CSS")

("D" "D")

LANGUAGE CONFIGURATION Om 233

("ditaa" "ditaa")

("dot" "Graphviz")
("calc" "Emacs Calc")
("emacs-1isp" "Emacs Lisp")
("fortran" "Fortran")
("gnuplot" "gnuplot")
("haskell" "Haskell")
("hledger" "hledger")
("java" "Java")

("js" "Javascript")
("latex" "LaTeX")
("ledger" "Ledger")
("lisp" "Lisp")
("lilypond" "Lilypond")
("lua" "Lua")

("matlab" "MATLAB")
("mscgen" "Mscgen")
("ocaml" "Objective Caml")
("octave'" "Octave")
("org" "Org mode")

("oz" "0Z")

("plantuml" "Plantuml")
("processing" "Processing.js")
("python" "Python")
(GRABURE))

("ruby" "Ruby")

("sass" "Sass")
("scheme" "Scheme")
("screen" "Gnu Screen")
("sed" "Sed")

("sh" "shell")

("sql" "SQL")

("sqlite" "SQLite")
("forth" "Forth")

("io" "IO")

(mJr nJv)

("makefile" "Makefile")
("maxima" "Maxima")
("perl" "Perl")
("picolisp" "Pico Lisp")
("scala" "Scala")
("shell" "Shell Script")
("ebnf2ps" "ebfn2ps")
("cpp" "C++")

("abc" "ABC")

("coq" "Coq")

("groovy" "Groovy")
("bash" "bash")

LANGUAGE CONFIGURATION Org 234

("CSh" "CSh")

("ash" "ash")

("dash" "dash")

("kSh” "kSh")

("mksh" "mksh")

("pOSh" "pOSh")

("ada" "Ada")

("asm" "Assembler'")

("caml" "Caml")

("delphi" "Delphi")

("html" ”HTML")

("idl" HIDLH)

("mercury" "Mercury")

("metapost" "MetaPost")

("modula-2" "Modula-2")

("pascal" "Pascal")

("ps" "PostScript")

("prolog" "Prolog")

("simula" "Simula')

("tcl" "tCl")

("tex" "LaTeX”)

("plain-tex" "TeX")

("verilog" "Verilog")

("Vhdl" ”VHDL")

("xml" "XML")

"Ilel" IIXMLH)

("conf" "Configuration File"))))

mode))

(defun org-html-block-collapsable (orig-fn block contents info)
"Wrap the usual block in a <details>"
(if (or (nmot org-fancy-html-export-mode) (bound-and-true-p
<> org-msg-export-in-progress))
(funcall orig-fn block contents info)
(let ((ref (org-export-get-reference block info))
(type (pcase (car block)
('property-drawer "Properties")))
(collapsed-default (pcase (car block)
('property-drawer t)
(_ nil)))
(collapsed-value (org-export-read-attribute :attr_html block
< :collapsed))
(collapsed-p (or (member (org-export-read-attribute :attr_html block
< :collapsed)
'("y" "yes" "t" t "true"))
(member (plist-get info :collapsed) '("all")))))
(format
"<details id='}s' class='code'/s>

LANGUAGE CONFIGURATION Oryg 235

<summarys>%s</summary>

<div class='gutter'>\

#

<button title='Copy to clipboard' onclick='copyPreToClipbord(this)'></button>\

</div>

hs\n

</details>"
ref
(if (or collapsed-p collapsed-default) "" " open")
(if type " class='named'" ny

(if type (format ")s" type) "")
ref
(funcall orig-fn block contents info)))))

(advice-add 'org-html-example-block :around #'org-html-block-collapsable)
(advice-add 'org-html-fixed-width :around #'org-html-block-collapsable)
(advice-add 'org-html-property-drawer :around #'org-html-block-collapsable)

4. Include extra font-locking in htmlize
Org uses htmlize.el to export buffers with syntax highlighting.

The works fantastically, for the most part. Minor modes that provide font-locking are not
loaded, and so do not impact the result.

By enabling these modes in htmlize-before-hook we can correct this behaviour.

(autoload #'highlight-numbers--turn-on "highlight-numbers")
(add-hook 'htmlize-before-hook #'highlight-numbers--turn-on)

5. Handle table overflow

In order to accommodate wide tables —particularly on mobile devices— we want to set a
maximum width and scroll overflow. Unfortunately, this cannot be applied directly to the
table element, so we have towrapitinadiv.

While we're at it, we can a link gutter, as we did with src blocks, and show the #+name, if
one is given.

(defadvice! org-html-table-wrapped (orig-fn table contents info)
"Wrap the usual <table> in a <div>"
:around #'org-html-table
(if (or (mot org-fancy-html-export-mode) (bound-and-true-p
<> org-msg-export-in-progress))
(funcall orig-fn table contents info)
(let* ((name (plist-get (cadr table) :name))
(ref (org-export-get-reference table info)))
(format "<div id='}s' class='table'>
<div class='gutter'>#</div>

https://github.com/hniksic/emacs-htmlize

LANGUAGE CONFIGURATION Oryg 236

<div class='tabular'>

%s

</div>\

</div>"
ref ref
(if name

(replace-regexp-in-string (format "<table id=\"Ys\"" ref)
"<table"
(funcall orig-fn table contents
— info))
(funcall orig-fn table contents info))))))

6. TOC as a collapsable tree

The TOC is much nicer to navigate as a collapsable tree. Unfortunately we cannot achieve
this with CSS alone. Thankfully we can avoid JS though, by adapting the TOC generation
code to use a label for each item, and a hidden checkbox to keep track of state.

To add this, we need to change one line in org-html-format-toc-headline.

Since we can actually accomplish the desired effect by adding advice around the function,
without overriding it — let’s do that to reduce the bug surface of this config a tad.

(defadvice! org-html--format-toc-headline-colapseable (orig-fn headline info)
"ddd a label and checkboxz to "~org-html--format-toc-headline 's usual output,
to allow the TOC to be a collapseable tree."
raround #'org-html--format-toc-headline
(if (or (not org-fancy-html-export-mode) (bound-and-true-p
<> org-msg-export-in-progress))
(funcall orig-fn headline info)
(let ((id (or (org-element-property :CUSTOM_ID headline)
(org-export-get-reference headline info))))
(format "<input type='checkbox' id='toc--%s'/><label
for="toc--%s'>%s</label>"
id id (funcall orig-fn headline info)))))

Now, leaves (headings with no children) shouldn't have the 1abel item. The obvious way to

achieve thisis by including some ifnochildren. .. logicinorg-html--format-toc-headline-colapseable.
Unfortunately, I can’t my elisp isn't up to par to extract the number of child headings from

the mountain of info that org provides.

(defadvice! org-html--toc-text-stripped-leaves (orig-fn toc-entries)
"Remove label"
raround #'org-html--toc-text
(if (or (not org-fancy-html-export-mode) (bound-and-true-p
< org-msg-export-in-progress))
(funcall orig-fn toc-entries)

lisp/org/lisp/ox-html.el

LANGUAGE CONFIGURATION Oryg 237

(replace-regexp-in-string "<input [~>]+><label [~>]+>\\(.+?\\)</label></1i>"
"\\1</1i>"

(funcall orig-fn toc-entries))))

7. Make verbatim different to code
Since we have verbatimand code, let’s make use of the difference.

We can use code exclusively for code snippets and commands like: "calling (message
"Hello") in batch-mode Emacs prints to stdout like echo". Then we can use verbatim
for miscellaneous 'other monospace’ like keyboard shortcuts: "either C-¢ C-c or C-g is
likely the most useful keybinding in Emacs”, or file names: "I keep my configuration in
~/.config/doom/", among other things.

Then, styling these two cases differently can help improve clarity in a document.

(setq org-html-text-markup-alist
'((bold . "%s")
(code . "<code>Ys</code>")
(italic . "<i>}s</i>")
(strike-through . "Ys")
(underline . "’s")
(verbatim . "<kbd>%s</kbd>")))

8. Change checkbox type

We also want to use HTML checkboxes, however we want to get a bit fancier than default

(appendq! org-html-checkbox-types
' ((html-span
(on . "")
(off . "")
(trans . ""))))
(setq org-html-checkbox-type 'html-span)

I'm yet to do this
= Work in progress
@ This is done
9. Extra special strings
The org-html-special-string-regexps variable defines substitutions for:
« \-, ashy hyphen
« —--,anemdash

« --,anendash

..., (horizontal) ellipses

LANGUAGE CONFIGURATION Oryg 238

However I think it would be nice if there was also a substitution for left/right arrows (->
and <-). This is a def const, but as you may tell from the amount of advice in this config,
I'm not above messing with things I'm not ’supposed’ to.

The only minor complication is that < and > are converted to &1t ; and > ; before this
stage of output processing.

(pushnew! org-html-special-string-regexps
'("->" . "→")
'("<-" . "←"))

10. Header anchors

I want to add GitHub-style links on hover for headings.

(defun org-export-html-headline-anchor (text backend info)
(when (and (org-export-derived-backend-p backend 'html)
(not (org-export-derived-backend-p backend 're-reveal))
org-fancy-html-export-mode)
(unless (bound-and-true-p org-msg-export-in-progress)
(replace-regexp-in-string
"<h\\ ([0-91\\) id=\"\\([a-z0-9-1+\\D\">\\(.*[~ I\\)<\\/h[0-9]>" ; this is
— quite restrictive, but due to “org-reference-contraction' I can do
this
"<h\\1 id=\"\\2\">\\3<a aria-hidden=\"true\" href=\"#\\2\"># </h\\1>"
text))))

(add-to-list 'org-export-filter-headline-functions
'org-export-html-headline-anchor)

11. Link previews

Sometimes it’s nice to make a link particularly prominent, an embed/preview like Twitter
does would be nice I think.

We can do this without too much trouble by adding a new link type ever so slightly different
from https —Https.

(org-link-set-parameters "Https"
:follow (lambda (url arg) (browse-url (concat "https:"
<~ url) arg))
texport #'org-url-fancy-export)

Then, if we can fetch a plist of the form (:title "..." :description "..." :image
"...") for such links via a function org-url-unfurl-metadata, we can make a fancy
export.

LANGUAGE CONFIGURATION Org 239

(defun org-url-fancy-export (url _desc backend)
(let ((metadata (org-url-unfurl-metadata (concat "https:" url))))
(cond
((org-export-derived-backend-p backend 'html)
(concat
"<div class=\"link-preview\">"
(format "" (concat "https:" url))
(when (plist-get metadata :image)
(format "" (plist-get metadata :image)))
"<small>"
(replace-regexp-in-string "//\\(7:www\\.\\) ?\\([~/T+\\) /7. %" "\\1" url)
"</small><p>"
(when (plist-get metadata :title)
(concat "" (org-html-encode-plain-text (plist-get metadata :title))
— "</br>"))
(when (plist-get metadata :description)
(org-html-encode-plain-text (plist-get metadata :description)))
"</p></div>"))
(t url))))

Now we just need to actually implement that metadata extraction function.

(setq org-url-unfurl-metadata--cache nil)
(defun org-url-unfurl-metadata (url)
(cdr (or (assoc url org-url-unfurl-metadata--cache)
(car (push
(cons
url
(let* ((head-data
(cl-remove-if-not
#'listp
(cdaddr
(with-current-buffer
(progn (message "Fetching metadata from J%s" url)
(if (executable-find "curl")
(with-current-buffer
< (generate-new-buffer " *curl*")
(call-process "curl" nil t nil
— "--max-time" "5" "-sSL" url)
(current-buffer))
(url-retrieve-synchronously url t t
— 5)))
(goto-char (point-min))
(delete-region (point-min) (- (search-forward
< "<head") 6))
(delete-region (search-forward "</head>")
< (point-max))

(goto-char (point-min))

LANGUAGE CONFIGURATION Om 240

(vhile (re-search-forward
— "<script[~\u2800]+?7</script>" nil t)
(replace-match "'"))
(goto-char (point-min))
(wvhile (re-search-forward
— "<style[~\u2800]+7</style>" nil t)
(replace-match ""))
(libxml-parse-html-region (point-min)
< (point-max))))))
(meta (delq nil
(mapcar
(lambda (tag)
(wvhen (eq 'meta (car tag))
(cons (or (cdr (assoc 'name (cadr
— tag)))
(cdr (assoc 'property (cadr
— tag))))
(cdr (assoc 'content (cadr
= tag))))))
head-data))))
(let ((title (or (cdr (assoc "og:title" meta))
(cdr (assoc "twitter:title" meta))
(nth 2 (assq 'title head-data))))
(description (or (cdr (assoc "og:description" meta))
(cdr (assoc "twitter:description"
<~ meta))
(cdr (assoc "description" meta))))
(image (or (cdr (assoc "og:image' meta))
(cdr (assoc "twitter:image" meta)))))
(when image
(setq image (replace-regexp-in-string
"~/" (concat "https://"
<> (replace-regexp-in-string
= "//ANC~/TR\N\N) /7% "\\1" url) "/")
(replace-regexp-in-string
"~//" "https://"
image))))
(list :title title :description description :image
< image))))
org-url-unfurl-metadata--cache)))))

12. KTEX Rendering

a) Pre-rendered

I consider dvisvgm to be a rather compelling option. However this isn't scaled very
well at the moment.

;3 (setq-default org-html-with-latex ~dvisvgm)

LANGUAGE CONFIGURATION Om 241

b) MathJax

I want to use svg MathJax by default, and with a few of the custom commands that
are part of my IATEX preamble.

(setcdr (assoc 'path org-html-mathjax-options)
(list "https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-svg.js"))

(setq org-html-mathjax-template

"<script>
window.MathJax = {
loader: {
load: ['[tex]/mathtools'],
Fg
tex: {
ams: {
multlineWidth: 'MULTLINEWIDTH'
Fo

tags: 'ATAGS',
tagSide: 'JTAGSIDE',
tagIndent: '}, TAGINDENT',
packages: {'[+]': ['mathtools']},
macros: {
RR: ['\\\\ifstrempty{#1}{\\\\mathbb{R}}{\\\\mathbb{R}~{#1}}', 1,

T [-]\i\\ifstrempty{#1}{\\\\mathbb{N}}{\\\\mathbb{wr{#1}}-, 1,
- [']\i\\ifstrempty{#1}{\\\\mathbb{Z}}{\\\\mathbb{Z}‘{#1}}', 1,
03: ['1<\\ifstrempty{#1}{\\\\mathbb{Q}}{\\\\mathbb{Q}"{#1}}', 1,
- [-]\i\\ifstrempty{#1}{\\\\mathbb{c}}{\\\\mathbb{cr{#1}}-, 1,
o,

EE: '\\\\mathbb{E}',
Lap: '\\\\operatorname{\\\\mathcal{L}}',
Var: '\\\\operatorname{Var}',
Cor: '\\\\operatorname{Cor}',
E: '"\\\\operatorname{E}',
Fo
mathtools: {
pairedDelimiters: {
abs: ['\\\\lvert', '\\\\rvert'],
norm: ['\\\\1Vert', '\\\\rVert'],
ceil: ['\\\\lceil', '\\\\rceil'],
floor: ['\\\\1lfloor', '\\\\rfloor'],
round: ['\\\\1floor', '\\\\rceil'],

LANGUAGE CONFIGURATION Oryg 242

I

chtml: {
scale: %SCALE,
displayAlign: '%ALIGN',
displayIndent: '} INDENT'

g

svg: {
scale: %SCALE,
displayAlign: '%ALIGN',
displayIndent: '} INDENT'

g

output: {
font: 'J,FONT',
displayOverflow: 'J/0OVERFLOW'

}

};
</script>

<script
id=\"MathJax-script\"
async
src=\"%PATH\">
</script>")

5.3.7 KTX Export

1. Compiling

By default Org uses pdflatex x 3 + bibtex. This simply won't do in our modern world.
latexmk +biber (whichisused automatically with 1atexmk)is a simply superior combination.

;3 org-latex-compilers = ("pdflatex" "xelatex" "lualatex"), which are the
possible values for %latex

(setq org-latex-pdf-process '("LC_ALL=en_US.UTF-8 latexmk -f -pdf -%latex
-shell-escape -interaction=nonstopmode -output-directory=jo %f"))

While org-latex-pdf-process does support a function, and we could use that instead,
this would no longer use the log buffer — it’s a bit blind, you give it the file name and
expect it to do its thing.

The default values of org-latex-compilers is given in commented form to see how
org-latex-pdf-process works with them.

While the -%1atex above is slightly hacky (-pdf1atex expects to be given a value) it allows
us to leave org-latex-compilers unmodified. This is nice in case I open an org file that
uses #+LATEX_COMPILER for example, it should still work.

LANGUAGE CONFIGURATION Org 243

2.. Nicer checkboxes

We'll assume that thanks to the clever preamble the various custom \ checkbox . . . commands
below are defined.

(defun +org-export-latex-fancy-item-checkboxes (text backend info)
(when (org-export-derived-backend-p backend 'latex)
(replace-regexp-in-string
"\\\\dtem\\ [{E\\ NN AN\ w+\\) SN
(lambda (fullmatch)
(concat "\\\\item[" (pcase (substring fullmatch 9 -3) ; content of
— capture group
("square" "\\\\checkboxUnchecked")
("boxminus" "\\\\checkboxTransitive")
("boxtimes" "\\\\checkboxChecked")
(_ (substring fullmatch 9 -3))) "I1"))
text)))

(add-to-list 'org-export-filter-item-functions
'+org-export-latex-fancy-item-checkboxes)

3. Class templates

I really like the KOMA bundle. It provides a set of mechanisms to tweak document styling
which is both easy to use, and quite comprehensive. For example, I rather like section
numbers in the margin, which can be accomplished with

\renewcommand\sectionformat{\1lap{\thesection\autodot\enskipl}}
\renewcommand\subsectionformat{\1llap{\thesubsection\autodot\enskip}}
\renewcommand\subsubsectionformat{\1llap{\thesubsubsection\autodot\enskipl}}

It can also be nice to have big \chapters.

\RedeclareSectionCommand [afterindent=false, beforeskip=Opt, afterskip=0Opt,
< innerskip=Opt]{chapter}
\setkomafont{chapter}{\normalfont\Huge}
\renewcommand*{\chapterheadstartvskip}{\vspace*x{0\baselineskipl}}
\renewcommand*{\chapterheadendvskip}{\vspace*{0\baselineskip}}
\renewcommand*{\chapterformat}{/
\fontsize{60}{30}\selectfont\rlap{\hspace{6pt}\thechapter}}
\renewcommand*\chapterlinesformat [3]{/
\parbox [b]{\dimexpr\textwidth-0.5em\relax}{/
\raggedleft{{\large\scshape\bfseries\chapapp}\vspace{-0.5ex}\par\Huge#3}}/
\hfill\makebox [Opt] [1]{#2}}

Now let’s just sprinkle some KOMA all over the Org ITgX classes.

LANGUAGE CONFIGURATION Org 244

(after! ox-latex

(let* ((article-sections '(("\\section{’s}" . "\\section*{s}")
("\\subsection{/s}" . "\\subsection*{}s}")
("\\subsubsection{’s}" . "\\subsubsection*{%s}")
("\\paragraph{/%s}" . "\\paragraph*{/s}")
("\\subparagraph{/s}" . "\\subparagraph*{/s}")))
(book-sections (append '(("\\chapter{/s}" . "\\chapter*{/s}"))

article-sections))
(hanging-secnum-preamble <<grab("latex-hanging-secnum")>>)
(big-chap-preamble <<grab("latex-big-chapter")>>))
(setcdr (assoc "article" org-latex-classes)
*(, (concat "\\documentclass{scrartcl}" hanging-secnum-preamble)
,@article-sections))
(add-to-list 'org-latex-classes
“("report" ,(concat "\\documentclass{scrartcl}"
<> hanging-secnum-preamble)
,@article-sections))
(add-to-list 'org-latex-classes
* ("book" ,(concat "\\documentclass[twoside=false]{scrbook}"
big-chap-preamble hanging-secnum-preamble)
,@book-sections))
(add-to-list 'org-latex-classes
" ("blank" " [NO-DEFAULT-PACKAGES]\n[NO-PACKAGES] \n[EXTRA]"
,@article-sections))
(add-to-1list 'org-latex-classes
* ("bmc-article"
< "\\documentclass[article,code,maths]{bmc}\n[NO-DEFAULT-PACKAGES]\n[NO-PACKAGES]\
,@article-sections))
(add-to-1list 'org-latex-classes
* ("bmc"
— "\\documentclass[code,maths]{bmc}\n[NO-DEFAULT-PACKAGES] \n[NO-PACKAGES]\n[EXTRA]
,@book-sections))))

(setq org-latex-tables-booktabs t
org-latex-hyperref-template
<<grab("latex-fancy-hyperref")>>

org-latex-reference-command "\\cref{}s}")
The hyperref setup needs to be handled separately however.

\providecolor{url}{HTML}{0077bb}
\providecolor{1link}{HTML}{882255}
\providecolor{cite}{HTML}{999933}
\hypersetup{
pdfauthor={%a},
pdftitle={/t},
pdfkeywords={/k},
pdfsubject={%d},

LANGUAGE CONFIGURATION Oryg 245

pdfcreator={/cl},
pdflang={/L},
breaklinks=true,
colorlinks=true,
linkcolor=1link,

urlcolor=url,

citecolor=cite

}

\urlstyle{same}

4. A cleverer preamble

a) Use case

b)

We often want particular snippets of KTgX in our documents preambles. It’s a pain
to have to work out / remember them every time.

We could have every package we could possibly need in every one of org-latex-classes,
but that’s horribly inefficient and I don’t want to think about maintaining that.

Instead we can provide some granularity by splitting up the features we want, and
then take the experience to a whole new level by implementing a system to automatically
detect which features are desired and generating a preamble that provides these
features.

Conditional Content
Let’s consider content we want in particular situations.
Captions could do with a bit of tweaking such that

« You can easily have multiple captions

« Links to figures take you to the top of the figure (not the bottom)

« Caption labels could do with being emphasised slightly more

« Multiline captions should run ragged-right, but only when then span more than

one line

\usepackage{subcaption}

\usepackage [hypcap=true]{caption}
\setkomafont{caption}{\sffamily\small}
\setkomafont{captionlabel}{\upshape\bfseries}
\captionsetup{justification=raggedright,singlelinecheck=true}
\usepackage{capt-of} ’ required by Org

The default checkboxes look rather ugly, so let’s provide some prettier alternatives.

\newcommand{\checkboxUnchecked}{\square}

LANGUAGE CONFIGURATION Org 246

\newcommand{\checkboxTransitive}{\rlap{\raisebox{-0.1ex}{\hspace{0.35ex}\Large\textbf
— -}}\square}
\newcommand{\checkboxChecked}{\rlap{\raisebox{0.2ex}{\hspace{0.35ex}\scriptsize

< \ding{52}}}\square}

We set up a maths typesetting preamble later on, but it would be nice to save it to a
variable here:

(defvar org-latex-maths-preamble
<<grab("latex-maths-conveniences")>>

"Preamble that sets up a bunch of mathematical conveniences.")

It’s nice to have "message blocks", things like info/warning/error/success. A KTEX
macro should make them trivial to create.

\ExplSyntaxOn
\NewCoffin\SBXBaseline
\NewCoffin\SBXHeader
\NewCoffin\SBXContent
\NewCoffin\SBXSideRule
\newbox\SBXSplitBox
\cs_new_protected:Nn \simplebox_start:nnn {
% #1 ding, #3 name, #4 label
\vcoffin_set:Nnn \SBXHeader { \linewidth - lem } {
\noindent\textcolor{#2}{#1}~\textcolor{#2}{\textbf{#3}}}
\vcoffin_set:Nnw \SBXContent { \linewidth - 1.5em }
}
\cs_new_protected:Nn \simplebox_split_content:n {
% #1 name
\setbox\SBXSplitBox = \vbox:n { \vbox_unpack_drop:N \SBXContent }
\dim_set:Nn \1_tmpa_dim { \dim_eval:n { \dim_min:nn { \pagegoal } {
< \textheight } - \pagetotal - 2\baselineskip } }
\setbox0 = \vsplit\SBXSplitBox to \l_tmpa_dim
\vcoffin_set:Nnn \SBXContent { \CoffinWidth \SBXContent } { \box0 %
\vspace{-1.7\baselineskip}
\noindent\textcolor{#1}{\textbf{\1ldots }}
\vspace*{-0.3\baselineskip}}
}
\cs_new_protected:Nn \simplebox_split_refill:nnnn {
% #1 ding, #2 ding offset, #3 name, #4 label
\simplebox_start:nnn {#1} {#3} {#4,\space{}\emph{continued}}
\vspace#*{-0.2\baselineskip}
\vbox_unpack_drop:N \SBXSplitBox
\vcoffin_set_end:
}
\cs_new_protected:Nn \simplebox_typeset:nn {
% #1 name, #2 ding offset
\vcoffin_set:Nnn \SBXBaseline {Opt} {\vbox{}}

LANGUAGE CONFIGURATION Org 247

}

\SetHorizontalCoffin\SBXSideRule{\color{#1}\rule{1pt}{\dim_eval:n {

— \CoffinTotalHeight\SBXContent + \baselineskip }}}
\JoinCoffins*\SBXContent [1,t]\SBXSideRule[1l,t] (\dim_eval:n {#2 - 1lem},
<> \dim_eval:n{\baselineskip - 0.5em})

\JoinCoffins*\SBXContent [1,t]\SBXHeader[1,B] (-1em, 0.5\baselineskip)
\JoinCoffins*\SBXBaseline[1,T]\SBXContent[1,T]
\vspace{-0.5\baselineskip}
\noindent\TypesetCoffin\SBXBaseline (\dim_eval:n { lem - #2 + 1pt I},

— Opt)

\vspace*{\CoffinTotalHeight\SBXContent}

\vspace{-0.08em} % Why on earth is this needed for baseline alignment!?

\cs_new_protected:Nn \simplebox_typeset_breakable:nnnn {

}

% #1 ding, #2 ding offset, #3 name, #4 label
\dim_set:Nn \1_tmpa_dim {\dim_eval:n { \CoffinTotalHeight\SBXContent +
< \baselineskip }}
\dim_set:Nn \1_tmpb_dim { \dim_eval:n { \dim_min:nn { \pagegoal } {
< \textheight } - \pagetotal - \baselineskip } }
\dim_compare:nNnTF {\1_tmpa_dim} > {\1_tmpb_dim} {
\simplebox_split_content:n {#3}
\simplebox_typeset:nn {#3} {#2}
\newpage
\simplebox_split_refill:nnnn {#1} {#2} {#3} {#4}
\simplebox_typeset_breakable:nnnn {#1} {#2} {#3} {#4}
H
\simplebox_typeset:nn {#3} {#2}
}

\NewDocumentCommand{\defsimplebox}{0{\ding{117}} 0{0.35em} O{#1} 0{#2} m m
— m}{

}

% #1 ding, #2 ding offset, #3 alt-ding, #4 alt-ding offset,
% #5 name, #6 colour, #7 default label
\definecolor{#5}{HTML}{#6}

\NewDocumentEnvironment{#5}{ 0{#7} }{

\simplebox_start:nnn {#1} {#5} {##1}

H

\vcoffin_set_end:
\simplebox_typeset_breakable:nnnn {#3} {#4} {#5} {##1}

}

\ExplSyntax0ff

Lastly, we will pass this content into some global variables we for ease of access.

(defvar org-latex-embed-files-preamble

<<grab("org-latex-embed-files-preamble")>>

"Preamble that embeds files within the pdf.")

LANGUAGE CONFIGURATION Om 248

(defvar org-latex-caption-preamble
<<grab("org-latex-caption-preamble")>>
"Preamble that improves captions.")

(defvar org-latex-checkbox-preamble
<<grab("org-latex-checkbox-preamble")>>
"Preamble that improves checkboxes.")

(defvar org-latex-box-preamble
<<grab("org-latex-box-preamble")>>
"Preamble that provides a macro for custom boxes.")

In the "universal preamble”, we already embed the source . org file, but it would be
nice to embed all the tangled files. This is fairly easy to accomplish by mapping each
tangled file to a form which embeds the file if it exists. Considering we're going this
far, why not add a dedicated #+emded keyword, so we can embed whatever we want.

(defun org-latex-embed-extra-files ()
"Return a string that uses embedfile to embed all tangled files."
(mapconcat
(lambda (file-desc)
(format "\\IfFileExists{%1$s}{\\embedfile[desc=}2$s]{/%1$s}}{}"
(thread-last (car file-desc)
(replace-regexp-in-string "\\\\" "\\\\\\\\")
(replace-regexp-in-string "~" "\\\\string™"))
(cdr file-desc)))
(append
(let (tangle-fspecs) ; All files being tangled to.
(org-element-cache-map
(lambda (src)
(when (and (not (org-in-commented-heading-p nil src))
(not (org-in-archived-heading-p nil src)))
(when-let ((lang (org-element-property :language src))
(params
(apply
#'org-babel-merge-params
(append
(org-with-point-at (org-element-property :begin
< src)
(org-babel-params-from-properties lang t))
(mapcar
(lambda (h)
(org-babel-parse-header-arguments h t))
(cons (org-element-property :parameters src)
(org-element-property :header src))))))
(tangle-value
(pcase (alist-get :tangle params)

LANGUAGE CONFIGURATION Oryg 249

)

((and (pred stringp) (pred (string-match-p
"~(.*%)$")) expr)
(eval (zread expr)))
(val val)))
(tangle-file
(pcase tangle-value
((or "no" (guard (member (alist-get :export-embed
< params) '("no" "nil"))))
nil)
("yes"
(file-name-with-extension
(file-name-nondirectory (buffer-file-name))
(or (alist-get lang org-babel-tangle-lang-exts
< nil nil #'equal)
lang)))
(val val))))
(unless (assoc tangle-file tangle-fspecs)
(push
(cons tangle-file (format "Tangled s file" lang))
tangle-fspecs)))))
:granularity 'element
:restrict-elements '(src-block))
(nreverse tangle-fspecs))
(let (extra-files)
(save-excursion
(goto-char (point-min))
(wvhile (re-search-forward "~ [\t]#*#\\+embed:" nil t)
(let* ((file-desc (split-string (org-element-property :value
— (org-element-at-point)) " :desc\\(7:ription\\)? ")))
(push (cons (car file-desc) (or (cdr file-desc) "Extra file"))
extra-files))))
(nreverse extra-files)))

" \nH))
Now all tangled files will be embedded, and we can embed arbitrary files like so:
#+embed: some-file :description flavour text about the file

This currently won't complete or anything like that, as we haven't told Org thatit’s a
keyword yet. It's also KTEX-specific, so maybe it should be changed to #+1atex_embed
or something like that.

Content-feature-preamble association

Initially this idea was implemented with an alist that associated a construct that
would search the current Org file for an indication that some feature was needed,
with a KTEX snippet to be inserted in the preamble which would provide that feature.
This is all well and good when there is a bijection between detected features and the
KTEX code needed to support those features, but in many cases this relation is not

LANGUAGE CONFIGURATION Oryg 250

injective.

To better model the reality of the situation, I add an extra layer to this process where
each detected feature gives a list of required "feature flags". Simply be merging the
lists of feature flags we no longer have to require injectivity to avoid KTEX duplication.
Then the extra layer forms a bijection between there feature flags and a specification
which can be used to implement the feature.

This model also provides a number of nice secondary benefits, such as a simple
implementation of feature dependency.

file:*.svg svg (TeX) svg
file:*.jpeg
file:*.png image (TeX) graphicx
xked:*
caption (TeX) caption
#+caption

Figure 5.1: Association between Org features, feature flags, and IATEX snippets required.

First we will implement the feature detection component of this model. I'd like this
to be able to use as much state information as possible, so the feature tests should be
very versatile.

(defvar org-latex-embed-files t
"Embed the source .org, .tex, and any tangled files.")
(defvar org-latex-use-microtype t
"Use the microtype pakage.")
(defvar org-latex-italic-quotes t
"Nake \"quote\" enviromments italic.")
(defvar org-latex-par-sep t

"Vertically seperate paragraphs, and remove indentation.')

(org-export-update-features 'latex
((image caption)
:condition "\\[\\[xkcd:"))

Then we provide a way to generate the preamble that provides those features. In
addition to the features named in org-latex-conditional-features well also
create meta-features, which can be required by other features (with :requires). For

LANGUAGE CONFIGURATION Oryg 251

further control I some features may only be used when certain other features are
active (with :when), and masked by other features (with :prevents). I will use
the convention of starting meta-features with ., to make their nature more readily
apparent.

Another consideration in KTgX is load order, which matters in some cases. Beyond
that, it's nice to have some sort of sensible ordering. For this I'll introduce an : order
keyword. Using this I'll arrange snippets as follows.

« 0 Typography

0 Fonts themselves

0.1 Typographic tweaks (microtype)

0.2 Maths setup
0.3 Maths font

0.4 Extra text shaping (\acr)

0.5-0.9 Miscellaneous text modifications, trying to put shorter snippets
first

1 (default)
2 Tables and figures

3 Miscellaneous short content

4 Fancy boxes

70 setup for non-precompilable content

+ 80 non-precompileable content

(org-export-update-features 'latex
(maths
:snippet org-latex-maths-preamble
:order 0.2)
(cleveref
:condition "cref:\\|\\cref{\\|\\[\\L[["\\I+\n? [~\\I\\I\\1"
:snippet "\\usepackage[capitalize]{cleveref}
% Fix for cleveref in order to work with long range of pages
% See https://tex.stackexchange.com/a/620066
\\makeatletter
\\newcommand*{\\@setcpagerefrange} [3]{%
\\@@setcpagerefrange{#1}{#2}{cref}{#3}}
\\newcommand*{\\@setCpagerefrange} [3]{/
\\@@setcpagerefrange{#1}{#2}{Cref}{#3}}
\\newcommand*{\\@setlabelcpagerefrange} [3]{%
\\@@setcpagerefrange{#1}{#2}{labelcref}{#3}}
\\makeatother"

LANGUAGE CONFIGURATION Org 252

torder 1)
(caption
:snippet org-latex-caption-preamble
rorder 2.1)
(microtype
:condition org-latex-use-microtype
:snippet
— "\\usepackage [activate={true,nocompatibility},final,tracking=true,kerning=true,spacing=tz
:order 0.1)
(embed-files
:condition org-latex-embed-files
:snippet "\\usepackage[include]{embedall}"
:order 70)
(embed-source
:condition t
:when embed-files
:snippet "\\IfFileExists{./\\jobname.org}{\\embedfile[desc=Primary
— source file]{\\jobname.org}}{}
\\IfFileExists{./\\jobname.tex}{\\embedfile [desc=The (generated) LaTeX
— source file]{\\jobname.tex}}{}"
:no-precompile t
:after embed-files
:order 80)
(embed-tangled
:condition (and org-latex-embed-files
"~ [\t]##\\+embed\\|~[\tI*#\\+begin_src\\|~[
< \t]*#\\+BEGIN_SRC")
:requires embed-files
:snippet (org-latex-embed-extra-files)
:no-precompile t
:after (embed-source embed-files)
:order 80)
(acronym
:condition "[;\\\\]1?\\b[A-Z][A-Z]+s?[~A-Za-z]"
:snippet "\\newcommand{\\acr}[1]1{\\protect\\textls*[110]{\\scshape
— #1}}\n\\newcommand{\\acrs}{\\protect\\scalebox{.91}[.84]{\\hspace{0.15ex}s}}"
:order 0.4)
(box-drawing
:condition "[\u2500-\u259F]"
:snippet "\\usepackage{pmboxdraw}"
:order 0.05)
(italic-quotes
:condition (and org-latex-italic-quotes "~[
— \t]*#\\+begin_quote\\[\\\\begin{quote}")
:snippet
— "\\renewcommand{\\quote}{\\list{}{\\rightmargin\\leftmargin}\\item\\relax\\em}\n"
:order 0.5)
(par-sep

LANGUAGE CONFIGURATION Om 253

:condition org-latex-par-sep
:snippet
— "\\setlength{\\parskip}{\\baselineskip}\n\\setlength{\\parindent}{Opt}"
:order 0.5)
(.pifont
:snippet "\\usepackage{pifontl}")
(.xcoffins
:snippet "\\usepackage{xcoffins}")
(checkbox
:condition "~[\tI*\\(?:[-+*]\\|[0-9]1+[.)I\\|[A-Za-z]+[.)I\\) \\[LL
= -XI\\1"
:requires .pifont
:snippet (concat (unless (memq 'maths features)
"\\usepackage{amssymb} % provides \\square")
org-latex-checkbox-preamble)
:after .pifont)
(.fancy-box
:requires (.pifont .xcoffins)
:snippet org-latex-box-preamble
:after (.pifont .xcoffins))
(box-warning
:condition "~[\t]*#\\+begin_warning\\|\\\\begin{warning}"
:requires .fancy-box
:snippet "\\defsimplebox{warning}{e66100}{Warning}"
:after .fancy-box)
(box-info
:condition "~ [\t]*#\\+begin_info\\|\\\\begin{infol}"
:requires .fancy-box
:snippet "\\defsimplebox{info}{3584e4}{Information}"
:after .fancy-box)
(box-notes
:condition "~ [\t]#*#\\+begin_notes\\|\\\\begin{notes}"
:requires .fancy-box
:snippet "\\defsimplebox{notes}{26a269}{Notes}"
:after .fancy-box)
(box-success
:condition "~ [\t]#*#\\+begin_success\\|\\\\begin{success}"
:requires .fancy-box
:snippet "\\defsimplebox{success}{26a269}{\\vspace{-\\baselineskip}}"
:after .fancy-box)
(box-error
:condition "~ [\t]*#\\+begin_error\\|\\\\begin{error}"
:requires .fancy-box
:snippet "\\defsimplebox{error}{c01c28}{Important}"
:after .fancy-box)
(hanging-section-numbers
:condition
(let ((latex-class

LANGUAGE CONFIGURATION Org 254

(assoc (plist-get info :latex-class) (plist-get info
< :latex-classes))))
(and (cadr latex-class)
(string-match-p "\\"\\\\documentclass\\(?:\\[.*\\1\\) ?{scr" (cadr
< latex-class))
(not (string-match-p "[[,]twocolumn[],]" (or (plist-get info
< :latex-class-options) "")))))
:snippet
"\\renewcommand\\sectionformat{\\1lap{\\thesection\\autodot\\enskip}}
\\renewcommand\ \subsectionformat{\\1llap{\\thesubsection\\autodot\\enskipl}}
\\renewcommand\ \subsubsectionformat{\\1llap{\\thesubsubsection\\autodot\\enskip}}")
(toc-hidelinks
:condition
(or (plist-get info :with-toc)
(save-excursion
(goto-char (point-min))
(re-search-forward "\\tableofcontents" nil t)))
:snippet "%% hide links styles in toc
\\NewCommandCopy{\\oldtoc}{\\tableofcontents}
\\renewcommand{\\tableofcontents}{\\begingroup\\hypersetup{hidelinks}\\oldtoc\\endgroup}"))

d) Content-feature graph

(with-temp-buffer
(let ((lambda-count 0)
(regexp-count 0)
(string-count 0)
(nil-count 0)
cond-names feats impl-names)
(dolist (cond-feats (org-export-get-all-feature-conditions (intern
<> backend)))
(dolist (feat (cdr cond-feats))
(let ((cond-name
(pcase (car cond-feats)
((and (pred symbolp) f)
(symbol-name f))
((and (pred stringp) f)
(format "Regexp #)d" (cl-incf regexp-count)))
((and (pred functiomp) f)
(format " #)d" (cl-incf lambda-count)))
(_ "?2272"))))

(push cond-name cond-names)

(push feat feats)

(insert (format "\"%s\" -> \"%s\"\n" cond-name feat)))))
(dolist (feat-impl (org-export-get-all-feature-implementations (intern
< backend)))

(let ((impl-name
(pcase (plist-get (cdr feat-impl) :snippet)

LANGUAGE CONFIGURATION Org 255

((pred not)
(format "nil #%d" (cl-incf nil-count)))
((and (pred symbolp) imp)
(symbol-name imp))
((pred stringp)
(format "String #)d" (cl-incf string-count)))
((pred functionp)
(format " #d" (cl-incf lambda-count))))))
(push impl-name impl-names)
(push (car feat-impl) feats)
(insert (format "\"7s\" -> \"%s\"\n" (car feat-impl) impl-name))
(dolist (req (ensure-list (plist-get (cdr feat-impl) :requires)))
(insert (format "\"%s\" -> \"%s\" [color=\"#a991f1\"
< labelfontcolor=\"#a991f1\"]" impl-name req)))
(dolist (prv (ensure-list (plist-get (cdr feat-impl) :prevents)))
(insert (format "\"%s\" -> \"%s\" [color=\"#ff665c\"
— penwidth=\"0.9\" arrowhead=emptyl]" impl-name prv)))
(dolist (whn (ensure-list (plist-get (cdr feat-impl) :when)))
(insert (format "\"’s\" -> \"%s\" [style=\"dashed\"
< color=\"#4db5bd\" penwidth=\"0.9\" arrowhead=empty
< labelfontcolor=\"#4db5bd\" taillabel=\"%s\"]" whn impl-name
<> impl-name)))
(dolist (bfr (ensure-list (plist-get (cdr feat-impl) :before)))
(insert (format "\"’s\" -> \"%s\" [style=\"dotted\"
< color=\"#fcce7b\" penwidth=\"1.4\" arrowhead=halfopen]"
< impl-name bfr)))
(dolist (afr (ensure-list (plist-get (cdr feat-impl) :after)))
(insert (format "\"%s\" -> \"%s\" [style=\"dotted\"
s color=\"#7bc275\" penwidth=\"1.4\" arrowhead=halfopen]" afr
< impl-name)))))
(goto-char (point-min))
(insert (concat "subgraph cluster_O {\n peripheries=0\n \""
(string-join (nreverse cond-names) "\"
< [color=\"#e69055\"]\n \"")
"\" [color=\"#e69055\"]\n}\n")
(concat "subgraph cluster_1 {\n peripheries=0\n \""
(string-join (mapcar #'symbol-name (nreverse
<> (delete-dups feats))) "\"\n \"")
"\"\n}\n")
(concat "subgraph cluster_2 {\n peripheries=0\n \""
(string-join (nreverse impl-names) "\"
< [color=\"#4db5bd\"I\n \"")
"\" [color=\"#4db5bd\"]\n}\n"))
)
(buffer-string))

digraph {
graph [bgcolor="transparent", ranksep="2.5"];

LANGUAGE CONFIGURATION Oryg 256

node [shape="underline" penwidth="2" style="rounded,filled"

«— fillcolor="#efefef" color="#c9c9c9" fontcolor="#000000"

< fontname="Alegreya Sans"];

edge [color="#9ca0a4" penwidth="1.2" fontname="Alegreya Sans"]
rankdir="LR"

<<generate-cfg("beamer")>>

e) Adding xcolor as an unconditional package

xcolor is just convenient to have.

(setq org-latex-packages-alist
I((HH "ycolor" t)))

5. Font collections

Using the lovely conditional preamble, I'll define a number of font collections that can be
used for KTEX exports. Who knows, maybe I'll use it with other export formats too at some
point.

To start with I'll create a default state variable and register fontset as part of #+options.

(defvar org-latex-default-fontset 'alegreya

"Fontset from "org-latez-fontsets ' to use by default.
4s cm (computer modern) is TeX's default, that causes nothing
to be added to the document.

If \"nil\" no custom fonts will ever be used.")

(eval '(cl-pushnew '(:latex-font-set nil "fontset" org-latex-default-fontset)
(org-export-backend-options (org-export-get-backend
— 'latex))))

Then a function is needed to generate a IKTEX snippet which applies the fontset. It would be
nice if this could be done for individual styles and use different styles as the main document
font. If the individual typefaces for a fontset are defined individually as : serif, :sans,
:mono, and :maths. I can use those to generate IKTEX for subsets of the full fontset. Then,
if I don't let any fontset names have - in them, I can use -sans and -mono as suffixes that
specify the document font to use.

(defun org-latex-fontset-entry ()
"Get the fontset spec of the current file.
Has format \'"name\" or \|"name-style\"” where 'name' is ome of
the cars in " org-latez-fontsets '."
(let ((fontset-spec
(symbol-name

LANGUAGE CONFIGURATION Org 257

(or (car (delq nil
(mapcar
(lambda (opt-line)
(plist-get (org-export--parse-option-keyword
< opt-line 'latex)
:latex-font-set))
(cdar (org-collect-keywords '("OPTIONS"))))))
org-latex-default-fontset))))
(cons (intern (car (split-string fontset-spec "-")))
(when (cadr (split-string fontset-spec "-"))
(intern (concat ":" (cadr (split-string fontset-spec "-"))))))))

(defun org-latex-fontset (&rest desired-styles)
"Generate a LaTeX preamble snippet which applies the current fontset for
— DESIRED-STYLES."
(let* ((fontset-spec (org-latex-fontset-entry))
(fontset (alist-get (car fontset-spec) org-latex-fontsets)))
(if fontset
(string-trim
(concat
(mapconcat
(lambda (style)
(when (plist-get fontset style)
(concat (plist-get fontset style) "\n")))
desired-styles
)
(when (memq (cdr fontset-spec) desired-styles)
(pcase (cdr fontset-spec)
(:serif "\\renewcommand{\\familydefault}{\\rmdefault}\n")
(:sans "\\renewcommand{\\familydefault}{\\sfdefault}\n")
(:mono "\\renewcommand{\\familydefault}{\\ttdefault}\n")))))
(error "Font-set s is not provided in org-latex-fontsets" (car
— fontset-spec)))))

Now that all the functionality has been implemented, we should hook it into our preamble
generation.

(org-export-update-features 'latex
(custom-font
:condition org-latex-default-fontset
:snippet (org-latex-fontset :serif :sans :mono)
:order 0)
(custom-maths-font
:condition t
:when (custom-font maths)
:snippet (org-latex-fontset :maths)
:after (custom-font maths)
:order 0))

LANGUAGE CONFIGURATION Org 258

Finally, we just need to add some fonts.

(defvar org-latex-fontsets
'((cm nil) ; computer modern
(## nil) ; no font set
(alegreya
:serif "\\usepackage[osf]{Alegreyal}"
:sans "\\usepackage{AlegreyaSans}"
:mono "\\usepackage[scale=0.88]{sourcecodepro}"
:maths "\\let\\Bbbk\\relax\n\\usepackage[varbb] {newpxmathl}")
(biolinum
:serif "\\usepackage[osf]{libertineRoman}"
:sans "\\usepackage[sfdefault,osf]{biolinum}"
:mono "\\usepackage[scale=0.88]{sourcecodepro}"
:maths "\\usepackage[libertine,varvw]{newtxmath}")
(fira
:sans "\\usepackage[sfdefault,scale=0.85]{FiraSans}"
:mono "\\usepackage[scale=0.80]{FiraMono}"
:maths "\\usepackage{newtxsf}) change to firamath in future?")
(kp
:serif "\\usepackage{kpfonts}")
(newpx
:serif "\\usepackage{newpxtextl}"
:sans "\\usepackage{gillius}"
:mono "\\usepackage[scale=0.9]{sourcecodepro}"
:maths "\\let\\Bbbk\\relax\n\\usepackage [varbb] {newpxmathl}")
(noto
:serif "\\usepackage[osf]{noto-serif}"
:sans "\\usepackage[osf]{noto-sans}"
:mono "\\usepackage[scale=0.96]{noto-mono}"
:maths "\\usepackage{notomathl}")
(plex
:serif "\\usepackage{plex-serif}"
:sans "\\usepackage{plex-sans}"
:mono "\\usepackage[scale=0.95]{plex-mono}"
:maths "\\usepackage{newtxmath}") ; may be plex-based in future
(source
:serif "\\usepackage [osf,semibold]{sourceserifpro}"
:sans "\\usepackage[osf,semibold] {sourcesanspro}"
:mono "\\usepackage[scale=0.92]{sourcecodepro}"
:maths "\\usepackage{newtxmath}") ; may be sourceserifpro-based in future
(times
:serif "\\usepackage{newtxtextl}"
:maths "\\usepackage{newtxmath}"))
"dlist of fontset specifications.
Each car ts the name of the fontset (which cannot include \|"-\").

Each cdr is a plist with (optional) keys :serif, :sans, :momo, and :maths.

LANGUAGE CONFIGURATION Org 259

4 key's walue is a LaTeX snippet which loads such a font.")

When we're using Alegreya we can apply a lovely little tweak to tabular which (locally)
changes the figures used to lining fixed-width.

(org-export-update-features 'latex
(alegreya-typeface
:condition (string= (car (org-latex-fontset-entry)) "alegreya')
:snippet nil)
(alegreya-tabular-figures
:condition t
:when (alegreya-typeface table)
:snippet "\
\\makeatletter
% tabular lining figures in tables
\\renewcommand{\\tabular}{\\AlegreyaTLF\\let\\@halignto\\@empty\\@tabular}
\\makeatother"
:after custom-font
:order 0.5))

Due to Alegreya’s metrics, the \LaTeX symbol doesn’t quite look right. We can correct for
this by redefining it with subtlety shifted kerning.

(org-export-update-features 'latex
(alegreya-latex-symbol
:condition "LaTeX"
:when alegreya-typeface
:snippet "\
\\makeatletter
% Kerning around the A needs adjusting
\\DeclareRobustCommand{\\LaTeX}{L\\kern-.24em},
{\\sbox\\z@ T/
\\vbox to\\ht\\z@{\\hbox{\\check@mathfonts
\\fontsize\\sf@size\\z0
\\math@fontsfalse\\selectfont
A},
\\vss}i
Y
\\kern-.10em},
\\TeXx}
\\makeatother"
:after alegreya-typeface
:order 0.5))

6. Maths notation conveniences Maths has a way of popping up relentlessly. I think this says
something both about me and the subject itself. While the KTEX set of commands is quite
reasonable, we can make a few common bits of notation a tad more convenient.

a) Packages

LANGUAGE CONFIGURATION Om 260

First, there are a few useful packages we want to use.

%% Maths-related packages

% More maths environments, commands, and symbols.
\usepackage{amsmath, amssymb}

% Slanted fractions with \sfrac{a}{b}, in text and maths.
\usepackage{xfrac}

% Visually cancel expressions with \cancel{value} and

< \cancelto{expression}{value}

\usepackage [makeroom] {cancel}

% Improvements on amsmath and utilities for mathematical typesetting
\usepackage{mathtools}

b) Custom delimiters

Next up we want to make the various types of rounding-related and absolute value
delimitors accessible as commands.

% Deliminators
\DeclarePairedDelimiter{\abs}{\1lvert}{\rvert}
\DeclarePairedDelimiter{\norm}{\1Vert}{\rVert}

\DeclarePairedDelimiter{\ceil}{\1lceil}{\rceil}
\DeclarePairedDelimiter{\floor}{\1floor}{\rfloor}
\DeclarePairedDelimiter{\round}{\1floor}{\rceil}

¢) Number sets

Then we have the various common number sets, it would be nice to have a convenient
way of typing them and optionally giving them powers. It’s fairly easy to support
both \XX and \XX [n].

\newcommand{\RR} [1] [1{\ensuremath{\ifstrempty{#1}{\mathbb{R}}{\mathbb{R}~{#1}}}}
< % Real numbers

\newcommand{\NN} [1] [J{\ensuremath{\ifstrempty{#1}{\mathbb{N}}{\mathbb{N}~{#1}}}}
< % Natural numbers

\newcommand{\ZZ}[1] [1{\ensuremath{\ifstrempty{#1}{\mathbb{Z}}{\mathbb{Z}~{#1}}}}
< % Integer numbers

\newcommand{\QQ} [1] [1{\ensuremath{\ifstrempty{#1}{\mathbb{Q}}{\mathbb{Q}~{#1}}}}
< % Rational numbers

\newcommand{\CC}[1] [1{\ensuremath{\ifstrempty{#1}{\mathbb{C}}{\mathbb{C}~{#1}}}}
< % Complex numbers

d) Derivatives

Derivatives are actually a bit of a pain to typeset, it would be nice to have a \dv
command that supports:

« \dv{x} for the derivative with respect to x

LANGUAGE CONFIGURATION Om 261

« \dv{f}{x} for the derivative of £ with respect to x

« \dv[2]1{f}{x} for the second order derivative of £ with respect to x

Similarly, it would be nice to have a partial derivate counterpart \pdv which behaves
in a similar way, but with the possibility of providing multiple comma-delimited
variables —e.g. \pdv{f}{x,y,z}.

% Easy derivatives
\ProvideDocumentCommand\dv{o m g}{’%
\IfNoValueTF{#3}{%
\dv [#1]{}{#2}}{/
\IfNoValueTF{#1}{/
\frac{\dd #2}{\dd #3}/
H\frac{\dd[#1]1 #2}{\dd {#3}~{#1}}}}}
% Easy partial derivatives
\ExplSyntaxOn
\ProvideDocumentCommand\pdv{o m g}{%
\IfNoValueTF{#3}{\pdv [#1]1{}{#2}}
{\ifnum\clist_count:n{#3}<2
\IfValueTF{#1}{\frac{\partial~{#1} #2}{\partial {#3}~{#1}}}/
{\frac{\partial #2}{\partial #3}}
\else
\frac{\IfValueTF{#1}{\partial~{#1}}{\partial~{\clist_count:n{#3}}}#2}/
{\clist_map_inline:nn{#3}{\partial ##1 \,}\'}
\fi}}
\ExplSyntax0ff

e) Common operators

The default set of operators could benefit from a bit of expansion.

% Laplacian
\DeclareMathOperator{\Lap}{\mathcal{L}}

% Statistics

\DeclareMathOperator{\Var}{Var} J varience
\DeclareMathOperator{\Cov}{Cov} % covarience
\newcommand{\EE}{\ensuremath{\mathbb{E}}} % expected value
\DeclareMathOperator{\E}{E} /, expected value

f) Slanted inequalities

As a matter of personal taste, I prefer the slanted less/greater than or equal to
operators, and would like to use them by default.

% I prefer the slanted \leq/\geq
\let\barleq\leq % Save them in case they're every wanted
\let\bargeq\geq

LANGUAGE CONFIGURATION Oryg 262

\renewcommand{\leq}{\legslant}
\renewcommand{\geq}{\gegslant}

g) Alignment of matrix columns

By default, everything in a matrix is centred, which I actually find often undesirable.
Itwould be much nicer to take the alignment as an optional argument of the environment,
and default to right-alignment.

% Redefine the matrix environment to allow for alignment

% via an optional argument, and use r as the default.

\makeatletter

\renewcommand*\env@matrix[1] [r]{\hskip -\arraycolsep/
\let\@ifnextchar\new@ifnextchar
\array{*\c@MaxMatrixCols #1}}

\makeatother

h) Slanted derivative "d"

Determining an appropriate styling for a derivative "d" (e.g. "dx") is surprisingly hard,
as the "d" is neither:

« An operator (which are typeset as upright roman)

« Avariable (which are typeset as italic roman)

The ISO 80000-2 standard (2009) specifies that it should be upright, however (a) it
is still not an operator, (b) not used in any maths book I've seen, and (c) doesn’t look
very good. I'm not entirely comfortable with the variable styling either though, so
perhaps something else is in order?

After trying a few different options, I rather like the idea of using a slanted roman "d".
This stylistically works for me, while being just distinct enough from other faces. As
long as we are creating a PDF, we can apply a transform that slants a "d".

% Slanted roman "d" for derivatives
\ifcsname pdfoutput\endcsname
\ifnum\pdfoutput>0 % PDF
\newsavebox\diffdbox{}
\newcommand{\slantedromand}{{\mathpalette\makes1{d}}}
\newcommand{\makes1} [2] {%
\begingroup
\sbox{\diffdbox}{$\mathsurround=0pt#1\mathrm{#2}$}/
\pdfsave,
\pdfsetmatrix{l 0 0.2 1}J
\rlap{\usebox{\diffdbox}1}/
\pdfrestore,
\hskip\wd\diffdbox’
\endgroup}

LANGUAGE CONFIGURATION Oryg 263

\else % DVI
\newcommand{\slantedromand}{d} % fallback
\fi
\else J Also DVI
\newcommand{\slantedromand}{d} % fallback
\fi

Now there’s the matter of placing the "d", or rather adjusting the space around it. After
much fiddling, I've ended up with the following.

% Derivative d"n, nicely spaced

\makeatletter

\newcommand{\dd} [1] []{\mathop{}\!%
\expandafter\ifx\expandafter&\detokenize{#1}&) \ifstrempty from etoolbox

\slantedromand\@ifnextchar~{\hspace{0.2ex}}{\hspace{0.1ex}}
\else

\slantedromand\hspace{0.2ex}~{#1}
\fi}
\makeatother

While \dd isn't much effort to type, it would be much cleaner to be able to do . The
problem with defining \d is that it is already used for the under-dot accent. However,
since this is a text-mode (only) accent, and defined with instead of we can redefine
the command to mean \dd in math-mode.

\NewCommandCopy{\daccent}{\d}
\renewcommand{\d}{\ifmmode\dd\else\daccent\fi}

7. Cover page

To make a nice cover page, a simple method that comes to mind isjust redefining \maketitle.
To get precise control over the positioning we'll use the tikz package, and then add in

the Tikz libraries calc and shapes.geometric to make some nice decorations for the
background.

I'll start off by setting up the required additions to the preamble. This will accomplish the
following:

« Load the required packages

+ Redefine \maketitle

« Draw an Org icon with Tikz to use in the cover page (it’s a little easter egg)

« Start a new page after the table of contents by redefining \tableofcontents
\usepackage{tikz}

\usetikzlibrary{shapes.geometric}
\usetikzlibrary{calc}

LANGUAGE CONFIGURATION Org 264

\newsavebox\orgicon
\begin{lrbox}{\orgicon}
\begin{tikzpicture}[y=0.80pt, x=0.80pt, inner sep=Opt, outer sep=Opt]
\path[fill=black'!6] (16.15,24.00) .. controls (15.58,24.00) and
— (13.99,20.69) .. (12.77,18.06)arc(215.55:180.20:2.19) .. controls
(12.33,19.91) and (11.27,19.09) .. (11.43,18.05) .. controls

< (11.36,18.09) and (10.17,17.83) .. (10.17,17.82) .. controls
— (9.94,18.75) and (9.37,19.44) .. (9.02,18.39) .. controls (8.32,16.72)
, and (8.14,15.40) .. (9.13,13.80) .. controls (8.22,9.74) and (2.18,7.75)
< (2.81,4.47) .. controls (2.99,4.47) and (4.45,0.99) .. (9.15,2.41)
<> controls (14.71,3.99) and (17.77,0.30) .. (18.13,0.04) .. controls
< (18.65,-0.49) and (16.78,4.61) .. (12.83,6.90) .. controls (10.49,8.18)
— and (11.96,10.38) .. (12.12,11.15) .. controls (12.12,11.15) and
— (14.00,9.84) .. (15.36,11.85) .. controls (16.58,11.53) and
<~ (17.40,12.07) .. (18.46,11.69) .. controls (19.10,11.41) and
— (21.79,11.58) .. (20.79,13.08) .. controls (20.79,13.08) and
< (21.71,13.90) .. (21.80,13.99) .. controls (21.97,14.75) and
< (21.59,14.91) .. (21.47,15.12) .. controls (21.44,15.60) and
— (21.04,15.79) .. (20.55,15.44) .. controls (19.45,15.64) and
<~ (18.36,15.55) .. (17.83,15.59) .. controls (16.65,15.76) and
< (15.67,16.38) .. (15.67,16.38) .. controls (15.40,17.19) and
— (14.82,17.01) .. (14.09,17.32) .. controls (14.70,18.69) and
— (14.76,19.32) .. (15.50,21.32) .. controls (15.76,22.37) and
— (16.54,24.00) .. (16.15,24.00) -- cycle(7.83,16.74) .. controls
<~ (6.83,15.71) and (5.72,15.70) .. (4.05,15.42) .. controls (2.75,15.19)
< and (0.39,12.97) .. (0.02,10.68) .. controls (-0.02,10.07) and
- (-0.06,8.50) .. (0.45,7.18) .. controls (0.94,6.05) and (1.27,5.45)
< (2.29,4.85) .. controls (1.41,8.02) and (7.59,10.18) .. (8.55,13.80) --
— (8.55,13.80) .. controls (7.73,15.00) and (7.80,15.64) .. (7.83,16.74)
— -- cycle;
\end{tikzpicture}
\end{1lrbox}
\makeatletter

\g@addto@macro\tableofcontents{\clearpage}
\renewcommand\maketitle{
\thispagestyle{empty}
\hyphenpenalty=10000 7 hyphens look bad in titles
\renewcommand{\baselinestretch}{1.1}
\NewCommandCopy{\oldtoday}{\today}
\renewcommand{\today}{\LARGE\number\year\\\large/,
\ifcase \month \or Jan\or Feb\or Mar\or Apr\or May \or Jun\or Jullor Aug\or
< Sep\or Dct\or Nov\or Dec\fi
“\number\day}
\begin{tikzpicture} [remember picture,overlay]
%% Background Polygons %%
\foreach \i in {2.5,...,22} % bottom left

LANGUAGE CONFIGURATION Org 265

{\node[rounded corners,black!3.5,draw,regular polygon,regular polygon
< sides=6, minimum size=\i cm,ultra thick] at ($(current
< page.west)+(2.5,-4.2)$) {X ;}
\foreach \i in {0.5,...,22} % top left
{\node[rounded corners,black!5,draw,regular polygon,regular polygon sides=6,
< minimum size=\i cm,ultra thick] at ($(current page.north west)+(2.5,2)$)
= {3 ;3
\node [rounded corners,fill=black!4,regular polygon,regular polygon sides=6,
< minimum size=5.5 cm,ultra thick] at ($(current page.north
— west)+(2.5,2)$) {};
\foreach \i in {0.5,...,24} % top right
{\node[rounded corners,black!2,draw,regular polygon,regular polygon sides=6,
<~ minimum size=\i cm,ultra thick] at ($(current page.north
— east)+(0,-8.5)%) {} ;}
\node [fill=black!3,rounded cormners,regular polygon,regular polygon sides=6,
< minimum size=2.5 cm,ultra thick] at ($(current page.north
— east)+(0,-8.5)$) {I};
\foreach \i in {21,...,3} % bottom right
{\node[black!3,rounded corners,draw,regular polygon,regular polygon sides=6,
<~ minimum size=\i cm,ultra thick] at ($(current page.south
— east)+(-1.5,0.75)$%) {} ;}
\node[fill=black!3,rounded corners,regular polygon,regular polygon sides=6,
— minimum size=2 cm,ultra thick] at ($(current page.south
— east)+(-1.5,0.75)%) {};
\node [align=center, scale=1.4] at ($(current page.south east)+(-1.5,0.75)$)
< {\usebox\orgicon};
Wh Text hh
\node[left, align=right, black, text width=0.8\paperwidth, minimum
< height=3cm, rounded corners,font=\Huge\bfseries] at ($(current
< page.north east)+(-2,-8.5)$)
{\etitle};
\node[left, align=right, black, text width=0.8\paperwidth, minimum
< height=2cm, rounded corners, font=\Large] at ($(current page.north
- east)+(-2,-11.8)9%)
{\scshape \Qauthorl};
\renewcommand{\baselinestretch}{0.75}
\node [align=center,rounded corners,fill=black!3,text=black,regular
< polygon,regular polygon sides=6, minimum size=2.5 cm,inner sep=0,
— font=\Large\bfseries] at ($(current page.west)+(2.5,-4.2)%)
{\edate};

\end{tikzpicture}

\let\today\oldtoday

\clearpage}

\makeatother

Now we've got a nice cover page to work with, we just need to use it every now and then.
Adding this to #+options feels most appropriate. Let’s have the coverpage option accept
auto as a value and then decide whether or not a cover page should be used based on the

LANGUAGE CONFIGURATION Org 266

word count — I'll have this be the global default. Then we just want to insert a IKTEX snippet
tweak the subtitle format to use the cover page.

(defvar org-latex-cover-page 'auto

"When t, use a cover page by default.
When auto, use a cover page when the document's wordcount exceeds
‘org-latex-cover-page-wordcount-threshold '.

Set with #toption: coverpage:{yes,auto,no} in org buffers.")
(defvar org-latex-cover-page-wordcount-threshold 5000
"Document word count at which a cover page will be used automatically.
This condition %s applied when cover page option %is set to auto.")
(defvar org-latex-subtitle-coverpage-format
= "\\\\\\bigskip\n\\LARGE\\mdseries\\itshape\\color{black!80} %s\\par"
"Variant of org-latez-subtitle-format ' to use with the cover page.')
(defvar org-latex-cover-page-maketitle
<<grab("latex-cover-page")>>
"LaTeX preamble snippet that sets \\maketitle to produce a cover page.")

(eval '(cl-pushnew '(:latex-cover-page nil "coverpage'" org-latex-cover-page)
(org-export-backend-options (org-export-get-backend
— 'latex))))

(defun org-latex-cover-page-p ()
"Whether a cover page should be used when exporting this Org file."
(pcase (or (car
(delq nil
(mapcar
(lambda (opt-line)
(plist-get (org-export--parse-option-keyword opt-line
< 'latex) :latex-cover-page))
(cdar (org-collect-keywords '("OPTIONS"))))))
org-latex-cover-page)
((or 't 'yes) t)
('auto (when (> (count-words (point-min) (point-max))
< org-latex-cover-page-wordcount-threshold) t))

(_ nil)))

(defadvice! org-latex-set-coverpage-subtitle-format-a (contents info)
"Set the subtitle format when a cover page is being used.'
:before #'org-latex-template
(when (org-latex-cover-page-p)
(setf info (plist-put info :latex-subtitle-format
<> org-latex-subtitle-coverpage-format))))

(org-export-update-features 'latex
(cover-page

:condition (org-latex-cover-page-p)

LANGUAGE CONFIGURATION Oryg 267

8.

10.

:snippet org-latex-cover-page-maketitle
:order 9))

Condensed lists

IATEX is generally pretty good by default, but it’s really generous with how much space it
puts between list items by default. I'm generally not a fan.

Thankfully this is easy to correct with a small snippet:

\newcommand{\setuplistspacing}{\setlength{\itemsep}{-0.5ex}\setlength{\parskip}{1.5ex}\setlength{\par
\let\olditem\itemize\renewcommand{\itemize}{\olditem\setuplistspacing}
\let\oldenum\enumerate\renewcommand{\enumerate}{\oldenum\setuplistspacing}

\let\olddesc\description\renewcommand{\description}{\olddesc\setuplistspacing}
Then we can just hook this in with our clever preamble.

(defvar org-latex-condense-lists t
"Reduce the space between list items.")
(defvar org-latex-condensed-lists
<<grab("latex-condense-lists")>>
"LaTeX preamble snippet that reduces the space between list items.")

(org-export-update-features 'latex
(condensed-lists
:condition (and org-latex-condense-lists "~[\tl*[-+]\\|~[\tl*[1Aal[.)] ")
:snippet org-latex-condensed-lists
:order 0.7))

. Upright parentheses in italic text

TODO, see https://tex.stackexchange.com/a/13057/167605
Pretty code blocks

We could just use minted for syntax highlighting — however, we can do better! The
engrave-faces package lets us use Emacs’ font-lock for syntax highlighting, exporting
that as KTgX commands.

(package! engrave-faces :recipe (:local-repo "lisp/engrave-faces"))

(use-package! engrave-faces-latex

:after ox-latex)
Using this as in KTgX exports is now as easy as

(setq org-latex-listings 'engraved
org-latex-engraved-theme 'doom-one-light)

Onelittle annoyance with this is the interaction between microtype and Verbat imenvironments.

https://tex.stackexchange.com/a/13057/167605

LANGUAGE CONFIGURATION Oryg 268

Protrusion is not desirable here. Thankfully, we can patch the Verbat im environment to
turn off protrusion locally.

(org-export-update-features 'latex
(no-protrusion-in-code
:condition t
:when (microtype engraved-code)
:snippet "\\ifcsname Code\\endcsname\n
\\1let\\oldcode\\Code\\renewcommand{\\Code}{\\microtypesetup{protrusion=false}\\oldcode}\n\\fi"
:after (engraved-code microtype)))

At some point it would be nice to make the box colours easily customisable. At the moment
it's fairly easy to change the syntax highlighting colours with (setq engrave-faces-preset-styles
(engrave-faces-generate-preset)), but perhaps a toggle which specifies whether to
use the default values, the current theme, or any named theme could be a good idea. It
should also possible to set the box background dynamically to match. The named theme
could work by looking for a style definition with a certain name in a cache dir, and then
switching to that theme and producing (and saving) the style definition if it doesn't exist.

Now let’s have the example block be styled similarly.

(defadvice! org-latex-example-block-engraved (orig-fn example-block contents
info)
"Like "org-latez-example-block ', but supporting an engraved backend"
:around #'org-latex-example-block
(let ((output-block (funcall orig-fn example-block contents info)))
(if (eq 'engraved (plist-get info :latex-listings))
(format "\\begin{Code}[alt]\n%s\n\\end{Code}" output-block)
output-block)))

In addition to the vastly superior visual output, this should also be much faster to compile
for code-heavy documents (like this config).

Performing a little benchmark with this document, I find that this is indeed the case.

KTEX syntax highlighting backend Compile time Overhead Overhead ratio

verbatim 128 0 0.0
Istlistings 15s 3s 0.2
Engrave 34s 22's 1.8
Pygments (Minted) 184 s 172's 14.3

Treating the verbatim (no syntax highlighting) result as a baseline; this rudimentary test
suggest that engrave-faces is around eight times faster than pygments, and takes three
times as long as no syntax highlighting (verbatim).

11. Julia code blocks

LANGUAGE CONFIGURATION Org 269

Julia code has fantastic support for unicode! The downside is that pdflatex is still a pain
to use with unicode symbols. The solution — lualatex. Now we just need to make it
automatic

(defadvice! org-latex-pick-compiler (_contents info)
:before #'org-latex-template
:before #'org-beamer-template
(vhen (and (memq 'code (plist-get info :features))
(memg 'julia-code (plist-get info :features))
(save-excursion
(goto-char (point-min))
(re-search-forward "[~\x00-\x7F\u200b]l" nil t)))
(setf info (plist-put
(if (member #'+org-latex-replace-non-ascii-chars (plist-get info
— :filter-final-output))
(plist-put info :filter-final-output
(delq #'+org-latex-replace-non-ascii-chars
< (plist-get info :filter-final-output)))
info)
:latex-compiler "lualatex"))))

Then a font with unicode support must be used. JuliaMono is the obvious choice, and we
can use it with the fontspec package. In future it may be nice to set this just as a fallback
font (when it isn't a pain to do so).

\ifcsname directlua\endcsname
\usepackage{fontspec}

< \newfontfamily\JuliaMono{JuliaMono-Regular.ttf}[Path=/usr/share/fonts/truetype/,
— Extension=.ttf]
\newfontface\JuliaMonoRegular{JuliaMono-Regular}
\setmonofont{JuliaMonoRegular} [Contextuals=Alternate, Scale=MatchLowercasel
\fi

Now all that remains is to hook this into the preamble generation.

(defvar org-latex-julia-mono-fontspec
<<grab("julia-mono-fontspec")>>
"LaTeX preamble snippet that sets LualaTeX's fontspec to use Julia Mono.")

(org-export-update-features 'latex
(julia-code
:condition "~ [\t]*#\\+begin_src julia\\|~[\t]*#\\+BEGIN_SRC
— julia\\|src_julia"
:when code
:snippet org-latex-julia-mono-fontspec
:after custom-font

:order 0)

LANGUAGE CONFIGURATION Oryg 270

(microtype-lualatex

:condition t

:when (microtype julia-code)

:prevents microtype

:snippet

"\\usepackage [activate={true,nocompatibility},final,tracking=true,factor=2000]{microtype}\n"

:order 0.1)

(custom-font-no-mono

:condition t

:when julia-code

:prevents custom-font

:snippet (org-latex-fontset :serif :sans)
:order 0))

12. Emojis

It would be nice to actually include emojis where used. Thanks to emojify, we have a
folder of emoji images just sitting and waiting to be used <.

First up, we want to detect when emojis are actually present. Manually constructing a
regex for this would be a huge pain with the way the codepoints are scattered around, but
thanks to char-script-table we don't have to!

(defvar org-latex-emoji--rx
(let (emojis)
(map-char-table
(lambda (char set)
(when (eq set 'emoji)
(push (copy-tree char) emojis)))
char-script-table)
(rx-to-string ~(any ,Q@emojis)))

"4 regezp to find all emoji-script characters.')

Once we've found an Emoji, we would like to include it in KTgX. We'll set up the infrastructure
for this with the help of two packages

« accsupp, to provide the copy-paste text overlay

« transparent, to provide invisible text to enable text copying at the image

With these packages we can insert an emoji image at the point and then place some invisible
text on-top of it that copies as the emoji codepoint.

Unfortunately though, accsupp doesn’t seem to accept five digit hexadecimal codepoints
at this point in time, instead we need to convert to UTF-16 surrogate pairs, so we'll give our
\DeclareEmoji command two arguments: one for the non-surrogate form required by
\DeclareUnicodeCharacter, and another for the surrogate form required by \BeginAccSupp.

LANGUAGE CONFIGURATION Om 271

\usepackage{accsupp}
% The transparent package is also needed, but will be loaded later.
\newsavebox\emojibox

\NewDocumentCommand\DeclareEmoji{m m}{% UTF-8 codepoint, UTF-16 codepoint
\DeclareUnicodeCharacter{#1}{/
\sbox\emojibox{\raisebox{0FFSET}{/
\includegraphics [height=HEIGHT]{EMOJI-FOLDER/#1}}}/
\usebox\emojibox
\1lap{’

\resizebox{\wd\emojibox}{\height}{/
\BeginAccSupp{method=hex,unicode,ActualText=#2}/,
\texttransparent{0}{X}/

\EndAccSupp{}}}}}

Once we know that there are emojis present we can add a bit of preamble to the buffer to
make insertion easier.

(defconst org-latex-emoji-base-dir
(expand-file-name "emojis/" doom-cache-dir)
"Directory where emojis should be saved and look for.")

(defvar org-latex-emoji-sets
'(("twemoji" :url
< "https://github.com/jdecked/twemoji/archive/refs/tags/v15.1.0.zip"
:folder "twemoji-15.1.0/assets/svg" :height "1.8ex" :offset "-0.3ex")
("twemoji-bw" :url
— "https://github.com/youdly/twemoji-color-font/archive/refs/heads/vil-release.zip"
:folder "twemoji-color-font-11-release/assets/builds/svg-bw" :height
— "1.8ex" :offset "-0.3ex")
("openmoji" :url
— "https://github.com/hfg-gmuend/openmoji/releases/latest/download/openmoji-svg-color.zip"
:height "2.2ex" :offset "-0.45ex")
("openmoji-bw" :url
— "https://github.com/hfg-gmuend/openmoji/releases/latest/download/openmoji-svg-black.zip"
theight "2.2ex" :offset "-0.45ex")
("emojione" :url
— "https://github.com/joypixels/emojione/archive/refs/tags/v2.2.7.zip"
:folder "emojione-2.2.7/assets/svg") ; Warning, poor coverage
("noto" :url
— "https://github.com/googlefonts/noto-emoji/archive/refs/tags/v2.038.zip"
:folder "noto-emoji-2.038/svg" :file-regexp "~emoji_u\\([0-9a-f_J+\\)"
theight "2.0ex" :offset "-0.3ex"))
"dn alist of plistst of emoji sets.
Specified with the minimal form:
(\"SET-NAME\" :url \"URL\")
The following optional parameters are supported:
:folder (defaults to \"\")

LANGUAGE CONFIGURATION Org 272

The folder within the archive where the emojis exist.
:file-regezp (defaults to nil)

Pattern with the emoji code point as the first capture group.
:height (defaults to |"1.8ez\")

Height of the emojis to be used.

:offset (defaults to \"-0.3ex\")

Baseline offset of the emojis.")

(defconst org-latex-emoji-keyword

"LATEX_EMOJI_SET"
"Keyword used to set the emoji set from " org-latez-emoji-sets'.")

(defvar org-latex-emoji-preamble <<grab("latex-emoji-preamble')>>

"LaTeX preamble snippet that will allow for emojis to be declared.
Contains the string \"EMOJI-FOLDER\" which should be replaced with
the path to the emoji folder.")

(defun org-latex-emoji-utfl6 (char)
"Return the pair of UIF-16 surrogates that represent CHAR."
(list
(+ #xD7CO (ash char -10))
(+ #xDCO0 (logand char #x03FF))))

(defun org-latex-emoji-declaration (char)

"Construct the LaTeX command declaring CHAR as an emojz."
(format "\\DeclareEmoji{%X}{¥s} %% %s"

char

(if (< char #xFFFF)

(format "/X" char)
(apply #'format "/X%X" (org-latex-emoji-utfl6 char)))
(capitalize (get-char-code-property char 'name))))

(defun org-latex-emoji-fill-preamble (emoji-folder &optional height offset
— svg-p)
"Fill 2n "~org-latez-emoji-preamble ' with ENOJI-FOLDER, HEIGHT, and OFFSET.
If SVG-P is set \"includegraphics\" will be replaced with \"includesvg\”."”
(let* (case-fold-search
(filled-preamble
(replace-regexp-in-string
"HEIGHT"
(or height "1.8ex")
(replace-regexp-in-string
"OFFSET"
(or offset "-0.3ex")
(replace-regexp-in-string
"EMOJI-FOLDER"
(directory-file-name
(if (getenv "HOME")

LANGUAGE CONFIGURATION Om 273

(replace-regexp-in-string
(regexp-quote (getenv "HOME"))
"\\string™"
emoji-folder t t)
emoji-folder))
org-latex-emoji-preamble t t)
t t)
t t)))
(if svg-p
(replace-regexp-in-string
"includegraphics" "includesvg"
filled-preamble t t)
filled-preamble)))

(defun org-latex-emoji-setup (&optional info)
"Construct a preamble snippet to set up emojis based on INFO."
(let* ((emoji-set
(or (org-element-map
(plist-get info :parse-tree)
'keyword
(lambda (keyword)
(and (string= (org-element-property :key keyword)
org-latex-emoji-keyword)
(org-element-property :value keyword)))
info t)
(caar org-latex-emoji-sets)))
(emoji-spec (cdr (assoc emoji-set org-latex-emoji-sets)))
(emoji-folder
(expand-file-name emoji-set org-latex-emoji-base-dir))
(emoji-svg-only
(and (file-exists-p emoji-folder)
(not (cl-some
(lambda (path)
(not (string= (file-name-extension path) "svg")))

(directory-files emoji-folder nil "\\....$"))))))
(cond

((not emoji-spec)
(error "Emoji set “%s' is unknown. Try one of: Js" emoji-set
(string-join (mapcar #'car org-latex-emoji-sets) ", ")))
((not (file-exists-p emoji-folder))
(if (and (not noninteractive)
(yes-or-no-p (format "Emoji set “%s' is not installed, would you
< like to install it?" emoji-set)))
(org-latex-emoji-install
emoji-set
(or (executable-find "cairosvg") (executable-find "inkscape')))
(error "Emoji set “%s' is not installed" emoji-set))))
(org-latex-emoji-fill-preamble

LANGUAGE CONFIGURATION Org 274

emoji-folder (plist-get emoji-spec :height)
(plist-get emoji-spec :offset) emoji-svg-only)))

(org-export-update-features 'latex
(emoji-setup ; The precompilable bit
:condition (save-excursion
(goto-char (point-min))
(re-search-forward org-latex-emoji--rx nil t))
:requires (image pkg-transparent)
:snippet org-latex-emoji-setup
:order 3)
(pkg-transparent ; Part of emoji setup, but non-precompilable.
:snippet "\\usepackage{transparent}"
:order 84)
(emoji-declarations
:condition t
:when emoji-setup
:snippet
(mapconcat
#'org-latex-emoji-declaration
(let (unicode-cars)
(save-excursion
(goto-char (point-min))
(while (re-search-forward org-latex-emoji--rx nil t)
(push (aref (match-string 0) 0) unicode-cars)))
(cl-delete-duplicates unicode-cars))
"\n")
:order 85))

Unfortunately thisisn't a global solution, as LuaLaTeX doesn'thave \DeclareUnicodeCharacter.
However, we can fix this with a hack for the one case when we know it will be used.

(org-export-update-features 'latex
(emoji-lualatex-hack
:condition t
:when (emoji julia-code) ; LualaTeX is used with julia-code.
:snippet
"\\usepackage{newunicodechar}
\\newcommand{\\DeclareUnicodeCharacter}[2]{%
\\begingroup\\lccode™ |=\\string\"#1\\relax
\\lowercase{\\endgroup\\newunicodechar{|}}{#2}}"
:before emoji))

This works fairly nicely, there’s just one little QOL upgrade that we can perform. emojify
downloads the 72x72 versions of Twemoji, however SVG versions are also produced. We
could use inkscape to convert those to PDFs, which would likely be best for including.

This works fairly nicely, but it would be good to use . pdf forms whenever possible. We
can use texdef to check the file extension priority list.

LANGUAGE CONFIGURATION Om 275

texdef -t pdflatex -p graphicx GinQ@extensions

\Gin@extensions:
macro:->.pdf, .png,.jpg, .mps, .jpeg, .jbig2,.jb2, .PDF, .PNG, . JPG, . JPEG, . JBIG2, . JB2, .eps

Fantastic! We can see that . pdf actually comes first in the priority list. Now we just need
to fetch and convert the emoji images.

(defun org-latex-emoji-install (set &optional convert)
"Dowload, convert, and install emojts for use with LaTeX."
(interactive
(list (completing-read "Emoji set to install: "
(mapcar
(lambda (set-spec)
(if (file-exists-p (expand-file-name (car set-spec)
< org-latex-emoji-base-dir))
(propertize (car set-spec) 'face
< 'font-lock-doc-face)
(car set-spec)))
org-latex-emoji-sets)
nil t)
(if (or (executable-find "cairosvg") (executable-find "inkscape"))
(yes-or-no-p "Would you like to create .pdf forms of the Emojis
— (strongly recommended)?")
(message "Install "~cairosvg' (recommended) or ~inkscape' to convert
< to PDF forms")
nil)))
(let ((emoji-folder (expand-file-name set org-latex-emoji-base-dir)))
(when (or (not (file-exists-p emoji-folder))
(and (not noninteractive)
(yes-or-no-p "Emoji folder already present, would you like to
— re-download?")
(progn (delete-directory emoji-folder t) t)))
(let* ((spec (cdr (assoc set org-latex-emoji-sets)))
(dir (org-latex-emoji-install--download set (plist-get spec :url)))
(svg-dir (expand-file-name (or (plist-get spec :folder) "") dir)))
(org-latex-emoji-install--install
set svg-dir (plist-get spec :file-regexp))))
(when convert
(org-latex-emoji-install--convert (file-name-as-directory emoji-folder))))
(message "Emojis set “%s' installed." set))

(defun org-latex-emoji-install--download (name url)
"Download the emoji archive URL for the set NAME."
(let* ((dest-folder (make-temp-file (format "%s-" name) t)))
(message "Downloading /s..." name)
(let ((default-directory dest-folder))

(call-process "curl" nil nil nil "-sL" url "--output" "emojis.zip")

LANGUAGE CONFIGURATION Org 276

(message "Unzipping")
(call-process "unzip" nil nil nil "emojis.zip")
dest-folder)))

(defun org-latex-emoji-install--install (name dir &optional filename-regexp)
"Install the emoji files in DIR to the NAME set folder.
If a FILENAME-REGEXP, only files matching this regezp will be moved,
and they will be renamed to the first capture group of the regexp."”
(message "Installing J%s emojis into emoji directory" name)
(let ((images (append (directory-files dir t ".*.svg")
(directory-files dir t ".*.pdf")))
(emoji-dir (file-name-as-directory
(expand-file-name name org-latex-emoji-base-dir))))
(unless (file-exists-p emoji-dir)
(make-directory emoji-dir t))
(mapc
(lambda (image)
(if filename-regexp
(when (string-match filename-regexp (file-name-nondirectory image))
(rename-file image
(expand-file-name
(file-name-with-extension
(upcase (match-string 1 (file-name-nondirectory
< image)))
(file-name-extension image))
emoji-dir)
t))
(rename-file image
(expand-file-name
(file-name-with-extension
(upcase (file-name-nondirectory image))
(file-name-extension image))
emoji-dir)
t)))
images)

(message "Jd emojis installed" (length images))))

(defun org-latex-emoji-install--convert (dir)
"Convert all .svg files in DIR to .pdf forms.
Uses cairosvg if possible, falling back to inkscape."”
(let ((default-directory dir))
(if (executable-find "cairosvg") ; cairo's PDFs are 10}, smaller
(let* ((images (directory-files dir nil ".*.svg"))
(num-images (length images))
(index 0)
(max-threads (1- (string-to-number (shell-command-to-string
< '"mproc"))))
(threads 0))

LANGUAGE CONFIGURATION Oryg 277

(wvhile (< index num-images)
(setf threads (1+ threads))
(let (message-log-max)
(message "Converting emoji %d/%d (%s)" (1+ index) num-images (nth
index images)))

(make-process :name '"cairosvg"
:command (list "cairosvg" (nth index images) "-o"
< (concat (file-name-sans-extension (nth index
<> images)) ".pdf"))
:sentinel (lambda (proc msg)

(when (memq (process-status proc) '(exit
< signal))
(setf threads (1- threads)))))
(setq index (1+ index))
(while (> threads max-threads)
(sleep-for 0.01)))
(vhile (> threads 0)
(sleep-for 0.01)))
(message "Cairosvg not found. Proceeding with inkscape as a fallback.")
(shell-command "inkscape --batch-process --export-type='pdf' *.svg"))

(message "Finished conversion!")))

13. Remove non-ascii chars

When using pdflatex, almost non-ascii characters are generally problematic, and don't
appearin the pdf. It’s preferable to see that there was some character which wasn't displayed
as opposed to nothing.

We check every non-ascii character to make sure it’s not a character encoded by the
inputenc packages when loaded with the ut£8 option. We'll also allow box-drawing
characters since they can be mostly supported with pmboxdraw. Finally, we see if we have
our own I4TEX conversion we can apply and if there is none we replace the non-ascii char
with ;.

No to make sure we only remove characters that can't be displayed, we check /usr/share/texmf /tex/latex/t

We just need to make sure this is appended to the list of filter functions, since we want to
let emoji processing occur first.

(defvar +org-pdflatex-inputenc-encoded-chars

< "[[:ascii:]\u00A0-\u01F0\u0218-\u021BYy3~~"~"\u0400-\u04FFBbi\u200B\u200C\u2010-\u201Ete. . . /%

(defun +org-latex-replace-non-ascii-chars (text backend info)
"Replace non-ascii chars with \\char\"XYZ forms."
(when (and (org-export-derived-backend-p backend 'latex)
(string= (plist-get info :latex-compiler) "pdflatex"))
(let (case-replace)
(replace-regexp-in-string "[~[:ascii:]]"

LANGUAGE CONFIGURATION Oryg 278

(lambda (nonascii)
(if (or (string-match-p
< +org-pdflatex-inputenc-encoded-chars
> nonascii)
(string-match-p org-latex-emoji--rx
<> nonascii))
nonascii
(or (cdr (assoc nonascii
<> +org-latex-non-ascii-char-substitutions))
""))
text))))

(add-to-list 'org-export-filter-plain-text-functions
< #'+org-latex-replace-non-ascii-chars t)

Now, there are some symbols that aren’t included in inputenc, but we should be able to
handle anyway. For them we define a table of IKTEX translations

(replace-regexp-in-string

" l((!l "\Il l((!l
(replace-regexp-in-string
n) (n ")\1’1 (n

(prinl-to-string
 (defvar +org-latex-non-ascii-char-substitutions
', (mapcar
(lambda (entry)
(cons (car entry) (replace-regexp-in-string "\\\\" "\\\\\\\\" (cadr
— entry))))
latex-non-ascii-char-substitutions)))))

<<gen-latex-non-ascii-char-substitutions()>>

14. Normal spaces after abbreviations

In KTEX inter-word and sentence spaces are typically of different widths. This can be an
issue when using abbreviationsi.e. e.g. etc. etal.. This can be corrected by forcing a normal
space with . When exporting Org documents, we can add a filter to check for common
abbreviations and make the space normal.

(defvar +org-latex-abbreviations
'(;; Latin
|lcf'|l He'g’ﬂ Hetc.ﬂ |let a1'|l Hi'e’ﬂ ”V.” ”st” ”ViZ.” Hn’b.ﬂ
;; Corperate
|linc.|l |lgovt.|l |lltd.|l |lpty'|l Hdept'ﬂ
;; Temporal
|lest‘|l |IC‘|I
;3 Honorifics
”PI’Of.” HDr'H HMr‘H |erS‘|l "MS-” |IMiSS.H |lsr'|l HJr‘H

279

Org

LANGUAGE CONFIGURATION

WTEX

Character

S AN U W DB e T awERS Ay U IOSEILAO<<HOEWNEESEFC LN

S v wi oD Hh L= 2w R B Ay b Uk » T S ZInir —

LANGUAGE CONFIGURATION Om 280

;; Components of a work

|led'|l I|V01'H |lsec.|l ”Chap.” |lpt'll HPP‘H ”Op.” |ln0'|l
;3 Common usage

"approx." "misc." "min." "max.")

"4 list of abbreviations that should be spaced correctly when exporting to
— LaTeX.")

(defun +org-latex-correct-latin-abbreviation-spaces (text backend _info)
"Normalise spaces after Latin abbreviations.'
(when (org-export-derived-backend-p backend 'latex)
(replace-regexp-in-string (rx (group (or line-start space)
(regexp (regexp-opt-group
< +org-latex-abbreviations)))

(or line-end space))

NN
text)))

(add-to-list 'org-export-filter-paragraph-functions
< #'+org-latex-correct-latin-abbreviation-spaces t)

15. Extra special strings

IATEX already recognises - - - and - - asem/en-dashes, \ - asa shy hyphen, and the conversion
of...to\ldots{}ishardcodedintoorg-latex-plain-text (unlike org-html-plain-text).

I'd quite like to also recognise -> and <-, so let’s set come up with some advice.

(defvar org-latex-extra-special-string-regexps

<> 0 M\\\\(\\\leftrightarrow{}\\\\)")
("->" . "\\\\textrightarrow{}")
("<=-" . "\\\\textleftarrow{}")))

(defun org-latex-convert-extra-special-strings (string)
"Convert special characters im STRING to LaleX."
(dolist (a org-latex-extra-special-string-regexps string)
(let ((re (car a))
(rpl (cdr a)))

(setq string (replace-regexp-in-string re rpl string t)))))

(defadvice! org-latex-plain-text-extra-special-a (orig-fn text info)
"Make "org-latexz-plain-text ' handle some extra special strings."”
:around #'org-latex-plain-text

(let ((output (funcall orig-fn text info)))
(when (plist-get info :with-special-strings)

(setq output (org-latex-convert-extra-special-strings output)))
output))

16. Chameleon — aka. match theme

Once I had the idea of having the look of the BTEX document produced match the current

LANGUAGE CONFIGURATION Oryg 281

Emacs theme, I was enraptured. The result is the pseudo-class chameleon, which I have
implemented in the package ox-chameleon.

(package! ox-chameleon :recipe (:local-repo "lisp/ox-chameleon"))

(use-package! ox-chameleon
:after ox)

17. Make verbatim different to code

Since have just gone to so much effort above let’s make the most of it by making verbatim
use verb instead of protectedtexttt (default).

This gives the same advantages as mentioned in the HTML export section.

(setq org-latex-text-markup-alist
'((bold . "\\textbf{%s}")
(code . protectedtexttt)
(italic . "\\emph{%s}")
(strike-through . "\\sout{/s}")
(underline . "\\uline{%s}")
(verbatim . verb)))

18. Check for required packages
For how I've setup Org's LTEX export, the following packages are needed:
Then for the various fontsets:

« Alegreya

. arev

. arevmath

« biolinum

« FiraMono

« FiraSans

. fourier

. gillius

« kpfonts

« libertine

« newpxmath
+ newpxtext
« newtxmath

¢ newtxtext

LANGUAGE CONFIGURATION

Org 282

Package Description

adjustbox Adjust general KTEX material in like includegraphics
accsupp Copy-paste text overlay for emoji images
amsmath A near-essential maths package

booktabs Nice horizontal lines in tables

cancel Cancel terms in equations

capt-of Captions outside floats

caption Finer control over captions

cleveref Easy cross-referencing

embedall Embed files in the document

etoolbox Document hooks

float Floating environments

fontenc Font encodings

fvextra Enhanced verbatim environments
graphicx An extended graphics package

hanging Used by oc-csl

hyperref Links

inputenc Input file encodings

longtable Multi-page tables

mathalpha Set extended math alphabet fonts
mathtools Typesetting tools for maths

microtype Microtypography

pdfx Create pdf/a- and pdf/x- compatible documents
pifont A collection of symbols

pmboxdraw Good-looking box drawing characters
preview Needed for AUCTeX and ob-latex

scrbase KOMA classes and more

scrextend KOMA utilities

siunitx Proper unit support

soul Strikethrough and underline, flexibly
subcaption Form subfigures and subcaptions

svg Insert SVG images

tcolorbox Nice boxes for code

textcomp Font encodings

tikz Generally handy, as a dependancy and for graphics
transparent Invisible text for emoji copying

xcoffins Manipulate coffins (boxes) for typesetting
xcolor Colours

xparse

Extended command/env definition forms

LANGUAGE CONFIGURATION Org 283

« newtxsf

« noto

- notomath

« plex-mono

« plex-sans

« plex-serif

« sourcecodepro
« sourcesanspro

« sourceserifpro

We can write a function which will check for each of these packages with kpsewhich, and
then if any of them are missing we'll inject some advice into the generated config that gets
a list of missing packages and warns us every time we export to a PDF.

(setq org-required-latex-packages
(append org-latex-required-packages-list
org-latex-font-packages-list))

(defun check-for-latex-packages (packages)
(delq nil (mapcar (lambda (package)
(unless
(= 0 (call-process "kpsewhich" nil nil nil (concat
< package ".sty")))
package))
packages)))

(if-let (((executable-find "kpsewhich"))
(missing-pkgs (check-for-latex-packages org-required-latex-packages)))
(concat
(pp-to-string ~ (setq org-required-latex-packages
< ',org-required-latex-packages))
(message ";; Detected missing LaTeX packages: %s\n" (mapconcat #'identity
<~ missing-pkgs ", "))
(pp-to-string
' (defun check-for-latex-packages (packages)
(delq nil (mapcar (lambda (package)
(unless
(= 0 (call-process "kpsewhich" nil nil nil
< (concat package ".sty")))
package))
packages))))
(pp-to-string
' (defun +org-warn-about-missing-latex-packages (&rest _)

(message "Checking for missing LaTeX packages...")

LANGUAGE CONFIGURATION Org 2.84

(sleep-for 0.4)
(if-let (missing-pkgs (check-for-latex-packages
<> org-required-latex-packages))
(message "%s You are missing the following LaTeX packages: %s."
(propertize "Warning!" 'face '(bold warning))
(mapconcat (lambda (pkg) (propertize pkg 'face
— 'font-lock-variable-name-face))
missing-pkgs
")
(message "%s You have all the required LaTeX packages. Run %s to make
— this message go away."
(propertize "Success!" 'face '(bold success))
(propertize "doom sync" 'face 'font-lock-keyword-face))
(advice-remove 'org-latex-export-to-pdf
< #'+org-warn-about-missing-latex-packages))
(sleep-for 1)))
(pp-to-string
' (advice-add 'org-latex-export-to-pdf :before
< #'+org-warn-about-missing-latex-packages)))

n

;5 No missing LaTeX packags detected")

<<org-missing-latex-packages()>>

5.3.8 Beamer Export

It’s nice to use a different theme
(setq org-beamer-theme "[progressbar=foot]metropolis")
When using metropolis though, we want to make a few tweaks:

\NewCommandCopy{\moldusetheme}{\usetheme}
\renewcommand*{\usetheme} [2] []{\moldusetheme [#1]{#2}
\setbeamertemplate{items}{\bullet}
\setbeamerfont{block title}{size=\normalsize,
< series=\bfseries\parbox{Opt}{\rule{Opt}{4ex}}}}

\makeatletter

\newcommand{\setmetropolislinewidth}{
\setlength{\metropolis@progressinheadfoot@linewidth}{1.2px}}

\makeatother

\usepackage{etoolbox}
\AtEndPreamble{\setmetropolislinewidth}

Now let’s just apply this along with some extra beamer tweaks.

LANGUAGE CONFIGURATION Org 2.85

(defun org-beamer-p (info)
(eq 'beamer (and (plist-get info :back-end)
(org-export-backend-name (plist-get info :back-end)))))

(org-export-update-features 'beamer
(beamer-setup
:condition t
:requires .missing-koma

:prevents (italic-quotes condensed-lists cover-page)))

(org-export-update-features 'latex
(.missing-koma
:snippet "\\usepackage{scrextend}"
torder 2))

(defvar org-beamer-metropolis-tweaks
<<grab("beamer-metropolis-tweaks")>>
"LaTeX preamble snippet that tweaks the Beamer metropolis theme styling.")
(org-export-update-features 'beamer
(beamer-metropolis
:condition (string-match-p "metropolis$" (plist-get info :beamer-theme))
:snippet org-beamer-metropolis-tweaks

:order 3))

And I think that it’s natural to divide a presentation into sections, e.g. Introduction, Overview. . .
so let’s set bump up the headline level that becomes a frame from 1 to 2.

(setq org-beamer-frame-level 2)
5.3.9 Reveal export
By default reveal is rather nice, there are just a few tweaks that I consider a good idea.
(setq org-re-reveal-theme "white"

org-re-reveal-transition "slide"

org-re-reveal-plugins '(markdown notes math search zoom))

5.3.10 ASCIl export

To start with, why settle for ASCII when UTF-8 exists?

LANGUAGE CONFIGURATION Om 286

(setq org-ascii-charset 'utf-8)

The ASCII export is generally fairly nice. I think the main aspect that could benefit from
improvement is the appearance of KX fragments. There’s a nice utility we can use to create
unicode representation, which are much nicer. It’s called latex2text, and it’s part of the
pylatexenc package, and it’s not really packaged. So, we'll resort to installing it with pip.

sudo python3 -m pip install pylatexenc
With an accompanying doctor check.

(unless (executable-find "latex2text')
(warn! "Couldn't find latex2text executable (from pylatexenc), will be unable to

— render LaTeX fragments in org-text exports."))

With thatinstalled, we can override the (org-ascii-latex-fragment) and (org-ascii-latex-environment)
functions, which are conveniently very slim — just extracting the content, and indenting. We'll
only do something different when utf-8 is set.

(wvhen (executable-find "latex2text")
(after! ox-ascii
(defvar org-ascii-convert-latex t
"Use latezltext to convert LaTeX elements to unicode.'")

(defadvice! org-ascii-latex-environment-unicode-a (latex-environment _contents
< info)
"Transcode a LATEX-ENVIRONMENT element from Org to ASCII, converting to unicode.
CONTENTS %s nil. INFO <s a plist holding conteztual
information."
:override #'org-ascii-latex-environment
(when (plist-get info :with-latex)
(org-ascii--justify-element
(org-remove-indentation
(let* ((latex (org-element-property :value latex-environment))
(unicode (and (eq (plist-get info :ascii-charset) 'utf-8)
org-ascii-convert-latex
(doom-call-process "latex2text" "-q" "--code" latex))))
(if (= (car unicode) 0) ; utf-8 set, and sucessfully ran latex2text
(cdr unicode) latex)))

latex-environment info)))

(defadvice! org-ascii-latex-fragment-unicode-a (latex-fragment _contents info)
"Transcode a LATEX-FRAGHENT object from Org to ASCII, comverting to unicode.
CONTENTS %s mnil. INFO ©¢s a plist holding conteztual
information. "
:override #'org-ascii-latex-fragment
(when (plist-get info :with-latex)
(let* ((latex (org-element-property :value latex-fragment))

https://repology.org/project/python:pylatexenc/versions

LANGUAGE CONFIGURATION Oryg 287

(unicode (and (eq (plist-get info :ascii-charset) 'utf-8)
org-ascii-convert-latex
(doom-call-process '"latex2text" "-q" "--code" latex))))
(if (and unicode (= (car unicode) 0)) ; utf-8 set, and sucessfully ran
latex2text
(cdr unicode) latex))))))

5.3.11 Markdown Export

1. GFM

Because of the lovely variety in markdown implementations there isn't actually such a thing a
standard table spec ... or standard anything really. Because org-md is a goody-two-shoes,
it just uses HTML for all these non-standardised elements (a lot of them). So ox-gfmis
handy for exporting markdown with all the features that GitHub has.

(package! ox-gfm :pin "4f774f13d34b3db9ea4ddbObledc070b1526ccbb")

(use-package! ox-gfm
:after ox)

2. Character substitutions

When I want to paste exported markdown somewhere (for example when using Emacs
Everywhere), it can be preferable to have unicode characters for - - - etc. instead of — ; .

To accomplish this, we just need to locally rebind the alist which provides these substitution.

(defadvice! org-md-plain-text-unicode-a (orig-fn text info)
"Locally rebind "org-html-special-string-regexps '"
raround #'org-md-plain-text

(let ((org-html-special-string-regexps

FOOMAAN-T)
CRANY{ o AV ANV LILEN A
CERNV(ol VNV R AN)
N L)
CERNLD
(n->n . am)

("<n L men))))

(funcall orig-fn text (plist-put info :with-smart-quotes nil))))

In the future, I may want to check info to only have this active when ox-gfmis being used.

Another worthwhile consideration is KTgX formatting. It seems most Markdown parsers
are fixated on TgX-style syntax ($ and $$). As unfortunate as this is, it’s probably best to
accommodate them, for the sake of decent rendering.

https://github.com/commonmark/commonmark-spec/wiki/markdown-flavors

LANGUAGE CONFIGURATION Om 2.88

ox-md doesn't provide any transcoders for this, so we'll have to whip up our own and push
them onto the md transcoders alist.

(after! ox-md
(defun org-md-latex-fragment (latex-fragment _contents info)
"Transcode a LATEX-FRAGHENT object from Org to Markdown."
(let ((frag (org-element-property :value latex-fragment)))
(cond
((string-match-p "~\\\\(" frag)
(concat "$" (substring frag 2 -2) "$"))
((string-match-p "“\\\\\\[" frag)
(concat "$$" (substring frag 2 -2) "$$"))
(t (message "unrecognised fragment: Y%s" frag)

frag))))

(defun org-md-latex-environment (latex-environment contents info)
"Transcode a LATEX-ENVIRONMENT object from Org to Markdown."
(concat "$$\n"

(org-html-latex-environment latex-environment contents info)

"$$\n"))

(defun org-utf8-entity (entity _contents _info)
"Transcode an ENTITY object from Org to utf-8.
CONTENTS are the definition itself. INFO ¢s a plist holding
conteztual information."
(org-element-property :utf-8 entity))

;; We can't let this be immediately parsed and evaluated,
;5 because eager macro-expansion tries to call as-of-yet
;3 undefined functions.
;; NOTE in the near future this shouldn't be required
(eval
'(dolist (extra-transcoder
'((latex-fragment . org-md-latex-fragment)
(latex-environment . org-md-latex-environment)
(entity . org-utf8-entity)))
(unless (member extra-transcoder (org-export-backend-transcoders
(org-export-get-backend 'md)))
(push extra-transcoder (org-export-backend-transcoders
(org-export-get-backend 'md)))))))

5.3.12 Babel

Doom lazy-loads babel languages, with is lovely. It also pulls in ob-async, which is nice, but it
would be even better if it was used by default.

https://github.com/astahlman/ob-async

LANGUAGE CONFIGURATION Oryg 289

There are two caveats to ob-async:

1. It does not support :session

« So, we don't want :async used when :session is set

2. Itadds a fixed delay to execution

« This is undesirable in a number of cases, for example it’s generally unwanted with
emacs-lisp code

« Assuch, I also introduce a async language blacklist to control when it’s automatically
enabled

Due to the nuance in the desired behaviour, instead of just adding : asynctoorg-babel-default-header-args,
I advice org-babel-get-src-block-info toadd :async intelligently. As an escape hatch, it
also recognises : sync as an indication that : async should not be added.

I did originally have this enabled for everything except for emacs-1isp and LaTeX (there were
weird issues), but this added a ~3s "startup” cost to every src block evaluation, which was a bit of
a pain. Since :async can be added easily with #+properties, I've turned this behaviour from a
blacklist to a whitelist.

(add-transient-hook! #'org-babel-execute-src-block

(require 'ob-async))

(defvar org-babel-auto-async-languages '()
"Babel languages which should be ezecuted asyncronously by default.")

(defadvice! org-babel-get-src-block-info-eager-async-a (orig-fn &optional light datum)
"Eagarly add an :async parameter to the src information, unless it seems
problematic.
This only acts o languages in ~org-babel-auto-async-languages '.
Not added when either:
+ session is not |'"nomel"
+ :sync s set'
:around #'org-babel-get-src-block-info
(let ((result (funcall orig-fn light datum)))
(when (and (string= "none" (cdr (assoc :session (caddr result))))
(member (car result) org-babel-auto-async-languages)
(not (assoc :async (caddr result))) ; don't duplicate
(not (assoc :sync (caddr result))))
(push '(:async) (caddr result)))
result))

LANGUAGE CONFIGURATION BIEX 290

5.3.13 ESS

We don't want R evaluation to hang the editor, hence
(setq ess-eval-visibly 'nowait)
Syntax highlighting is nice, so let’s turn all of that on

(setq ess-R-font-lock-keywords
' ((ess-R-fl-keyword:keywords . t)

(ess-R-fl-keyword:constants . t)
(ess-R-fl-keyword:modifiers . t)
(ess-R-fl-keyword:fun-defs . t)
(ess-R-fl-keyword:assign-ops . t)
(ess-R-fl-keyword:%oph . t)
(ess-fl-keyword:fun-calls . t)
(ess-fl-keyword:numbers . t)
(ess-fl-keyword:operators . t)
(ess-fl-keyword:delimiters . t)
(ess-fl-keyword:= . t)
(ess-R-fl-keyword:F&T . t)))

Lastly, in the event that I use JAGS, it would be nice to be able to use jags as the language
identifier, not ess-jags.

(after! org
(add-to-1list '+org-babel-mode-alist '(jags . ess-jags)))

5.4 BTEX

5.4.1 To-be-implemented ideas

« Paste image from clipboard

- Determine first folder in graphicspath if applicable
— Ask for file name

- Use xclip to save file to graphics folder, or current directory (whichever applies)
command -v xclip >/dev/null 2>&1 || { echo >&1 "no xclip"; exit 1; }

if
xclip -selection clipboard -target image/png -o >/dev/null 2>&1

LANGUAGE CONFIGURATION BIEX 291

then
xclip -selection clipboard -target image/png -o >$1 2>/dev/null
echo $1

else
echo "no image"

fi

- Insert figure, with filled in details as a result (activate yasnippet with filename as
variable maybe?)

5.4.2 Compilation

(setq TeX-save-query nil
TeX-show-compilation t
TeX-command-extra-options '-shell-escape')
(after! latex
(add-to-1list 'TeX-command-list '("XeLaTeX" "I xelatex},(mode)’' ’t" TeX-run-TeX nil
t)))

For viewing the PDF, I rather like the pdf-tools viewer. While auctex is trying to be nice in
recognising that I have some PDF viewing apps installed, I'd rather not have it default to using
them, so let’s re-order the preferences.

(setq +latex-viewers '(pdf-tools evince zathura okular skim sumatrapdf))

5.4.3 Snippet helpers

1. Template
For use in the new-file template, let’s set out a nice preamble we may want to use.
\\usepackage [pdfa,unicode=true,hidelinks]{hyperref}

\\usepackage [dvipsnames,svgnames,table,hyperref]{xcolor}
\\renewcommand{\\UrlFont}{\\ttfamily\\small}

\\usepackage [a-2b]{pdfx} % why not be archival

\\usepackage [T1]{fontenc}
\\usepackage [osf] {newpxtext} ¥ Palatino
\\usepackage{gillius}

\\usepackage [scale=0.9]{sourcecodepro}

LANGUAGE CONFIGURATION BTEX 292

\\usepackage{mathtools}
\\usepackage{amssymb}
\\let\\Bbbk\\relax
\\usepackage [varbb] {newpxmath}

\\usepackage [activate={true,nocompatibility},final,tracking=true,kerning=true,spacing=true,factor=20C
% microtype makes text look nicer

\\usepackage{graphicx} % include graphics
\\usepackage{booktabs} % nice table rules
Then let’s bind the content to a function, and define some nice helpers.

(setq tec/yas-latex-template-preamble "
<<latex-nice-preamble>>

II)

(defun tec/yas-latex-get-class-choice ()
"Prompt user for LaTeX class choice”
(setq tec/yas-latex-class-choice (completing-read "Select document class: "
— '"("article" "scrartcl" "bmc"))))

(defun tec/yas-latex-preamble-if ()
"Based on class choice prompt for insertion of default preamble"
(if (equal tec/yas-latex-class-choice '"bmc") 'nil
(eq (read-char-choice "Include default preamble? [Type y/n]" '(?y ?n)) 7y)))

2.. Deliminators

(after! tex
(defvar tec/tex-last-delim-char nil
"Last open delim exzpanded in a tex document)
(defvar tec/tex-delim-dot-second t
"Hhen the ~tec/tew-last-delim-char' is . a second character (this) is
< prompted for'")
(defun tec/get-open-delim-char ()
"Ezclusivly read next char to tec/tex-last-delim-char"
(setq tec/tex-delim-dot-second nil)
(setq tec/tex-last-delim-char (read-char-exclusive "Opening deliminator,
< recognises: 9 ([{ < | ."™)
(when (eql 7. tec/tex-last-delim-char)
(setq tec/tex-delim-dot-second (read-char-exclusive "Other deliminator,
— recognises: 09 () [1 {2} <>1"))))
(defun tec/tex-open-delim-from-char (&optional open-char)
"Find the associated opening delim as string"

(unless open-char (setq open-char (if (eql 7. tec/tex-last-delim-char)

LANGUAGE CONFIGURATION

BIEX

293

(pcase open-char

tec/tex-delim-dot-second
tec/tex-last-delim-char)))

o\ "™

(79 "(")

(e\["[")

\{ "\\{"

(B BLw)

(7] (if tec/tex-delim-dot-second "." "["))
(- ".m)

(defun tec/tex-close-delim-from-char (&optional open-char)

"Find the associated closing delim as string"

(if tec/tex-delim-dot-second

(pcase tec/tex-delim-dot-second

(pcase (or open-char tec/tex-last-delim-char)

*\) ™"
(0 ™"
(?\1 "1")
(?\} "\\}")
(7\> ">")
@1 "M
C "")
(e ™™
(79 "M
(?\L "1™
(\{ "\\}")
(e Tm)
(*\) ™"
(0 "M
(?\1 "1")
(?\} "\\}")
(2\> ">")
1 "
"""

(defun tec/tex-next-char-smart-close-delim (&optional open-char)

(and (bound-and-true-p smartparens-mode)

(eql (char-after) (pcase (or open-char tec/tex-last-delim-char)

(defun tec/tex-delim-yas-expand (&optional open-char)

e\ 7\))
(?\[72\D)
{ ?}H

(7< 7>)))))

(yas-expand-snippet (yas-lookup-snippet "_deliminators" 'latex-mode) (point)

< (+ (point) (if (tec/tex-next-char-smart-close-delim open-char) 2 1)))))

LANGUAGE CONFIGURATION BTEX 294

5.4.4 Editorvisuals

Let’s enhance TeX-fold-math a bit

(after! latex

(setcar (assoc "" LaTeX-fold-math-spec-list) "")) ;; make \star bigger

(setq TeX-fold-math-spec-list
“(;; missing/better symbols

(nn (nlen))
(IIH (Ilgen))
(IIH ("ne”))
;; convenience shorts -- these don't work nicely ATM

98 (n<n (”left”))
98 (n>n (”right"))

;; private macros

(" ("RR"))
(' (MNN“))
(o (1Zz"))
(rro("ee™)
(mo(reemy)
(' ("PP"))
(' ("HH"))
(" ("EE"))
(m o ("ad"))

;3 known commands

("" ("phantom"))

(,(lambda (num den) (if (and (TeX-string-single-token-p num)
<> (TeX-string-single-token-p den))

(concat num "" den)
(concat nn num nn den nn))) (”frac”))
(,(lambda (arg) (concat "" (TeX-fold-parenthesize-as-necessary arg)))

— ("sqrt"))

(, (lambda (arg) (concat "" (TeX-fold-parenthesize-as-necessary arg))) ("vec"))
({1 ("text"))

;3 private commands

("1{1}1" ("abs"))

C'I{1H" ("norm"))

("{1}" ("floor"))

("{13" ("ceil"))

("{1}" ("round"))

({13/{23" ("dv"))

({13/{23" ("pdv"))

;3 fancification

("{1}" ("mathrm"))

(, (lambda (word) (string-offset-roman-chars 119743 word)) ("mathbf"))
(, (lambda (word) (string-offset-roman-chars 119951 word)) ("mathcal"))

LANGUAGE CONFIGURATION BTEX 295

(, (lambda (word) (string-offset-roman-chars 120003 word)) ("mathfrak"))
(, (lambda (word) (string-offset-roman-chars 120055 word)) ("mathbb"))
(, (lambda (word) (string-offset-roman-chars 120159 word)) ("mathsf"))
(, (lambda (word) (string-offset-roman-chars 120367 word)) ("mathtt"))
)
TeX-fold-macro-spec-list
'(
;5 as the defaults
("[£f]1" ("footnote" "marginpar"))
("LcI" ("cite™))
("[11" ("label"))
("[r]" ("ref" "pageref" "eqref"))
("[i1" ("index" "glossary"))
("..." ("dots™))
("{1}" ("emph" "textit" "textsl" "textmd" "textrm" "textsf" "texttt"
"textbf" "textsc" "textup"))
;3 tweaked defaults
("@" ("copyright"))
("®" ("textregistered"))
("™ ("texttrademark"))
(Oa3:0 1 ("item"))
("{1}" ("part" "partx"))
("{1}" ("chapter" "chapterx*"))
("g§{1}" ("section" "sectionx"))
("§§{1}" ("subsection" '"subsectionx*"))
("§8§§{1}" ("subsubsection" "subsubsectionx"))
("q{1}" ("paragraph" "paragraph*"))
("qg{1}" ("subparagraph" "subparagraph*"))
53 extra
("{1}" ("begin"))
("{1}" ("end"))
))

(defun string-offset-roman-chars (offset word)
"Shift the codepoint of each character im WORD by OFFSET with an extra -6 shift if
— the letter is lowercase"
(apply 'string
(mapcar (lambda (c)
(string-offset-apply-roman-char-exceptions
(+ (if (>= ¢ 97) (- c 6) c) offset)))
word)))

(defvar string-offset-roman-char-exceptions
'(;; lowercase serif
(119892 . 8462) ;
;5 lowercase caligraphic
(119994 . 8495) ;
(119996 . 8458)

LANGUAGE CONFIGURATION BTEX

296

(120004 . 8500) ;
;5 caligraphic
(119965 . 8492) ;
(119968 . 8496) ;
(119969 . 8497) ;
(119971 . 8459) ;
(119972 . 8464) ;
(119975 . 8466) ;
(119976 . 8499) ;
(119981 . 8475) ;
;5 fraktur
(120070 . 8493) ;
(120075 . 8460) ;
(120076 . 8465) ;
(120085 . 8476) ;
(120092 . 8488) ;
;5 blackboard
(120122 . 8450) ;
(120127 . 8461) ;
(120133 . 8469) ;
(120135 . 8473) ;
(120136 . 8474) ;
(120137 . 8477) ;
(120145 . 8484) ;
)

"An alist of deceptive codepoints, and then where the glyph actually resides.”)

(defun string-offset-apply-roman-char-exceptions (char)

"Sometimes the codepoint doesn't contain the char you expect.
Such special cases should be remapped to another value, as given in
— “string-offset-roman-char-exzceptions '."

(if (assoc char string-offset-roman-char-exceptions)

(cdr (assoc char string-offset-roman-char-exceptions))
char))

(defun TeX-fold-parenthesize-as-necessary (tokens &optional suppress-left
<> suppress-right)
"4dd parenthesis as if multiple LaTeX tokens appear to be present"”
(if (TeX-string-single-token-p tokens) tokens
(concat (if suppress-left "" "")
tokens
(if suppress-right "" ""))))

(defun TeX-string-single-token-p (teststring)
"Return t <f TESTSTRING appears to be a single token, nil otherwise"

(if (string-match-p "~"\\\\7?\\w+$" teststring) t nil))

Some local keybindings to make life a bit easier

LANGUAGE CONFIGURATION BTEX 297

(after! tex
(map!
:map LaTeX-mode-map
tei [C-return] #'LaTeX-insert-item)
(setq TeX-electric-math '("\\(" . "")))

Maths deliminators can be de-emphasised a bit

;3 Making \(\) less visible

(defface unimportant-latex-face
'((t :inherit font-lock-comment-face :weight extra-light))
"Face used to make \\(\\), \\[\1] less visible."
:group 'LaTeX-math)

(font-lock-add-keywords

'latex-mode

TCC\\\\[JOI["™ 0 'unimportant-latex-face prepend))
'end)

;3 (font-lock-add-keywords
'latex-mode
55 "CO'\\\\[[:word:]]+" O 'font-lock-keyword-face prepend))

35 'end)

)

And enable shell escape for the preview

(setq preview-LaTeX-command '("% %1 \"\\nonstopmode\\nofiles\
\\PassOptionsToPackage{" ("," . preview-required-option-list) "}{preview}\
\\AtBeginDocument{\\ifx\\ifPreview\\undefined"

preview-default-preamble "\\fi}\"7' \"\\detokenize{\" 7%t \"}\""))

5.4.5 Mathinput

1. CDLaTeX

The symbols and modifies are very nice by default, but could do with a bit of fleshing out.
Let’s change the prefix to a key which is similarly rarely used, but more convenient, like ;.

(after! cdlatex
(setq cdlatex-env-alist
'(("bmatrix" "\\begin{bmatrix}\n?\n\\end{bmatrix}" nil)
("equation*" "\\begin{equation*}\n?\n\\end{equation*}" nil)))
(setq ;; cdlatex-math-symbol-prefix 7\; ;; doesn't work at the moment : (
cdlatex-math-symbol-alist
'(;; adding missing functions to 3rd level symbols

LANGUAGE CONFIGURATION BTEX 298
(7_ ("\\downarrow" "" "\\inf"))
(72 (n-2n "\\sqrt{?7}" e)
(73 (M=g™ "\\sqrt[3]{?}" ")
(7~ ("\\uparrow" n "\\sup"))
(7k ("\\kappa" o "\\ker"))
(?m ("\\mu" e "\\1im"))
(7¢c (G "\\circ" "\\cos"))
(7d ("\\delta" "\\partial" "\\dim"))
(7D ("\\Delta" "\\nabla" "\\deg"))
;3 no idea why \Phi isnt on 'F' in first place, \phi is on 'f'.
(7F ("\\Phi"))
;; now just convenience
(7. ("\\cdot" "\\dots"))
(?: ("\\vdots" "\\ddots"))
(7% ("\\times" "\\star" "\\ast")))

cdlatex-math-modify-alist

'(;; my own stuff

(7B

(7a

2. LAAS

This makes use of aas (Auto Activating Snippets) for CDLaTeX-like symbol input.

(package! laas :recipe (:local-repo "lisp/LaTeX-auto-activating-snippets"))

"\\mathbb"
"\\abs"

(use-package! laas

:hook (LaTeX-mode .

:config

nil t nil nil)
nil 3 nil nil))))

laas-mode)

(defun laas-tex-fold-maybe ()

(unless (equal "/" aas-transient-snippet-key)
(+latex-fold-last-macro-a)))

(add-hook 'aas-post-snippet-expand-hook #'laas-tex-fold-maybe))

5.4.6 SyncTeX

(after! tex

(add-to-1list 'TeX-view-program-list '("Evince" "evince %o0"))

(add-to-1list 'TeX-view-program-selection '(output-pdf "Evince'")))

5.4.7 Fixes

In case of Emacs28:

LANGUAGE CONFIGURATION Python 299

(wvhen (>= emacs-major-version 28)
(add-hook 'latex-mode-hook #'TeX-latex-mode))

With Emacs 29.4
(when (and (= emacs-major-version 29) (= emacs-minor-version 4))

(after! auctex ; See <https://github.com/minad/vertico/discussions/475>
(fmakunbound 'ConTeXt-mode)))

5.5 Python

Since I'm using mypyls, as suggested in :lang python LSP support I'll tweak the priority of
mypyls

(after! lsp-python-ms
(set-lsp-priority! 'mspyls 1))

5.6 PDF

5.6.1 MuPDF

pdf-tools is nice, but a mupdf-based solution is nicer.
(package! paper :recipe (:host github :repo "ymarco/paper-mode"
:files ("*x.el" ".so")

:pre-build ("make")))

;3 (use-package paper

55 33 :mode ("\\.pdf\\'" . paper-mode)
38 ;5 :mode ("\\.epub\\'" . paper-mode)
H :config

BB (require 'evil-collection-paper)

¥ (evil-collection-paper-setup))

5.6.2 Terminal viewing

Sometimes I'm in a terminal and I still want to see the content. Additionally, sometimes I’d like
to act on the textual content and so would like a plaintext version. Thanks to we have a convenient

file:///home/runner/.config/emacs/modules/lang/python/README.org

LANGUAGE CONFIGURATION R 300

way of performing this conversion. I've integrated this into a little package, pdftotext.el.

(package! pdftotext :recipe (:local-repo "lisp/pdftotext"))

The output can be slightly nicer without spelling errors, and with prettier page feeds ("L by
default).

This is very nice, now we just need to associate it with . pdf files, and make sure pdf-tools
doesn’t take priority.

Lastly, whenever Emacs is non-graphical (i.e. a TUI), we want to use this by default.

(use-package! pdftotext
:init

(unless (display-graphic-p)

(add-to-1list 'auto-mode-alist '("\\.[pP][dD][£fF]\\'" . pdftotext-mode))
(add-to-list 'magic-mode-alist '("/PDF" . pdftotext-mode)))
:config

(unless (display-graphic-p) (after! pdf-tools (pdftotext-install)))

;3 For prettyness

(add-hook 'pdftotext-mode-hook #'spell-fu-mode-disable)

(add-hook 'pdftotext-mode-hook (lambda () (page-break-lines-mode 1)))

;3 I have no idea why this is needed

(map! :map pdftotext-mode-map
"<mouse-4>" (cmd! (scroll-down mouse-wheel-scroll-amount-horizontal))
"<mouse-5>" (cmd! (scroll-up mouse-wheel-scroll-amount-horizontal))))

57 R

5.7.1 Editor Visuals

(after! ess-r-mode
(appendq! +ligatures-extra-symbols
'(:assign ""
imultiply "x"))
(set-ligatures! 'ess-r-mode
;3 Functional
:def "function"
;5 Types
:null "NULL"
:true "TRUE"
:false "FALSE"

LANGUAGE CONFIGURATION Julia 301

:int "int"

:floar "float"
:bool "bool"

;5 Flow

tnot "!"

:and "&&" :or "||"
:for "for"

:in "%ini"
:return "return"
;3 Other

:assign "<-"
:multiply "%*%"))

5.8 Julia

Itwould be nice if julia-mode also highlighted the julia> prompt when writing REPL examples.

(add-to-list
'julia-font-lock-keywords
'("~julia>" O '(font-lock-string-face bold) prepend))

As mentioned in Isp-julia#35, 1sp-mode seems to serve an invalid response to the Julia server.
The pseudo-fix is rather simple at least

(add-hook 'julia-mode-hook #'rainbow-delimiters-mode-enable)

(add-hook! 'julia-mode-hook

(setq-local lsp-enable-folding t
lsp-folding-range-limit 100))

5.9 Data.toml files

For DataToolkit.jl-formatted TOML files, I've made a major mode.
(package! conf-data-toml :recipe (:local-repo "lisp/conf-data-toml"))

Since the major mode is autoloaded, all we need to do is register an appropriate magic command
for it to be used in Data. toml files.

(use-package! conf-data-toml
:magic ("\\"data_config version = [0-9]" . conf-data-toml-mode))

https://github.com/non-Jedi/lsp-julia/issues/35

LANGUAGE CONFIGURATION Graphviz 302

5.10 Graphviz

Graphviz is a nice method of visualising simple graphs, based on plaintext .dot / . gv files.

(package! graphviz-dot-mode :pin "8ff793b13707cb511875£56e167f£7£980a31136")

(use-package! graphviz-dot-mode
:commands graphviz-dot-mode
:mode ("\\.dot\\'" . graphviz-dot-mode)
:init
(after! org
(setcdr (assoc "dot" org-src-lang-modes)
'graphviz-dot)))

5.11 Markdown

Most of the time when I write markdown, it's going into some app/website which will do it’s own
line wrapping, hence we only want to use visual line wrapping. No hard stuff.

(add-hook! (gfm-mode markdown-mode) #'visual-line-mode #'turn-off-auto-fill)

Since markdown is often seen as rendered HTML, let’s try to somewhat mirror the style or
markdown renderers.

Most markdown renders seem to make the first three headings levels larger than normal text,
the first two much so. Then the fourth level tends to be the same as body text, while the fifth and
sixth are (increasingly) smaller, with the sixth greyed out. Since the sixth level is so small, I'll
turn up the boldness a notch.

(custom-set-faces!
' (markdown-header-face-1 :height 1.25 :weight extra-bold :inherit
<> markdown-header-face)

' (markdown-header-face-2 :height 1.15 :weight bold :inherit
markdown-header-face)

' (markdown-header-face-3 :height 1.08 :weight bold :inherit

— markdown-header-face)

' (markdown-header-face-4 :height 1.00 :weight bold :inherit
markdown-header-face)

' (markdown-header-face-5 :height 0.90 :weight bold :inherit

< markdown-header-face)
' (markdown-header-face-6 :height 0.75 :weight extra-bold :inherit

<> markdown-header-face))

5.12

LANGUAGE CONFIGURATION Beancount 303

Beancount

There are a number of rather compelling advantages to plain text accounting, with ledger being
the most obvious example. However, beancount, a more recent implementation of the idea
is ledger-compatible (meaning I can switch easily if I change my mind) and has a gorgeous
front-end — fava.

Of course, there’s an Emacs mode for this.

(package! beancount :recipe (:host github :repo "beancount/beancount-mode")
:pin "ddd4b8725703cf17a665b56cc26a3f9f95642424")

(use-package! beancount

:mode ("\\.beancount\\'" . beancount-mode)
:init
(after! nerd-icons

(add-to-1ist 'nerd-icons-extension-icon-alist

' ("beancount" nerd-icons-faicon "nf-fa-dollar" :face
nerd-icons-1lblue))
(add-to-1ist 'nerd-icons-mode-icon-alist
' (beancount-mode nerd-icons-faicon "nf-fa-dollar" :face
nerd-icons-1blue)))

:config
(setq beancount-electric-currency t)
(defun beancount-bal ()

"Run bean-report bal."

(interactive)

(let ((compilation-read-command nil))

(beancount--run "bean-report"
(file-relative-name buffer-file-name) "bal')))
(map! :map beancount-mode-map
:n "TAB" #'beancount-align-to-previous-number
:i "RET" (cmd! (newline-and-indent) (beancount-align-to-previous-number))))

5.13 GIMP Palette files

I like using colour schemes with Inkscape, and it uses "GIMP Palette" colour scheme definition
files. It’s easy to edit them by hand, but often a bit annoying as you need to keep the RGB code
and hex representation in sync. Let’s make that a little easier by writing a little major mode for it.

The major mode doesn't need to do much, just try to turn rainbow-mode on for pretty hex colours,
turn off h1-line-mode (if required) so the h1-1ine face doesn’t overshadow them, and then
the most crucial part: syncing the RGB/hex colour specifications on every buffer modification.

https://plaintextaccounting.org/
https://www.ledger-cli.org/
https://github.com/beancount/beancount
https://beancount.github.io/fava/

LANGUAGE CONFIGURATION GIMP Palette files 304

To catch all relevant modifications, but not trigger more frequently than needed (as would happen
if using post-command-hook, for example), after-change-functions is the perfect option.
We can make a buffer-local addition that will sync all colours in the modified region.

(define-derived-mode gimp-palette-mode fundamental-mode "GIMP Palette"
"4 major mode for GINP Palette (.gpl) files that keeps RGB and Hez colors in sync."
(when (require 'rainbow-mode)
(rainbow-mode 1))
(when (bound-and-true-p hl-line-mode)
(hl-line-mode -1))
(add-hook 'after-change-functions #'gimp-palette-update-region nil t))

Now we need toimplement the gimp-palette-update-region function. If we plan on implementing
a per-line update function, this is simply a matter of calling it on each line with a few quality of
life improvements:

« Batching all the changes into a single undo step (via undo-amalgamate-change-group)

« Working interactively with a selected region, or the whole buffer.

(defun gimp-palette-update-region (beg end &optional _)
"Update each line between BEG and END with ~gimp-palette-update-line '.
If run interactively without a region set, the whole buffer is affected.”
(interactive
(if (region-active-p)
(list (region-beginning) (region-end))
(l1ist (point-min) (point-max))))
(let ((marker (prepare-change-group)))
(unwind-protect
(save-excursion
(goto-char beg)
(while (< (point) end)
(gimp-palette-update-line)
(forward-line 1)))
(undo-amalgamate-change-group marker))))

Now we need to implement the per-line update function. This won't be a particularly short
function, but it isn’t complicated either. It should work as follows:

1. Check to see whether the line starts withR G B #HEX
2. Check that point is within the RGB/hex part of the linen

3. If on the hex part, parse the hex string and update the RGB to match (inserting the RGB
component if it does not already exist)

4. If on the RGB part, update the hex part to match

LANGUAGE CONFIGURATION Snippets 305

(defun gimp-palette-update-line ()
"Update the RGB and Hex colour codes on the current line.
Whichever “point ' is currently on is taken as the source of truth.”
(interactive)
(let ((column (current-column))
(ipoint (point)))
(beginning-of-line)
(when (and (re-search-forward "\\=\\([0-9 T#\\)\\(#[0-9A-Fa-fI\\{6\\}\\)" nil t)
(<= column (length (match-string 0))))
(cond
((>= column (length (match-string 1))) ; Point in #HEX
(cl-destructuring-bind (r g b) (color-name-to-rgb (match-string 2))
(replace-match
(format "%3d %3d %34 "
(round (* 255 r))
(round (* 255 g))
(round (* 255 b)))
nil t nil 1)))
((string-match-p "\\"[0-9]+ +[0-9]+ +[0-9]+\\'" (match-string 1)) ; Valid R G B
(cl-destructuring-bind (r g b)
(mapcar #'string-to-number
(save-match-data
(split-string (match-string 1) " +" t)))
(replace-match
(format "%3d %3d %3d " r g b)
nil t nil 1)
(replace-match
(color-rgb-to-hex (/ r 255.0) (/ g 255.0) (/ b 255.0) 2)
nil t nil 2)))))
(goto-char ipoint)))

The last thing that’s needed to make this functionality convenient is to have it automatically
activate when appropriate. GIMP palette files re-use the . gpl extension, so auto-mode-alist
isn'ta good choice, but we can use the magic-mode-alist to use this mode in any file that begins
with GIMP Palette, which is perfect for our needs.

(add-to-1list 'magic-mode-alist (cons "\\ GINMP Palette\n" #'gimp-palette-mode))

5.14 Snippets

5.14.1 Latex mode

File template

LANGUAGE CONFIGURATION Snippets 306

-*- mode: snippet -*-

name: LaTeX template

--
\documentclass${1: [${2:0ptl,...}]}{ (tec/yas-latex-get-class-choice) }

\title{${3: (s-titleized-words (file-name-base (or buffer-file-name "new buffer"))) }}
\author{${4: " (user-full-name) }}

\date{${5: " (format-time-string "%Y-/m-%d") }}

“(if (tec/yas-latex-preamble-if) tec/yas-latex-template-preamble "")~

\begin{document}

\maketitle

$0

\end{document}

Deliminators

name: _deliminators

—-
\left” (tec/tex-open-delim-from-char)” % $1 \right” (tec/tex-close-delim-from-char)” $0

Aligned equals
key: ==
name: aligned equals
--
&=

Begin alias

-*- mode: snippet -*-
name: begin-alias
key: beg

type: command

HOH B O R

(doom-snippets-expand :name "begin')
Cases

-*- mode: snippet -*-
key: cs

name: cases

group: math
condition: (texmathp)

HOH H OB B

LANGUAGE CONFIGURATION Snippets 307

\begin{cases}
“h$1
\end{cases}$0

Code

-*- mode: snippet -*-

name: code

-
\begin{minted}{${1:1languagel}}
${0:"%}

\end{minted}

Corollary

-*- mode: snippet -*-
name: corollary
key: clr

group: theorems

HOH OB OB

\begin{corollary}${1: [${2:name}]}
% $0
\end{corollary}

Definition

-*- mode: snippet -*-

name: definition

key: def

group: theorems

——

\begin{definition}${1: [${2:name}]}
“%° 80

\end{definition}

H O B R

Deliminators

-*- mode: snippet -*-
name: deliminators
key: @

condition: (texmathp)

type: command

HOH OH OB B R

(tec/get-open-delim-char)
(yas-expand-snippet (yas-lookup-snippet "_deliminators" 'latex-mode))

Deliminators angle

LANGUAGE CONFIGURATION Snippets

308

-*- mode: snippet -*-

name: deliminators - angle <>
key: <

condition: (texmathp)

type: command

H O ¥ B H

(setq tec/tex-last-delim-char 7\<)
(setq tec/tex-delim-dot-second nil)
(tec/tex-delim-yas-expand)

Deliminators bracket

-*- mode: snippet -*-

name: deliminators - bracket []
key: [

condition: (texmathp)

type: command

HOH OH OB B R

(setq tec/tex-last-delim-char ?7\[)
(setq tec/tex-delim-dot-second nil)
(tec/tex-delim-yas-expand)

Deliminators curly

-*- mode: snippet -*-

name: deliminators - curley {}
key: {

condition: (texmathp)

type: command

HOoH O O OB R

(setq tec/tex-last-delim-char ?\{)
(setq tec/tex-delim-dot-second nil)
(tec/tex-delim-yas-expand)

Deliminators paren

-*- mode: snippet -*-

name: deliminators - paren ()
key: (

condition: (texmathp)

type: command

HOoH B OB OB R

(setq tec/tex-last-delim-char ?\()
(setq tec/tex-delim-dot-second nil)
(tec/tex-delim-yas-expand)

Enumerate

LANGUAGE CONFIGURATION Snippets 309

-*- mode: snippet -*-
name: enumerate

key: en

-—

\begin{enumerate}

T@EE A A" \\item ")"$0
\end{enumerate}

Example

-*- mode: snippet -*-
name: example

key: eg

group: theorems

HOH B O R

\begin{example}${1: [${2:name}]}
“h$0
\end{example}

Frac short

-*- mode: snippet -*-
key: /

name: frac-short
group: math
condition: (texmathp)

HOH B O OB R

\frac{${1: (or % "") }}{$2}$0

~

Int

-*- mode: snippet -*-
key: int

name: int_-~

-

\int${1:$(when (> (length yas-text) 0) "_")
}${1:$(vhen (> (length yas-text) 1) "{")
}${1:1eft}${1:$(wvhen (> (length yas-text) 1) "}")
}${2:$(vhen (> (length yas-text) 0) "~")

}${2:$(vhen (> (length yas-text) 1) "{")
}${2:right}${2:$(when (> (length yas-text) 1) "}")} $0

Itemize
-*- mode: snippet -*-

name: itemize
key: it

HOH OB R

uuid: it

LANGUAGE CONFIGURATION Snippets 310

__
\begin{itemize}

T@Ef A A" \\item ")"$0
\end{itemize}

Lemma

-*- mode: snippet -*-
name: lemma

key: lmm

group: theorems

H O B H R

\begin{lemma}${1: [${2:name}]}
“%$0
\end{lemma}

Lim

-*- mode: snippet -*-
name: lim

key: lim

-—

\lim_{${1:n} \to ${2:\infty}} $0
Mathclap

-*- mode: snippet -*-
key: mc

name: mathclap

group: math
condition: (texmathp)

HOH ¥ OB B

\mathclap{ %" $1}$0

Prod *

key: prod

name: prod_~

-

\prod${1:$(when (> (length yas-text) 0) "_")
}${1:$(vhen (> (length yas-text) 1) "{")
}${1:i=1}${1:$(wvhen (> (length yas-text) 1) "}")
}${2:$(vhen (> (length yas-text) 0) "~")
}${2:$(vhen (> (length yas-text) 1) "{")
}${2:n}${2:$(vhen (> (length yas-text) 1) "}")} $0

Proof

LANGUAGE CONFIGURATION Snippets 311

-*- mode: snippet -*-
name: proof

key: prf

group: theorems

H O B B R

\begin{proof}${1: [${2:name}]}
“%°$0
\end{proof}

Remark

-*- mode: snippet -*-
name: remark

key: rmk

group: theorems

H O B B R

\begin{remark}${1:[${2:name}]}
“h"$0
\end{remark}

A

Sum

key: sum
name: sum_~

-

\sum${1:$(when (> (length yas-text) 0) "_")
}${1:$(vhen (> (length yas-text) 1) "{")
}${1:i=1}${1:$(wvhen (> (length yas-text) 1) "}")
}${2:$(vhen (> (length yas-text) 0) "~")
}${2:$(vhen (> (length yas-text) 1) "{")
}${2:n}${2:$(when (> (length yas-text) 1) "}")} $0

Theorem

-*- mode: snippet -*-
name: theorem

key: thm

group: theorems

HOH B OB R

\begin{theorem}${1: [${2:name}]}
“%$0
\end{theorem}

5.14.2 Markdown mode

File template

LANGUAGE CONFIGURATION Snippets 312

-*- mode: snippet -*-
name: 0Org template

H OH B R

${1: (s-titleized-words (file-name-base (or buffer-file-name '"new buffer"))) }

5.14.3 Org mode

File template

-*- mode: snippet -*-

name: Org template

—-
#+title: ${1: (s-titleized-words (replace-regexp-in-string
< "~[0-91\\{4\\}-[0-9]1 [0-9]1-[0-9] [0-9]-" "" (file-name-base (or buffer-file-name

< "new buffer")))) }
#+author: ${2:° (user-full-name) }
#+date: ${3: (format-time-string "¥Y-Jm-%d") }

$0
Display maths

-*- mode: snippet -*-

name: display math

key: M

condition: t

expand-env: ((yas-after-exit-snippet-hook (lambda () (org-edit-latex-fragment)
<~ (evil-insert-state) (imsert "\n \n") (left-char))))

--

N\ %7 $0\\]

Elisp source

-*- mode: snippet -*-

name: elisp src

uuid: src_elisp

key: <el

condition: t

expand-env: ((yas-after-exit-snippet-hook #'org-edit-src-code))

HOoH ¥ B H o H

#+begin_src emacs-lisp
"k 80

#+end_src

LANGUAGE CONFIGURATION Snippets 313

Global property

-*- mode: snippet -*-
name: Global property
key: #+p

condition: (> 20 (line-number-at-pos))

HOH OB OB

#+property: $0
Header argument dir

-*- mode: snippet -*-

name: Header arg - dir

key: d

condition: (+yas/org-src-header-p)

HOH B O R

:dir ~(file-relative-name (read-directory-name "Working directory: "))~ $0

Header argument eval

-*- mode: snippet -*-

name: Header arg - eval

key: v

condition: (+yas/org-src-header-p)

--

“(let ((out (+yas/org-prompt-header-arg :eval "Evaluate: " '("no" "query" "no-export"
< "query-export")))) (if out (concat ":eval " out " ") ""))"

Header argument export

-*- mode: snippet -*-

name: Header arg - export

key: e

condition: (+yas/org-src-header-p)

-

“(let ((out (+yas/org-prompt-header-arg :exports "Exports: " '("code" "results" "both"
< "none")))) (if out (concat ":exports " out " ") ""))"

Header argument file

-*- mode: snippet -*-

name: Header arg - file

key: f

condition: (+yas/org-src-header-p)
—-

:file $0

Header argument graphics

LANGUAGE CONFIGURATION Snippets 314

-*- mode: snippet -*-

name: Header arg - graphics

key: g

condition: (+yas/org-src-header-p)

H O B B R

:results file graphics $0
Header argument height

-*- mode: snippet -*-
name: Header arg - height
key: H

condition: (+yas/org-src-header-p)

HOH OB OB

:height $0

Header argument noweb

-*- mode: snippet -*-

name: Header arg - noweb

key: n

condition: (+yas/org-src-header-p)

-

“(let ((out (+yas/org-prompt-header-arg :noweb "NoWeb: " '("no" "yes" "tangle"

< "no-export" "strip-export" "eval")))) (if out (concat ":noweb " out " ") ""))"

Header argument output

-*- mode: snippet -*-

name: Header arg - output

key: o

condition: (+yas/org-src-header-p)
—-

:results output $0

Header argument results

-*- mode: snippet -*-

name: Header arg - results

key: r

condition: (+yas/org-src-header-p)

-

“(let ((out

(string-trim-right
(concat
(+yas/org-prompt-header-arg :results "Result collection: " '("value " "output "))
(tyas/org-prompt-header-arg :results "Results type: " '("table " "vector " "list "

— "yverbatim " "file "))

LANGUAGE CONFIGURATION Snippets 315

(tyas/org-prompt-header-arg :results "Results format: " '("code " "drawer " "html "
"non

PP " oMraw "))

— "latex " "link " "graphics " "org

'("silent " "replace "

(+yas/org-prompt-header-arg :results "Result output:
<> "append " "prepend "))))))
(if (string= out "") ""

(concat ":results " out " ")))

Header argument session

-*- mode: snippet -*-

name: Header arg - session

key: S

condition: (+yas/org-src-header-p)

HOH B O R

:session "${1: (file-name-base (or (buffer-file-name) "unnnamed")) -session}" $0

Header argument silent

-*- mode: snippet -*-

name: Header arg - silent

key: s

condition: (+yas/org-src-header-p)
-

:results silent $0

Header argument tangle

-*- mode: snippet -*-

name: Header arg - tangle

key: t

condition: (+yas/org-src-header-p)
—-

:tangle $0

Header argument width

-*- mode: snippet -*-

name: Header arg - width

key: W

condition: (+yas/org-src-header-p)
-

:width $0

Header argument wrap

-*- mode: snippet -*-
name: Header arg - wrap

LANGUAGE CONFIGURATION Snippets 316

key: w

condition: (+yas/org-src-header-p)

--

“(let ((out (+yas/org-prompt-header-arg :noweb "Wrap: " '("example" "export" "comment"
< "src")))) (if out (concat ":wrap " out " ") ""))°

Inline math

-*- mode: snippet -*-

name: inline math

condition: t
expand-env: ((yas-after-exit-snippet-hook (lambda () (org-edit-latex-fragment)
(evil-insert-state) (goto-char 3))))
-
N\ C%7$0\\)

#
#
key: m
#
#
s

Property header arguments

-*- mode: snippet -*-

name: Property - header arg

key: h

condition: (or (looking-back "~#\\+PROPERTY:.*" (line-beginning-position))
< (looking-back "~#\\+property:.*" (line-beginning-position)))

-

header-args:${1:" (or (+yas/org-most-common-no-property-lang) "7") } $0

Python source

-*- mode: snippet -*-

name: python src

uuid: src_python

key: <py

condition: t

expand-env: ((yas-after-exit-snippet-hook #'org-edit-src-code))

H O ¥ B H O H

#+begin_src python
AR1Y

#+end_src
Source
-*- mode: snippet -*-

name: #+begin_src

uuid: src

H OH B R

key: src
-
#+begin_src ${1:” (or (+yas/org-last-src-lang) "7")"}

LANGUAGE CONFIGURATION Snippets 317

% $0

#+end_src

	Introduction
	Why Emacs?
	The enveloping editor
	Some notably unique features
	Issues
	Teach a man to fish…

	Editor comparison
	Notes for the unwary adventurer
	Extra Requirements

	Current Issues
	Magit push in daemon
	Unread emails doesn't work across Emacs instances

	Rudimentary configuration
	Confpkg
	Motivation
	Design
	Preparation
	Setup
	Package generation
	Identify cross-package dependencies
	Commenting out package! statements
	Creating the config file
	Quieter output
	Reporting load time information
	Finalise
	Bootstrap

	Personal Information
	Better defaults
	Simple settings
	Frame sizing
	Auto-customisations
	Windows
	Hippie expand
	Buffer defaults

	Doom configuration
	Modules
	Profiles
	Visual Settings
	Some helper macros
	Allow babel execution in CLI actions
	Elisp REPL
	Htmlize command
	Org buffer creation
	Dashboard
	Config doctor

	Other things
	Editor interaction
	Window title
	Systemd daemon
	Emacs client wrapper
	Prompt to run setup script
	Grabbing source block content as a string

	Packages
	Loading instructions
	Packages in MELPA/ELPA/emacsmirror
	Packages from git repositories
	Disabling built-in packages

	Convenience
	Avy
	Rotate (window management)
	Emacs Everywhere
	Which-key

	Tools
	Abbrev
	Very large files
	Eros
	EVIL
	GPTel
	Headlice
	Consult
	Magit
	MPRIS
	Smerge
	Corfu
	Projectile
	Jinx
	TRAMP
	Auto activating snippets
	Screenshot
	Etrace
	YASnippet
	String inflection
	Smart parentheses

	Visuals
	Info colours
	Modus themes
	Spacemacs themes
	Theme magic
	Simple comment markup
	Doom modeline
	Keycast
	Screencast
	Mixed pitch
	Marginalia
	Centaur Tabs
	Nerd Icons
	Prettier page breaks
	Writeroom
	Treemacs
	Visual fill column

	Frivolities
	xkcd
	Selectric
	Wttrin
	Spray
	Elcord

	File types
	Systemd

	Applications
	Ebooks
	Calculator
	CalcTeX
	Defaults
	Embedded calc

	Newsfeed
	Keybindings
	Usability enhancements
	Visual enhancements
	Functionality enhancements

	Dictionary
	Mail
	Fetching
	Indexing/Searching
	Sending
	Mu4e
	Org Msg

	Language configuration
	General
	File Templates

	Plaintext
	Ansi colours
	Margin without line numbers

	Org
	System config
	Packages
	Behaviour
	Visuals
	Exporting
	HTML Export
	LaTeX Export
	Beamer Export
	Reveal export
	ASCII export
	Markdown Export
	Babel
	ESS

	LaTeX
	To-be-implemented ideas
	Compilation
	Snippet helpers
	Editor visuals
	Math input
	SyncTeX
	Fixes

	Python
	PDF
	MuPDF
	Terminal viewing

	R
	Editor Visuals

	Julia
	Data.toml files
	Graphviz
	Markdown
	Beancount
	GIMP Palette files
	Snippets
	Latex mode
	Markdown mode
	Org mode

SPDX-FileCopyrightText: © 2020-2022 tecosaur <contact@tecosaur.net>
SPDX-License-Identifier: MIT
#+title: Doom Emacs Configuration
#+subtitle: The Methods, Management, and Menagerie@@latex:\\@@ of Madness@@latex: --- in meticulous detail@@
#+author: tecosaur
#+email: contact@tecosaur.net
#+date: @@html:<!--@@{{{git-rev}}}@@html:-->@@@@latex:\\\Large\bfseries@@ {{{modification-time(%Y-%m-%d, t)}}} @@latex:\\\normalsize\mdseries@@{{{modification-time(%H:%M, t)}}} @@latex:\acr{\lowercase{@@{{{timezone}}}@@latex:}}\iffalse@@, {{{git-rev}}}@@latex:\fi@@
#+macro: timezone (eval (substring (shell-command-to-string "date +%Z") 0 -1))
#+macro: git-rev (eval (format "@@html:<code style=\"padding: 0; color: var(--text-light); font-size: inherit; opacity: 0.7\">%1$s</code>@@@@latex:\\href{https://code.tecosaur.net/tec/emacs-config/commit/%1$s}{\\normalsize\\texttt{%1$s}}@@" (substring (shell-command-to-string "git rev-parse --short HEAD") 0 -1)))
#+html_head: <link rel='shortcut icon' type='image/png' href='https://www.gnu.org/software/emacs/favicon.png'>
#+property: header-args:emacs-lisp
#+property: header-args:elisp :results replace :exports code
#+property: header-args:shell :tangle "setup.sh"
#+property: header-args :tangle no :results silent :eval no-export
#+embed: LICENCE :description MIT licence file
#+options: coverpage:yes
#+startup: fold

#+latex_class: book
#+latex_header_extra: \usepackage[autooneside=false,automark,headsepline]{scrlayer-scrpage}
#+latex_header_extra: \clearpairofpagestyles \renewcommand*{\chaptermarkformat}{} \renewcommand*{\sectionmarkformat}{}
#+latex_header_extra: \ihead{\upshape\scshape\leftmark} \chead{\Ifstr{\leftmark}{\rightmark}{}{\rightmark}} \ohead[\pagemark]{\pagemark}
#+latex_engraved_theme: doom-one-light

#+begin_export html
<a href="https://code.tecosaur.net/tec/emacs-config/"
 style="font-family: 'Open Sans'; background-image: none; color: inherit;
 text-decoration: none; position: relative; top: clamp(-26px, calc(1280px - 100vw), 0px); opacity: 0.7;">
 <img src="https://git-scm.com/images/logos/downloads/Git-Icon-Black.svg"
 class="invertible" alt="Git"
 style="height: 1em; position: relative; top: 0.1em;">
 Repository 
<a href="https://liberapay.com/tec"
 style="position: relative;top: clamp(-22px, calc(1280px - 100vw), 0px);">
 <img src="https://shields.io/badge/support%20my%20efforts-f6c915?logo=Liberapay&style=flat&logoColor=black"
 class="invertible" alt="Support my efforts"
 style="border-radius: 4px; opacity: 0.85;">
#+end_export

#+begin_quote
Let us change our traditional attitude to the construction of programs:
Instead of imagining that our main task is to instruct a computer what to do,
let us concentrate rather on explaining to human beings what we want a
computer to do. @@latex:\mbox{@@--- Donald Knuth@@latex:}@@
#+end_quote

* Introduction

Customising an editor can be very rewarding ... until you have to leave it.
For years I have been looking for ways to avoid this pain.
Then I discovered [[https://github.com/cknadler/vim-anywhere][vim-anywhere]], and found that it had an Emacs companion,
[[https://github.com/zachcurry/emacs-anywhere][emacs-anywhere]]. To me, this looked most attractive.

Separately, online I have seen the following statement enough times I think it's a catchphrase
#+begin_quote
Redditor 1: I just discovered this thing, isn't it cool. \\
Redditor 2: Oh, there's an Emacs mode for that.
#+end_quote

This was enough for me to install Emacs, but I soon learned there are [[https://github.com/remacs/remacs#why-emacs][far more
compelling reasons]] to keep using it.

I tried out the =spacemacs= distribution a bit, but it wasn't quite to my liking.
Then I heard about =doom emacs= and thought I may as well give that a try.
TLDR; it's great.

Now I've discovered the wonders of literate programming, and am becoming more
settled by the day. This is both my config, and a cautionary tale (just replace
"Linux" with "Emacs" in the comic below).

[[xkcd:456]]

** Why Emacs?

Emacs is [[https://www.eigenbahn.com/2020/01/12/emacs-is-no-editor][not a text editor]], this is a common misnomer. It is far more apt to
describe Emacs as /a Lisp machine providing a generic user-centric text
manipulation environment/. That's quite a mouthful.
In simpler terms one can think of Emacs as a platform for text-related
applications. It's a vague and generic definition because Emacs itself is
generic.

Good with text. How far does that go? A lot further than one initially thinks:
+ [[https://orgmode.org/][Task planning]]
+ [[https://www.gnu.org/software/emacs/manual/html_node/emacs/Dired.html][File management]]
+ [[https://github.com/akermu/emacs-libvterm][Terminal emulation]]
+ [[https://www.djcbsoftware.nl/code/mu/mu4e.html][Email client]]
+ [[https://www.gnu.org/software/tramp/][Remote server tool]]
+ [[https://magit.vc/][Git frontend]]
+ Web [[https://github.com/pashky/restclient.el][client]]/[[https://github.com/skeeto/emacs-web-server][server]]
+ and more...

Ideally, one may use Emacs as /the/ interface to perform =input → transform →
output= cycles, i.e. form a bridge between the human mind and information
manipulation.

*** The enveloping editor

Emacs allows one to do more in one place than any other application. Why is this
good?
+ Enables one to complete tasks with a consistent, standard set of keybindings,
 GUI and editing methods --- learn once, use everywhere
+ Reduced context-switching
+ Compressing the stages of a project --- a more centralised workflow can progress
 with greater ease
+ Integration between tasks previously relegated to different applications, but
 with a common subject --- e.g. linking to an email in a to-do list

Emacs can be thought of as a platform within which various elements of your
workflow may settle, with the potential for rich integrations between them --- a
/life/ IDE if you will.

Today, many aspects of daily computer usage are split between different
applications which act like islands, but this often doesn't mirror how we
/actually use/ our computers. Emacs, if one goes down the rabbit hole, can give
users the power to bridge this gap.

#+name: emacs-platform
#+begin_src dot :cmd circo :file misc/emacs-platform.svg :exports none
digraph {
 graph [bgcolor="transparent"];
 node [shape="underline" penwidth="2" style="rounded,filled" fillcolor="#efefef" color="#c9c9c9" fontcolor="#000000" fontname="overpass"];
 edge [arrowhead=none color="#aaaaaa" penwidth="1.2"]
 // nodes
 "Task Managment" [color="#2ec27e"]
 "Email" [color="#1c71d8"]
 "Office suite" [color="#813d9c"]
 "Code editor" [color="#f5c211"]
 "Git client" [color="#e66100"]
 // "News feed" [color="#c01c28"]
 // "Personal Knowledge Base" [color="#986a44"]

 "Task Managment" -> "Email"
 "Task Managment" -> "Office suite"
 "Task Managment" -> "Code editor"
 "Task Managment" -> "Git client"
 // "Task Managment" -> "News feed"
 // "Task Managment" -> "Personal Knowledge Base"

 "Email" -> "Office suite"
 "Email" -> "Code editor"
 "Email" -> "Git client"
 // "Email" -> "Personal Knowledge Base"

 "Office suite" -> "Code editor"
 "Office suite" -> "Git client"
 // "Office suite" -> "News feed"
 // "Office suite" -> "Personal Knowledge Base"

 "Code editor" -> "Git client"

 // "News feed" -> "Personal Knowledge Base"
}
#+end_src

#+caption: Some sample workflow integrations that can be used within Emacs
#+attr_html: :class invertible :alt Graph of possible Emacs task integrations :style max-width:min(24em,100%)
#+attr_latex: :width 0.55\linewidth
[[file:misc/emacs-platform.svg]]

*** Some notably unique features

+ Recursive editing
+ Completely introspectable, with pervasive docstrings
+ Mutable environment, which can be incrementally modified
+ Functionality without applications
+ Client-server separation allows for a daemon, giving near-instant perceived
 startup time.

*** Issues

+ Emacs has irritating quirks
+ Some aspects are showing their age (naming conventions, APIs)
+ Emacs is ([[https://www.gnu.org/software/emacs/manual/html_node/elisp/Threads.html][mostly]]) single-threaded, meaning that when something holds that
 thread up the whole application freezes
+ A few other nuisances

*** Teach a man to fish...

#+begin_quote
Give a man a fish, and you feed him for a day. Teach a man to fish, and you feed
him for a lifetime. --- Anne Isabella
#+end_quote

Most popular editors have a simple and pretty [[https://code.visualstudio.com/docs/getstarted/settings][settings interface]], filled with
check-boxes, selects, and the occasional text-box. This makes it easy for the
user to pick between common desirable behaviours. To me this is now like /giving
a man a fish/.

What if you want one of those 'check-box' settings to be only on in certain
conditions? Some editors have workspace settings, but that requires you to
manually set the value for /every single instance/. Urgh, [[https://github.com/microsoft/vscode/issues/93153][what]] [[https://github.com/microsoft/vscode/issues/93628][a]] [[https://github.com/microsoft/vscode/issues/5595][pain]].

What if you could set the value of that 'check-box' setting to be the result of
an arbitrary expression evaluated for each file? This is where an editor like
Emacs comes in.
Configuration for Emacs isn't a list of settings in JSON etc. it's *an executable
program which modifies the behaviour of the editor to suit your liking*.
This is 'teaching a man to fish'.

Emacs is built in the same language you configure it in (Emacs [[https://en.wikipedia.org/wiki/Lisp_(programming_language)][Lisp]], or [[https://www.gnu.org/software/emacs/manual/html_node/eintr/][elisp]]).
It comes with a broad array of useful functions for text-editing, and Doom adds
a few handy little convenience functions.

Want to add a keybinding to delete the previous line? It's as easy as
#+name: Keybinding to delete the previous line
#+begin_src emacs-lisp :tangle no
(map! "C-d"
 (cmd! (previous-line)
 (kill-line)
 (forward-line)))
#+end_src

How about another example, say you want to be presented with a list of currently
open /buffers/ (think files, almost) when you split the window. It's as simple as
#+name: Prompt for buffer after split
#+begin_src emacs-lisp :tangle no
(defadvice! prompt-for-buffer (&rest _)
 :after 'window-split (switch-to-buffer))
#+end_src

Want to test it out? You don't need to save and restart, you can just /evaluate
the expression/ within your current Emacs instance and try it immediately! This
editor is, after all, a Lisp interpreter.

Want to tweak the behaviour? Just re-evaluate your new version --- it's a
super-tight iteration loop.

** Editor comparison

[[xkcd:378]]

Over the years I have tried out (spent at least a year using as my primary
editor) the following applications
- Python IDLE
- Komodo Edit
- Brackets
- VSCode
- and now, Emacs

I have attempted to quantify aspects of my impressions of them below.

#+plot: transpose:yes type:radar min:0 max:4 ticks:4 file:"misc/editor-comparison.svg"
| Editor | Extensibility | Ecosystem | Ease of Use | Comfort | Completion | Performance |
|-------------+---------------+-----------+-------------+---------+------------+-------------|
IDLE	1	1	3	1	1	2
VSCode	3	3	4	3.5	4	3
Brackets	2.5	2	3	3	2.5	2
Emacs	4	4	2	4	3.5	3
Komodo Edit	2	1	3	2	2	2

#+attr_html: :class invertible :alt Radar chart comparing my thoughts on a few editors.
#+attr_latex: :options inkscapelatex=false
[[file:misc/editor-comparison.svg]]

** Notes for the unwary adventurer

If you like the look of this, that's marvellous, and I'm really happy that I've
made something which you may find interesting, however:
#+begin_warning
This config is /insidious/. Copying the whole thing blindly can easily lead to
undesired effects. I recommend copying chunks instead.
#+end_warning

If you are so bold as to wish to steal bits of my config (or if I upgrade and
wonder why things aren't working), here's a list of sections which rely on
external setup (i.e. outside of this config).

+ dictionary :: I've downloaded a custom [[http://app.aspell.net/create][SCOWL]] dictionary, which I use in [[*Ispell][ispell]].
 If this causes issues, just delete the src_elisp{(setq ispell-dictionary ...)}
 bit.

There are also a number of files I may tangle to /other than/
={init,config,package}.el=. The complete list (excluding confpkg generated files)
is as follows:

#+begin_src emacs-lisp :results value list replace :exports results :eval yes
(mapcar
 (lambda (path)
 (format "=%s="
 (replace-regexp-in-string
 (regexp-quote (getenv "HOME")) "~"
 (expand-file-name path default-directory))))
 (sort
 (cl-remove-if
 (lambda (path)
 (or (member path '("yes" "no"))
 (string-match-p "^/tmp" path)))
 (cl-delete-duplicates
 (org-element-map (org-element-parse-buffer)
 'src-block
 (lambda (src)
 (let ((dest (alist-get :tangle
 (org-babel-parse-header-arguments
 (org-element-property :parameters src) t))))
 (if (and (stringp dest) (string-match-p "^(if" dest))
 (car (cl-set-difference
 (mapcar #'eval (seq-drop (read dest) 2))
 '("yes" "no")
 :test #'equal))
 dest))))
 :test #'equal))
 #'string<))
#+end_src

Oh, did I mention that I started this config when I didn't know any =elisp=, and
this whole thing is a hack job? If you can suggest any improvements, please do
so, no matter how much criticism you include I'll appreciate it :)

[[xkcd:1513]]

*** Extra Requirements

The lovely ~doom doctor~ is good at diagnosing most missing things, but here are a
few extras.
+ A [[https://www.tug.org/texlive/][LaTeX Compiler]] is required for the mathematics rendering performed in [[#org][Org]],
 and by [[*CalcTeX][CalcTeX]].
+ I use the [[https://overpassfont.org/][Overpass]] font as a go-to sans serif.
 It's used as my ~doom-variable-pitch-font~ and in the graph generated
 by [[*Roam][Roam]].
 I have chosen it because it possesses a few characteristics I consider
 desirable, namely:
 - A clean, and legible style. Highway-style fonts tend to be designed to be
 clear at a glance, and work well with a thicker weight, and this is inspired
 by /Highway Gothic/.
 - It's slightly quirky. Look at the diagonal cut on stems for example.
 Helvetica is a masterful design, but I like a bit more pizzazz now and then.
+ A few LSP servers. Take a look at [[file:init.el][init.el]] to see which modules have the ~+lsp~ flag.

** Current Issues
*** Magit push in daemon

Quite often trying to push to a remote in the Emacs daemon produces as error like this:

#+begin_example
128 git … push -v origin refs/heads/master\:refs/heads/master
Pushing to git@github.com:tecosaur/emacs-config.git

fatal: Could not read from remote repository.

Please make sure you have the correct access rights
and the repository exists.
#+end_example

*** Unread emails doesn't work across Emacs instances

It would be nice if it did, so that I could have the Emacs-daemon hold the
active mu4e session, but still get that information. In this case I'd want to
change the action to open the Emacs daemon, but it should be possible.

This would probably involve hooking into the daemon's modeline update function
to write to a temporary file, and having a file watcher started in other Emacs
instances, in a similar manner to [[*Rebuild mail index while using mu4e][Rebuild mail index while using mu4e]].

* Rudimentary configuration
** Confpkg
*** Motivation

Previously, all of my configuration was directly tangled into =config.el=. This
/almost/ satisfies my use. Occasionally though, I'd want to apply or extract a
/specific bit/ of my config in an elisp script, such as some of my Org-export
customisations. This is a hassle, either loading my entire config (of which 90%
simply complicates the state), or manually copying the relevant code in pieces,
one source block at a time (just a different kind of hassle). While I'd like to
think my config is "greater than the sum of its parts", much of it can be safely
clumped into self-contained packets of functionality.

One afternoon I thought "wouldn't it be nice if I could just load a few of those
self-contained chunks of my config", then I started thinking about how I could
have that /and/ =config.el=. This is the result.

*** Design

It's already natural to organise blocks of config under sections, and we can use
=:noweb-ref= with a =header-args:emacs-lisp= property to direct all child source
blocks into a single parent. We could have two parents, one tangling to
=subconf/config-X.el= and the other to =config.el=, however this will duplicate
any evaluations required to generate the content, which isn't great
(particularly for things which take a moment, like checking for LaTeX
packages). Instead we can /just/ write to the =subconf/*= files and then at the
end of tangling extract their contents into =config.el=.

#+begin_src dot :file misc/confpkg.svg :results file graphics
digraph {
 graph [bgcolor="transparent"];
 node [shape="underline" penwidth="2" style="rounded,filled" fillcolor="#efefef" color="#c9c9c9" fontcolor="#000000" fontname="Alegreya Sans"];
 edge [color="#aaaaaa" penwidth="1.2" fontname="Alegreya Sans"]
 rankdir="LR"
 "config.org" [color="#4db5bd"]
 "config.el" [color="#e69055"]
 node[color="#a991f1"]
 "subconf/config-magit.el"
 "subconf/config-org.el"
 "subconf/config-?.el"
 node[color="#51afef"]
 "config.org" -> "Magit#src1" -> "subconf/config-magit.el" -> "config.el"
 "config.org" -> "Magit#src2" -> "subconf/config-magit.el"
 "config.org" -> "Org#src1" -> "subconf/config-org.el" -> "config.el"
 "config.org" -> "Org#src2" -> "subconf/config-org.el"
 "config.org" -> "Org#..." -> "subconf/config-org.el"
 "config.org" -> "(etc.)#..." -> "subconf/config-?.el" -> "config.el"
}
#+end_src

#+caption: Flow of code information from the literate config into the generated files.
#+attr_html: :class invertible :alt DAG showing code block info go to config-*.el files then config.el
#+attr_latex: :width 0.7\linewidth
#+RESULTS:
[[file:misc/confpkg.svg]]

To set this up within each section, instead of manually repeating a common form
we can generate the form and supply the relevant section properties via a babel
call keyword, like so:

#+begin_src org
,* Subject

,#+call: confpkg("subject")

,#+begin_src emacs-lisp
;; Code that configures the subject...
,#+end_src
#+end_src

This isn't entirely straightforward, but with some mild abuse of noweb and babel
we can make it work!

*** Preparation

This approach is built around =#+call= invocations that affect the tangling.
Unfortunately for this use-case, babel call keywords are not executed on tangle.
Tangled noweb blocks /are/ however, and so we can fudge the behaviour we want by
tangling a noweb block to a temp file, with a noweb block that executes babel
calls in the buffer.

#+name: confpkg-prepare
#+begin_src emacs-lisp :noweb no-export
(condition-case nil
 (progn
 (message "Intitialising confpkg")
 <<bootstrap>>
 (org-fold-core-ignore-fragility-checks
 (org-babel-map-executables nil
 (when (eq (org-element-type (org-element-context)) 'babel-call)
 (org-babel-lob-execute-maybe)))))
 (quit (revert-buffer t t t)))
#+end_src

See the [[Bootstrap]] section for an explanation of the =<<bootstrap>>= noweb reference.

#+header: :tangle (expand-file-name (make-temp-name "emacs-org-babel-excuses/confpkg-prepare-") temporary-file-directory)
#+begin_src emacs-lisp :noweb no-export :mkdirp yes :export-embed no
<<confpkg-prepare()>>
#+end_src

*** Setup

Before generating the template with babel, we want to keep track of:
+ How many config groups are created
+ Information about each config group

To do this we can simply create two variables. Due to temp-buffer shenanigans,
we'll have to use global variables here.

Then we need to set up the two final phases of this process:
+ Creating =config.el=
+ Cleaning up the superfluous generated content

To trigger the final phases we'll add a hook to ~org-babel-post-tangle-hook~. Once
again, it would be preferred if this was done locally, but it needs to be
global. To avoid this causing headaches down the line we'll make sure when
implementing the hook function to have it remove itself from the hook when
executed.

#+name: confpkg-setup
#+begin_src emacs-lisp :results silent :noweb no-export
(setq confpkg--num 0
 confpkg--list nil)

<<confpkg-dependency-analysis>>
<<confpkg-strip-package-statements>>
<<confpkg-create-config>>
(defun confpkg-cleanup ()
 <<confpkg-cleanup>>
)
<<confpkg-finaliser>>

<<confpkg-clear-old-files>>

(add-hook 'org-babel-tangle-finished-hook #'confpkg-tangle-finalise)
#+end_src

To avoid generating cruft, it would also be good to get rid of old tangled
config files at the start.

#+name: confpkg-clear-old-files
#+begin_src emacs-lisp
(make-directory "subconf" t)
(dolist (conf-file (directory-files "subconf" t "config-.*\\.el"))
 (delete-file conf-file))
#+end_src

Now to have this take effect, we can just use a babel call keyword. Thanks to
the preparation step this will be executed during tangling.

#+call: confpkg-setup[:results none]()

*** Package generation

Now we actually implement the =confpkg= babel function. We could just direct the
output into the =subconf/config-X.el= file without any extra steps, but why not be
a bit fancier and make it more like a package.

To do this, we'll have =confpkg= load a template and then fill it in using
~format-spec~. To make sure this is actually used, we'll call ~org-set-property~ to
modify the parent heading, and register the config group with the variables we
created earlier.

#+name: confpkg
#+begin_src elisp :var name="" needs="" after="" pre="" prefix="config-" via="copy" emacs-minimum="29.1" :results silent raw :noweb no-export
;; Babel block for use with #+call
;; Arguments:
;; - name, the name of the config sub-package
;; - needs, (when non-empty) required system executable(s)
;; - after, required features as a string or vector of strings
;; - pre, a noweb reference to code that should be executed eagerly,
;; and not deferred via after. The code is not included in the
;; generated .el file and should only be used in dire situations.
;; - prefix, the package prefix ("config-" by default)
;; - via, how this configuration should be included in config.el,
;; the current options are:
;; + "copy", copy the configuration lisp
;; + "require", insert a require statement
;; + "none", do not do anything to load this configuration.
;; This only makes sense when configuration is either being
;; temporarily disabled or loaded indirectly/elsewhere.
;; - emacs-minimum, the minimum emacs version ("29.1" by default)
(when (or (string-empty-p needs)
 (cl-every #'executable-find (delq nil (split-string needs ","))))
 (let* ((name (if (string-empty-p name)
 (save-excursion
 (and (org-back-to-heading-or-point-min t)
 (substring-no-properties
 (org-element-interpret-data
 (org-element-property :title (org-element-at-point))))))
 name))
 (after
 (cond
 ((and (stringp after) (string-empty-p after)) nil)
 ((and (stringp after) (string-match-p "\\`[^()]+\\'" after))
 (intern after)) ; Single feature.
 ((and (vectorp after) (cl-every #'stringp after))
 (nconc (list :and) (mapcar #'intern after)))
 (t nil)))
 (pre (and (not (string-empty-p pre)) pre))
 (confpkg-name
 (concat prefix (replace-regexp-in-string
 "[^a-z-]" "-" (downcase name))))
 (confpkg-file (expand-file-name (concat confpkg-name ".el")
 "subconf")))
 (unless (file-exists-p confpkg-file)
 (make-empty-file confpkg-file t))
 (cl-incf confpkg--num)
 (org-set-property
 "header-args:emacs-lisp"
 (format ":tangle no :noweb-ref %s :noweb-sep \"\\n\\n\"" confpkg-name))
 (push (list :name name
 :package confpkg-name
 :file confpkg-file
 :after after
 :pre pre
 :via (intern via)
 :package-statements nil)
 confpkg--list)
 (format-spec
 "#+begin_src emacs-lisp :tangle %f :mkdirp yes :noweb no-export :noweb-ref none :comments no
<<confpkg-template>>
,#+end_src"
 `((?n . ,confpkg--num)
 (?p . ,confpkg-name)
 (?f . ,confpkg-file)
 (?e . ,emacs-minimum)
 (?Y . ,(format-time-string "%Y"))
 (?B . ,(format-time-string "%B"))
 (?m . ,(format-time-string "%m"))
 (?d . ,(format-time-string "%d"))
 (?M . ,(format-time-string "%M"))
 (?S . ,(format-time-string "%S"))))))
#+end_src

Now all that's needed is a template to be used.

#+name: confpkg-template
#+begin_src emacs-lisp :eval no
;;; %p.el --- Generated package (no.%n) from my config -*- lexical-binding: t; -*-
;;
;; Copyright (C) %Y TEC
;;
;; Author: TEC <https://code.tecosaur.net/tec>
;; Maintainer: TEC <contact@tecosaur.net>
;; Created: %B %d, %Y
;; Modified: %B %d, %Y
;; Version: %Y.%m.%d
;; Homepage: https://code.tecosaur.net/tec/emacs-config
;; Package-Requires: ((emacs \"%e\"))
;;
;; This file is not part of GNU Emacs.
;;
;;; Commentary:
;;
;; Generated package (no.%n) from my config.
;;
;; During generation, dependency on other aspects of my configuration and
;; packages is inferred via (regexp-based) static analysis. While this seems
;; to do a good job, this method is imperfect. This code likely depends on
;; utilities provided by Doom, and if you try to run it in isolation you may
;; discover the code makes more assumptions.
;;
;; That said, I've found pretty good results so far.
;;
;;; Code:

<<%p>>

(provide '%p)
;;; %p.el ends here
#+end_src

This currently makes the included content look much more package-like that in
truly is. However, I hope that some static analysis in future will allow for
dependency information to be collected and included.

Lastly, should there be an issue or interruption, it's possible that the
modifications from =#+call: confpkg= may persist. If I've been good with my
committing, resolving this should be as simple as reverting unstaged changes.
So... back in reality, it would be nice to have a way to clean up =confpkg=
residue.

#+name: confpkg-cleanup
#+begin_src emacs-lisp :results none
(org-fold-core-ignore-fragility-checks
 (org-babel-map-executables nil
 (when (and (eq (org-element-type (org-element-context)) 'babel-call)
 (equal (org-element-property :call (org-element-context)) "confpkg"))
 (org-babel-remove-result)
 (org-entry-delete nil "header-args:emacs-lisp"))))
#+end_src

*** Identify cross-package dependencies
:PROPERTIES:
:header-args:emacs-lisp: :noweb-ref confpkg-dependency-analysis
:END:

At a basic level, we can search for regexp expressions indicating the definition
of functions or variables and search for their usage.

#+begin_src emacs-lisp
(defun confpkg--rough-extract-definitions (file)
 (with-temp-buffer
 (insert-file-contents file)
 (goto-char (point-min))
 (let (symbols)
 (while (re-search-forward
 (rx line-start (* (any ?\s ?\t)) "("
 (or "defun" "defmacro" "defsubst" "defgeneric" "defalias" "defvar" "defcustom" "defface" "deftheme"
 "cl-defun" "cl-defmacro" "cl-defsubst" "cl-defmethod" "cl-defstruct" "cl-defgeneric" "cl-deftype")
 (+ (any ?\s ?\t))
 (group (+ (any "A-Z" "a-z" "0-9"
 ?+ ?- ?* ?/ ?_ ?~ ?! ?@ ?$?% ?^ ?& ?= ?: ?< ?> ?{ ?})))
 (or blank ?\n))
 nil t)
 (push (match-string 1) symbols))
 symbols)))
#+end_src

Continuing our rough regexp approach, we can construct a similar function to
look for uses of symbols.

#+begin_src emacs-lisp
(defun confpkg--rough-uses-p (file symbols)
 (with-temp-buffer
 (insert-file-contents file)
 (let ((symbols (copy-sequence symbols)) uses-p)
 (while symbols
 (goto-char (point-min))
 (if (re-search-forward (rx word-start (literal (car symbols)) word-end) nil t)
 (setq uses-p t symbols nil)
 (setq symbols (cdr symbols))))
 uses-p)))
#+end_src

Now we can put these two functions together to annotate ~confpkg--list~ with their
(confpkg) dependencies.

#+begin_src emacs-lisp
(defun confpkg-annotate-list-dependencies ()
 (dolist (confpkg confpkg--list)
 (plist-put confpkg :defines
 (confpkg--rough-extract-definitions
 (plist-get confpkg :file))))
 (dolist (confpkg confpkg--list)
 (let ((after (plist-get confpkg :after))
 requires)
 (dolist (other-confpkg confpkg--list)
 (when (and (not (eq other-confpkg confpkg))
 (confpkg--rough-uses-p (plist-get confpkg :file)
 (plist-get other-confpkg :defines)))
 (push (plist-get other-confpkg :package) requires)))
 (when (and after (symbolp after))
 (push after requires))
 (plist-put confpkg :requires requires))))
#+end_src

Finally, we can use this information to edit the confpkg files to add the
necessary ~require~ statements.

#+begin_src emacs-lisp
(defun confpkg-write-dependencies ()
 (dolist (confpkg confpkg--list)
 (when (plist-get confpkg :requires)
 (with-temp-buffer
 (setq buffer-file-name (plist-get confpkg :file))
 (insert-file-contents buffer-file-name)
 (re-search-forward "^;;; Code:\n")
 (insert "\n")
 (dolist (req (plist-get confpkg :requires))
 (insert (format "(require '%s)\n" req)))
 (write-region nil nil buffer-file-name)
 (set-buffer-modified-p nil)))))
#+end_src

*** Commenting out ~package!~ statements

It's easy enough to set ~package!~ statements to tangle to =packages.el=, however
with our noweb ref approach they will /also/ go to the config files. This could be
viewed as a problem, but I actually think it's rather nice to have the package
information with the config. So, we can look for an immediate ~package!~ statement
and simply comment it out. As a bonus, we can also then record which packages
are needed for each block of config.

#+name: confpkg-strip-package-statements
#+begin_src emacs-lisp
(defun confpkg-comment-out-package-statements ()
 (dolist (confpkg confpkg--list)
 (with-temp-buffer
 (setq buffer-file-name (plist-get confpkg :file))
 (insert-file-contents buffer-file-name)
 (goto-char (point-min))
 (while (re-search-forward "^;;; Code:\n[[:space:]\n]*(\\(package!\\|unpin!\\)[[:space:]\n]+\\([^[:space:]]+\\)\\b" nil t)
 (plist-put confpkg :package-statements
 (nconc (plist-get confpkg :package-statements)
 (list (match-string 2))))
 (let* ((start (progn (beginning-of-line) (point)))
 (end (progn (forward-sexp 1)
 (if (looking-at "[\t]*;.*")
 (line-end-position)
 (point))))
 (contents (buffer-substring start end))
 paste-start paste-end
 (comment-start ";")
 (comment-padding " ")
 (comment-end ""))
 (delete-region start (1+ end))
 (re-search-backward "^;;; Code:")
 (beginning-of-line)
 (insert ";; Package statement:\n")
 (setq paste-start (point))
 (insert contents)
 (setq paste-end (point))
 (insert "\n;;\n")
 (comment-region paste-start paste-end 2)))
 (when (buffer-modified-p)
 (write-region nil nil buffer-file-name)
 (set-buffer-modified-p nil)))))
#+end_src

*** Creating the config file

After all the subconfig files have been tangled, we need to collect their
content and put them together into =config.el=. For this, all that's needed is a
function to go through the registered config groups and put their content in a
tempbuffer. We can call this with the finalising step.

#+name: confpkg-create-config
#+begin_src emacs-lisp
(defun confpkg-create-config ()
 (let ((revert-without-query '("config\\.el"))
 (keywords (org-collect-keywords '("AUTHOR" "EMAIL")))
 (original-buffer (current-buffer)))
 (with-temp-buffer
 (insert
 (format ";;; config.el -*- lexical-binding: t; -*-

;; SPDX-FileCopyrightText: © 2020-%s %s <%s>
;; SPDX-License-Identifier: MIT

;; Generated at %s from the literate configuration.

(add-to-list 'load-path %S)\n"
 (format-time-string "%Y")
 (cadr (assoc "AUTHOR" keywords))
 (cadr (assoc "EMAIL" keywords))
 (format-time-string "%FT%T%z")
 (replace-regexp-in-string
 (regexp-quote (getenv "HOME")) "~"
 (expand-file-name "subconf/"))))
 (mapc
 (lambda (confpkg)
 (insert
 (if (eq 'none (plist-get confpkg :via))
 (format "\n;;; %s intentionally omitted.\n" (plist-get confpkg :name))
 (with-temp-buffer
 (cond
 ((eq 'copy (plist-get confpkg :via))
 (insert-file-contents (plist-get confpkg :file))
 (goto-char (point-min))
 (narrow-to-region
 (re-search-forward "^;;; Code:\n+")
 (progn
 (goto-char (point-max))
 (re-search-backward (format "[^\n\t][\n\t]*\n[\t]*(provide '%s)" (plist-get confpkg :package)))
 (match-end 0))))
 ((eq 'require (plist-get confpkg :via))
 (insert (format "(require '%s)\n" (plist-get confpkg :package))))
 (t (insert (format "(warn \"%s confpkg :via has unrecognised value: %S\" %S %S)"
 (plist-get confpkg :name) (plist-get confpkg :via)))))
 (goto-char (point-min))
 (insert "\n;;:------------------------"
 "\n;;; " (plist-get confpkg :name)
 "\n;;:------------------------\n\n")
 (when (plist-get confpkg :defines)
 (insert ";; This block defines "
 (mapconcat
 (lambda (d) (format "`%s'" d))
 (plist-get confpkg :defines)
 ", ")
 ".")
 (when (re-search-backward "\\([^,]+\\), \\([^,]+\\), \\([^,]+\\).\\="
 (line-beginning-position) t)
 (replace-match "\\1, \\2, and \\3."))
 (when (re-search-backward "\\([^,]+\\), \\([^,]+\\).\\="
 (line-beginning-position) t)
 (replace-match "\\1 and \\2."))
 (insert "\n\n")
 (forward-line -2)
 (setq-local comment-start ";")
 (fill-comment-paragraph)
 (forward-paragraph 1)
 (forward-line 1))
 (if (equal (plist-get confpkg :package) "config-confpkg-timings")
 (progn
 (goto-char (point-max))
 (insert "\n\n\
(confpkg-create-record 'doom-pre-config (float-time (time-subtract (current-time) before-init-time)))
(confpkg-start-record 'config)
(confpkg-create-record 'config-defered 0.0 'config)
(confpkg-create-record 'set-hooks 0.0 'config-defered)
(confpkg-create-record 'load-hooks 0.0 'config-defered)
(confpkg-create-record 'requires 0.0 'root)\n"))
 (let ((after (plist-get confpkg :after))
 (pre (and (plist-get confpkg :pre)
 (org-babel-expand-noweb-references
 (list "emacs-lisp"
 (format "<<%s>>" (plist-get confpkg :pre))
 '((:noweb . "yes")
 (:comments . "none")))
 original-buffer)))
 (name (replace-regexp-in-string
 "config--?" ""
 (plist-get confpkg :package))))
 (if after
 (insert (format "(confpkg-with-record '%S\n"
 (list (concat "hook: " name) 'set-hooks))
 (if pre
 (concat ";; Begin pre\n" pre "\n;; End pre\n")
 "")
 (format (if (symbolp after) ; If single feature.
 " (with-eval-after-load '%s\n"
 " (after! %s\n")
 after))
 (when pre
 (insert "\n;; Begin pre (unnecesary since after is unused)\n"
 pre
 "\n;; End pre\n")))
 (insert
 (format "(confpkg-with-record '%S\n"
 (list (concat "load: " name)
 (if after 'load-hooks 'config)))))
 (goto-char (point-max))
 (when (string-match-p ";" (thing-at-point 'line))
 (insert "\n"))
 (insert ")")
 (when (plist-get confpkg :after)
 (insert "))"))
 (insert "\n"))
 (buffer-string)))))
 (let ((confpkg-timings ;; Ensure timings is put first.
 (cl-some (lambda (p) (and (equal (plist-get p :package) "config-confpkg-timings") p))
 confpkg--list)))
 (append (list confpkg-timings)
 (nreverse (remove confpkg-timings confpkg--list)))))
 (insert "\n(confpkg-finish-record 'config)\n\n;;; config.el ends here")
 (write-region nil nil "config.el" nil :silent))))
#+end_src

Applying lexical binding to the config file is good for a number of reasons,
among which it's (slightly) faster than dynamic binding (see [[https://nullprogram.com/blog/2016/12/22/][this blog post]] for
more info).

*** Quieter output

All the babel evaluation here ends up being quite noisy (along with a few other
things during tangle), let's see if we can change that.

#+name: confpkg-quieter-output
#+begin_src emacs-lisp
(when noninteractive
 (unless (fboundp 'doom-shut-up-a)
 (defun doom-shut-up-a (fn &rest args)
 (let ((standard-output #'ignore)
 (inhibit-message t))
 (apply fn args))))
 (advice-add 'org-babel-expand-body:emacs-lisp :around #'doom-shut-up-a)
 ;; Quiet some other annoying messages
 (advice-add 'sh-set-shell :around #'doom-shut-up-a)
 (advice-add 'rng-what-schema :around #'doom-shut-up-a)
 (advice-add 'python-indent-guess-indent-offset :around #'doom-shut-up-a))
#+end_src

#+call: confpkg-quieter-output()

*** Reporting load time information

#+call: confpkg("Confpkg timings")

When generating the config we added a form to collect load-time information.

#+begin_src emacs-lisp
(defvar confpkg-load-time-tree (list (list 'root)))
(defvar confpkg-record-branch (list 'root))
(defvar confpkg-record-num 0)
#+end_src

It would be good to process ~confpkg-load-times~ at the end to make it more
useful, and provide a function to display load time information from it. This is
to aid in identification of confpkgs that take particularly long to load, and
thus would benefit from some attention.

To extract the per-confpkg load times, we can just take the difference in
~(float-time)~ and exclude the first entry.

#+begin_src emacs-lisp
(defun confpkg-create-record (name elapsed &optional parent enclosing)
 (let ((parent (assoc (or parent (car confpkg-record-branch))
 confpkg-load-time-tree))
 (record (cons name (list (list 'self
 :name (format "%s" name)
 :num (cl-incf confpkg-record-num)
 :elapsed elapsed
 :enclosing enclosing)))))
 (push record confpkg-load-time-tree)
 (push record (cdr parent))
 record))

(defun confpkg-start-record (name &optional parent)
 (let ((record (confpkg-create-record name 0.0e+NaN parent t)))
 (plist-put (cdadr record) :start (float-time))
 (push name confpkg-record-branch)
 record))

(defun confpkg-finish-record (name)
 (let ((self-record (cdar (last (cdr (assoc name confpkg-load-time-tree))))))
 (plist-put self-record :elapsed
 (- (float-time) (plist-get self-record :start) 0.0))
 (unless (equal (car confpkg-record-branch) name)
 (message "Warning: Confpkg timing record expected to finish %S, instead found %S. %S"
 name (car confpkg-record-branch) confpkg-record-branch))
 (setq confpkg-record-branch (cdr confpkg-record-branch))))
#+end_src

A convenience macro could be nice to have.

#+begin_src emacs-lisp
(defmacro confpkg-with-record (name &rest body)
 "Create a time record around BODY.
The record must have a NAME."
 (declare (indent 1))
 (let ((name-val (make-symbol "name-val"))
 (record-spec (make-symbol "record-spec")))
 `(let* ((,name-val ,name)
 (,record-spec (if (consp ,name-val) ,name-val (list ,name-val))))
 (apply #'confpkg-start-record ,record-spec)
 (unwind-protect
 (progn ,@body)
 (confpkg-finish-record (car ,record-spec))))))
#+end_src

It would also be nice to collect some other load-time-related information.

#+begin_src emacs-lisp
(defadvice! +require--log-timing-a (orig-fn feature &optional filename noerror)
 :around #'require
 (if (or (featurep feature)
 (eq feature 'cus-start) ; HACK Why!?!
 (assoc (format "require: %s" feature) confpkg-load-time-tree))
 (funcall orig-fn feature filename noerror)
 (confpkg-with-record (list (format "require: %s" feature)
 (and (eq (car confpkg-record-branch) 'root)
 'requires))
 (funcall orig-fn feature filename noerror))))
#+end_src

At last, we'll go to some pains to make a nice result tabulation function.

I will readily admit that this function is absolutely horrible. I just spent an
evening adding to it till it worked then stopped touching it. Maybe in the
future I'll go back to it and try to clean up the implementation.

#+begin_src emacs-lisp
(defun confpkg-timings-report (&optional sort-p node)
 "Display a report on load-time information.
Supply SORT-P (or the universal argument) to sort the results.
NODE defaults to the root node."
 (interactive
 (list (and current-prefix-arg t)))
 (let ((buf (get-buffer-create "*Confpkg Load Time Report*"))
 (depth 0)
 num-pad name-pad max-time max-total-time max-depth)
 (cl-labels
 ((sort-records-by-time
 (record)
 (let ((self (assoc 'self record)))
 (append (list self)
 (sort (nreverse (remove self (cdr record)))
 (lambda (a b)
 (> (or (plist-get (alist-get 'self a) :total) 0.0)
 (or (plist-get (alist-get 'self b) :total) 0.0)))))))
 (print-record
 (record)
 (cond
 ((eq (car record) 'self)
 (insert
 (propertize
 (string-pad (number-to-string (plist-get (cdr record) :num)) num-pad)
 'face 'font-lock-keyword-face)
 " "
 (propertize
 (apply #'concat
 (make-list (1- depth) "• "))
 'face 'font-lock-comment-face)
 (string-pad (format "%s" (plist-get (cdr record) :name)) name-pad)
 (make-string (* (- max-depth depth) 2) ?\s)
 (propertize
 (format "%.4fs" (plist-get (cdr record) :elapsed))
 'face
 (list :foreground
 (doom-blend 'orange 'green
 (/ (plist-get (cdr record) :elapsed) max-time))))
 (if (= (plist-get (cdr record) :elapsed)
 (plist-get (cdr record) :total))
 ""
 (concat " (Σ="
 (propertize
 (format "%.3fs" (plist-get (cdr record) :total))
 'face
 (list :foreground
 (doom-blend 'orange 'green
 (/ (plist-get (cdr record) :total) max-total-time))))
 ")"))
 "\n"))
 (t
 (cl-incf depth)
 (mapc
 #'print-record
 (if sort-p
 (sort-records-by-time record)
 (reverse (cdr record))))
 (cl-decf depth))))
 (flatten-records
 (records)
 (if (eq (car records) 'self)
 (list records)
 (mapcan
 #'flatten-records
 (reverse (cdr records)))))
 (tree-depth
 (records &optional depth)
 (if (eq (car records) 'self)
 (or depth 0)
 (1+ (cl-reduce #'max (cdr records) :key #'tree-depth))))
 (mapreduceprop
 (list map reduce prop)
 (cl-reduce
 reduce list
 :key
 (lambda (p) (funcall map (plist-get (cdr p) prop)))))
 (elaborate-timings
 (record)
 (if (eq (car record) 'self)
 (plist-get (cdr record) :elapsed)
 (let ((total (cl-reduce #'+ (cdr record)
 :key #'elaborate-timings))
 (self (cdr (assoc 'self record))))
 (if (plist-get self :enclosing)
 (prog1
 (plist-get self :elapsed)
 (plist-put self :total (plist-get self :elapsed))
 (plist-put self :elapsed
 (- (* 2 (plist-get self :elapsed)) total)))
 (plist-put self :total total)
 total))))
 (elaborated-timings
 (record)
 (let ((record (copy-tree record)))
 (elaborate-timings record)
 record)))
 (let* ((tree
 (elaborated-timings
 (append '(root)
 (copy-tree
 (alist-get (or node 'root)
 confpkg-load-time-tree
 nil nil #'equal))
 '((self :num 0 :elapsed 0)))))
 (flat-records
 (cl-remove-if
 (lambda (rec) (= (plist-get (cdr rec) :num) 0))
 (flatten-records tree))))
 (setq max-time (mapreduceprop flat-records #'identity #'max :elapsed)
 max-total-time (mapreduceprop flat-records #'identity #'max :total)
 name-pad (mapreduceprop flat-records #'length #'max :name)
 num-pad (mapreduceprop flat-records
 (lambda (n) (length (number-to-string n)))
 #'max :num)
 max-depth (tree-depth tree))
 (with-current-buffer buf
 (erase-buffer)
 (setq-local outline-regexp "[0-9]+ *\\(?:• \\)*")
 (outline-minor-mode 1)
 (use-local-map (make-sparse-keymap))
 (local-set-key "TAB" #'outline-toggle-children)
 (local-set-key "\t" #'outline-toggle-children)
 (local-set-key (kbd "<backtab>") #'outline-show-subtree)
 (local-set-key (kbd "C-<iso-lefttab>")
 (eval `(cmd! (if current-prefix-arg
 (outline-show-all)
 (outline-hide-sublevels (+ ,num-pad 2))))))
 (insert
 (propertize
 (concat (string-pad "#" num-pad) " "
 (string-pad "Confpkg"
 (+ name-pad (* 2 max-depth) -3))
 (format " Load Time (Σ=%.3fs)\n"
 (plist-get (cdr (assoc 'self tree)) :total)))
 'face '(:inherit (tab-bar-tab bold) :extend t :underline t)))
 (dolist (record (if sort-p
 (sort-records-by-time tree)
 (reverse (cdr tree))))
 (unless (eq (car record) 'self)
 (print-record record)))
 (set-buffer-modified-p nil)
 (goto-char (point-min)))
 (pop-to-buffer buf)))))
#+end_src

*** Finalise

At last, to clean up the content inserted by the babel calls we can just revert
the buffer. As long as ~org-babel-pre-tangle-hook~ hasn't been modified,
~save-buffer~ will be run at the start of the tangle process and so reverting will
take us back to just before the tangle started.

Since this is /the/ function added as the post-tangle hook, we also need to remove
the function from the hook and call the =config.el= creation function.

#+name: confpkg-finaliser
#+begin_src emacs-lisp
(defun confpkg-tangle-finalise ()
 (remove-hook 'org-babel-tangle-finished-hook #'confpkg-tangle-finalise)
 (revert-buffer t t t)
 (confpkg-comment-out-package-statements)
 (confpkg-annotate-list-dependencies)
 (confpkg-create-config)
 (confpkg-write-dependencies)
 (message "Processed %s elisp files" (length confpkg--list)))
#+end_src

Within ~confpkg-tangle-finalise~ we carefully order each step so that
the most important steps go first, to minimise the impact should a particular
step fail.

*** Bootstrap

This system makes use of some recent commits introduced to Org, such as [[https://git.savannah.gnu.org/cgit/emacs/org-mode.git/commit/?id=cb8bf4a0d][this
noweb expansion bugfix]] which will be included in Org 9.5.4. This is
problematic if using Emacs 28.2 or older, so to get around this we must go
through a bootstrap process.

[[xkcd:1739]]

To start with, we'll check if we are:
+ Running an Org version prior to 9.5.4
+ Running in a ~noninteractive~ session
+ Using an Org that's not installed in the user directory
+ In a session with the symbol ~exit!~ defined

#+name: bootstrap
#+begin_src emacs-lisp :noweb no-export
(let ((required-org-version "9.5.4")
 (standard-output t))
 (when (and (version< (org-version) required-org-version)
 (not (string-match-p (regexp-quote (expand-file-name "~"))
 (locate-library "org"))))
 (cond
 ((and noninteractive (fboundp 'exit!))
 (print! (warn (format "Detected conditions provoking a config bootstrap (Org %s)" (org-version))))
 (print! (start "Initiating bootstrap..."))
 <<bootstrap-perform>>
)
 (t (message "Installed Org version %s is too old, %s is needed.\nRun \"doom sync\" to fix."
 (org-version) required-org-version)))))
#+end_src

If these conditions are met, we can assume that the loaded Org version is
insufficient, and that it's likely a Emacs is currently running a command like
=doom sync=, and so it makes sense to perform the 3-step bootstrap.
1. Temporarily rename =config.org= to =config.original.org=.
2. Create a new =config.org= that when tangled results in Org being installed.
3. Swap back to the original =config.org=, and re-sync.

#+name: bootstrap-perform
#+begin_src emacs-lisp :noweb no-export
(print! (item "Temporarily relocating config.org to config.original.org"))
(rename-file "config.org" "config.original.org" t)
<<boostrap-create-transient-config>>
(print! (item "%s") (bold "Re-running sync"))
(exit! :restart) ; Re-run =doom sync= with the transient config.
#+end_src

With the approach worked out, we just need to generate a snipped that will
create a new =config.org= that when tangled:
+ Tangles our Org recipe to =packages.el=
+ Swaps back to the original =config.org=
+ Re-runs =doom sync=

#+name: boostrap-create-transient-config
#+begin_src emacs-lisp :noweb no-export
(print! (item "Creating minimal init.el"))

(let ((standard-output #'ignore))
 (with-temp-buffer
 (insert
 ";;; init.el -*- lexical-binding: t; -*-\n\n"
 (pp (quote
 <<bootstrap-init>>
)))
 (write-region nil nil "init.el")))

(print! (item "Creating boostrap config.el"))

(let ((standard-output #'ignore))
 (with-temp-buffer
 (insert
 (org-element-interpret-data
 (list
 '(keyword (:key "title" :value "Boostrap Stage 1 Config" :post-blank 1))
 `(src-block
 (:language "emacs-lisp"
 :value ,(pp (quote (progn
 <<boostrap-transition>>
)))
 :name "bootstrap-transition"
 :post-blank 1))
 `(src-block
 (:language "emacs-lisp"
 :parameters
 ,(concat ":noweb no-export "
 ":tangle (expand-file-name (make-temp-name \"emacs-org-babel-excuses/confpkg-prepare-\") temporary-file-directory) "
 ":mkdirp yes")
 :value ,(concat "<<" ; Split to avoid (prematurely) creating a noweb reference.
 "bootstrap-transition()"
 ">>\n"))))))
 (write-region nil nil "config.org")))
#+end_src

For the bootstrap we need a minimal =init.el=, just the literate module should be
sufficient.

#+name: bootstrap-init
#+begin_src emacs-lisp
(doom! :config literate)
#+end_src

This =config.org= simply provides an entry point for us to run elisp during
tangle. We just need to make use of it to install Org and re-sync the original
configuration.

#+name: boostrap-transition
#+begin_src emacs-lisp :noweb no-export
(setq standard-output t)

(print! (start "Starting second stage of the bootstrap."))
(print! (item "Creating minimal packages.el"))

(let ((standard-output #'ignore))
 (with-temp-buffer
 (insert
 ";; -*- no-byte-compile: t; -*-\n\n"
 (pp (quote
 <<org-pkg-statement()>>
)))
 (write-region nil nil "packages.el")))

(doom-packages-install)

(print! (item "Switching back to original config.org"))
(rename-file "config.original.org" "config.org" t)

(print! (item "%s") (bold "Re-running sync"))
(exit! :restart)
#+end_src

There we go, that should do the trick, so long as we call the =bootstrap= block at
the start of the tangle process. This is done by calling =bootstrap= within the
[[Preparation][confpkg preparation]] stage.

** Personal Information

#+call: confpkg()

It's useful to have some basic personal information
#+begin_src emacs-lisp
(setq user-full-name "TEC"
 user-mail-address "contact@tecosaur.net")
#+end_src
Apparently this is used by ~GPG~, and all sorts of other things.

Speaking of ~GPG~, I want to use =~/.authinfo.gpg= instead of the default in
=~/.config/emacs=. Why? Because my home directory is already cluttered, so this won't
make a difference, and I don't want to accidentally purge this file (I have done
src_shell{rm -rf~/.emac.d~ before}. I also want to cache as much as possible, as
my home machine is pretty safe, and my laptop is shutdown a lot.
#+begin_src emacs-lisp
(setq auth-sources '("~/.authinfo.gpg")
 auth-source-cache-expiry nil) ; default is 7200 (2h)
#+end_src

** Better defaults

#+call: confpkg()

*** Simple settings

Inspired by a few sources of modified defaults (such as [[https://github.com/angrybacon/dotemacs/blob/master/dotemacs.org#use-better-defaults][angrybacon/dotemacs]]) and
my own experiences, I've ended up with a small set of tweaks on top of the
changes Doom makes:

#+begin_src emacs-lisp
(setq-default
 delete-by-moving-to-trash t ; Delete files to trash
 window-combination-resize t ; take new window space from all other windows (not just current)
 x-stretch-cursor t) ; Stretch cursor to the glyph width

(setq undo-limit 80000000 ; Raise undo-limit to 80Mb
 evil-want-fine-undo t ; By default while in insert all changes are one big blob. Be more granular
 auto-save-default t ; Nobody likes to loose work, I certainly don't
 truncate-string-ellipsis "…" ; Unicode ellispis are nicer than "...", and also save /precious/ space
 password-cache-expiry nil ; I can trust my computers ... can't I?
 ;; scroll-preserve-screen-position 'always ; Don't have `point' jump around
 scroll-margin 2 ; It's nice to maintain a little margin
 display-time-default-load-average nil) ; I don't think I've ever found this useful

(display-time-mode 1) ; Enable time in the mode-line
(global-subword-mode 1) ; Iterate through CamelCase words
#+end_src

When using a device with a battery, it would be nice to display battery
 information. We can check for a battery during tangle via noweb, and only call
 ~display-battery-mode~ when relevant. From a look at the various status functions
 in =battery.el=, it seems like the ~?L~ key is consistently =N/A= when there is no
 battery, so we'll test on that.

#+name: battery-status-setup
#+begin_src emacs-lisp :noweb-ref none
(require 'battery)
(if (and battery-status-function
 (not (equal (alist-get ?L (funcall battery-status-function))
 "N/A")))
 (prin1-to-string `(display-battery-mode 1))
 "")
#+end_src

Now with noweb we' use the result.

#+begin_src emacs-lisp :noweb no-export
<<battery-status-setup()>>
#+end_src

*** Frame sizing

It's nice to control the size of new frames, when launching Emacs that can be
done with src_shell{emacs -geometry 160x48}. After the font size adjustment
during initialisation this works out to be ~102x31~.

Thanks to hotkeys, it's easy for me to expand a frame to half/full-screen, so it
makes sense to be conservative with the sizing of new frames.

Then, for creating new frames within the same Emacs instance, we'll just set the
default to be something roughly 80% of that size.

#+begin_src emacs-lisp
(add-to-list 'default-frame-alist '(height . 24))
(add-to-list 'default-frame-alist '(width . 80))
#+end_src

*** Auto-customisations

By default changes made via a customisation interface are added to =init.el=.
I prefer the idea of using a separate file for this. We just need to change a
setting, and load it if it exists.
#+begin_src emacs-lisp
(setq-default custom-file (expand-file-name ".custom.el" doom-user-dir))
(when (file-exists-p custom-file)
 (load custom-file))
#+end_src

*** Windows

I find it rather handy to be asked which buffer I want to see after splitting
the window. Let's make that happen.

First, we'll enter the new window
#+begin_src emacs-lisp
(setq evil-vsplit-window-right t
 evil-split-window-below t)
#+end_src

Then, we'll pull up a buffer prompt.
#+begin_src emacs-lisp
(defadvice! prompt-for-buffer (&rest _)
 :after '(evil-window-split evil-window-vsplit)
 (consult-buffer))
#+end_src

Window rotation is nice, and can be found under =SPC w r= and =SPC w R=.
/Layout/ rotation is also nice though. Let's stash this under =SPC w SPC=, inspired
by Tmux's use of =C-b SPC= to rotate windows.

We could also do with adding the missing arrow-key variants of the window
navigation/swapping commands.
#+begin_src emacs-lisp
(map! :map evil-window-map
 "SPC" #'rotate-layout
 ;; Navigation
 "<left>" #'evil-window-left
 "<down>" #'evil-window-down
 "<up>" #'evil-window-up
 "<right>" #'evil-window-right
 ;; Swapping windows
 "C-<left>" #'+evil/window-move-left
 "C-<down>" #'+evil/window-move-down
 "C-<up>" #'+evil/window-move-up
 "C-<right>" #'+evil/window-move-right)
#+end_src

*** Hippie expand

Completing text based on other availible content is a great idea, and so ~dabbrev~
(dynamic abbreviations) is throughly useful. There's another similar tool that
Emacs comes with though, called [[https://www.masteringemacs.org/article/text-expansion-hippie-expand][hippie expand]], which is just a bit nicer yet,
and can be used as a swap-in upgrade to ~dabbrev~.

#+begin_src emacs-lisp
(global-set-key [remap dabbrev-expand] #'hippie-expand)
#+end_src

**** Expansion prioritisation

Hippie expand works by cycling through a series of expansion-generating
functions, listed in the variable ~hippie-expand-try-functions-list~.

By default, it completes (in order):
+ File names
+ Known abbreviations
+ Lists (i.e. bracketed regions)
+ Previous lines
+ Dabbrev (this buffer)
+ Dabbrev (all buffers)
+ Dabbrev (kill ring)
+ Known elisp symbols

I find that ~try-expand-line~ completions often appear when I actually want a
dabbrev completion, so let's deprioritise it somewhat. If I actually want to try
for a line expansion, it's fairly easy to deliberately trigger it --- just
invoke ~hippie-expand~ after typing a space and there will be no dabbrev
candidates.

Speaking of dabbrev, I do think of hippie-expand mostly as "a stangely named
dabbrev+", so let's prioritise the dabbrev-related expanders a bit. I'll also
toss in a nice non-default expansion generator as the first dabbrev candidate
function: ~try-expand-dabbrev-visible~.

There's another cool source of multi-word expansion (actually multi-line) that
isn't used by default, ~try-expand-dabbrev-from-kill~. I personally think this one
is quite neat, but don't want it to interfere with more common single-word
completions, and so will place it just above ~try-expand-line~.

#+begin_src emacs-lisp
(setq hippie-expand-try-functions-list
 '(try-expand-list
 try-expand-dabbrev-visible
 try-expand-dabbrev
 try-expand-all-abbrevs
 try-expand-dabbrev-all-buffers
 try-complete-file-name-partially
 try-complete-file-name
 try-expand-dabbrev-from-kill
 try-expand-whole-kill
 try-expand-line
 try-complete-lisp-symbol-partially
 try-complete-lisp-symbol))
#+end_src

Unfortunately there's one aspect of ~try-expand-dabbrev-from-kill~ that I find
lets me down a bit, which is that it fails to complete when the killed text
starts with a newline and the current line does not. I'll see if I can do
something about this in the future.

**** Suffix stripping

I am occasionally annoyed by expansions that I make mid-line and cause a common
suffix in the completion to be repeated. For instance, say in an earlier line of
a file I have:

#+begin_example
func foo(int x, int y, int z)
#+end_example

where the =int y= argument has just been added. I move to another function that
should have the same adjustment and invoke hippie-expand (at ~|~) to save me keystrokes:

#+begin_example
func bar(int x,| int z)
#+end_example

This invokes ~try-expand-list~ and completes to

#+begin_example
func bar(int x, int y, int z) int z)
#+end_example

Clearly, that's not what I want! I suspect that we can make it "just work" the
vast majority of the time by looking to see if there's a suffix in the
completion that's also a prefix of the remainder of the line, and stripping it.
In our example, this would be =int z)= which would turn the completed line into:

#+begin_example
func bar(int x, int y, int z)
#+end_example

Hippie-expand doesn't provide a good point to modify expansion behaviour like
this, however the insertion of the expansion is handled by the helper function
~he-substitute-strings~, which we can advise to behave as we wish.

#+begin_src emacs-lisp
(defun +he-subst-suffix-overlap (ins rem)
 "The longest suffix of the string INS that is a prefix of REM.
This is intended to be used when INS is a newly inserted string and REM is the
remainder of the line, to allow for handling potentially duplicated content."
 (let ((len (min (length ins) (length rem))))
 (while (and (> len 0)
 (not (eq 't (compare-strings ins (- len) nil rem 0 len))))
 (setq len (1- len)))
 len))

(defun +he-suffix-strip-a (args)
 "Filter ARG list for `he-substitute-string', truncating duplicated suffix.
ARGS is the raw argument list (STRING &optional TRANS-CASE)."
 (pcase-let* ((`(,ins &optional ,trans-case) args)
 (rem (save-excursion
 (goto-char (marker-position he-string-end))
 (buffer-substring-no-properties
 (point) (line-end-position))))
 (ov (+he-subst-suffix-overlap ins rem)))
 (when (>= ov 0)
 (setq ins (substring ins 0 (- (length ins) ov))))
 (list ins trans-case)))

(advice-add #'he-substitute-string :filter-args #'+he-suffix-strip-a)
#+end_src

*** Buffer defaults

I'd much rather have my new buffers in ~org-mode~ than ~fundamental-mode~, hence
#+begin_src emacs-lisp
;; (setq-default major-mode 'org-mode)
#+end_src
For some reason this + the mixed pitch hook causes issues with hydra and so I'll
just need to resort to =SPC b o= for now.

** Doom configuration

#+call: confpkg("Doom")

*** Modules
:PROPERTIES:
:header-args:emacs-lisp: :tangle no
:END:

Doom has this lovely /modular configuration base/ that takes a lot of work out of
configuring Emacs. Each module (when enabled) can provide a list of packages to
install (on ~doom sync~) and configuration to be applied. The modules can also
have flags applied to tweak their behaviour.

#+name: init.el
#+attr_html: :collapsed t
#+begin_src emacs-lisp :tangle "init.el" :noweb no-export :noweb-ref none
;;; init.el -*- lexical-binding: t; -*-

;; This file controls what Doom modules are enabled and what order they load in.
;; Press 'K' on a module to view its documentation, and 'gd' to browse its directory.

(doom! :input
 <<doom-input>>

 :completion
 <<doom-completion>>

 :ui
 <<doom-ui>>

 :editor
 <<doom-editor>>

 :emacs
 <<doom-emacs>>

 :term
 <<doom-term>>

 :checkers
 <<doom-checkers>>

 :tools
 <<doom-tools>>

 :os
 <<doom-os>>

 :lang
 <<doom-lang>>

 :email
 <<doom-email>>

 :app
 <<doom-app>>

 :config
 <<doom-config>>
)
#+end_src

**** Structure

As you may have noticed by this point, this is a [[https://en.wikipedia.org/wiki/Literate_programming][literate]] configuration. Doom
has good support for this which we access though the ~literate~ module.

While we're in the src_elisp{:config} section, we'll use Dooms nicer defaults,
along with the bindings and smartparens behaviour (the flags aren't documented,
but they exist).
#+name: doom-config
#+begin_src emacs-lisp
literate
(default +bindings +smartparens)
#+end_src

**** Interface

There's a lot that can be done to enhance Emacs' capabilities.
I reckon enabling half the modules Doom provides should do it.

#+name: doom-completion
#+begin_src emacs-lisp
;; company ; the ultimate code completion backend
(corfu +orderless +dabbrev) ; complete with cap(f), cape and a flying feather!
;;helm ; the *other* search engine for love and life
;;ido ; the other *other* search engine...
;; (ivy ; a search engine for love and life
;; +icons ; ... icons are nice
;; +prescient) ; ... I know what I want(ed)
(vertico +icons) ; the search engine of the future
#+end_src

#+name: doom-ui
#+begin_src emacs-lisp
;;deft ; notational velocity for Emacs
doom ; what makes DOOM look the way it does
doom-dashboard ; a nifty splash screen for Emacs
doom-quit ; DOOM quit-message prompts when you quit Emacs
;; (emoji +unicode) ; 🙂
;;fill-column ; a `fill-column' indicator
hl-todo ; highlight TODO/FIXME/NOTE/DEPRECATED/HACK/REVIEW
;;hydra ; quick documentation for related commands
;;indent-guides ; highlighted indent columns, notoriously slow
(ligatures +extra) ; ligatures and symbols to make your code pretty again
;;minimap ; show a map of the code on the side
modeline ; snazzy, Atom-inspired modeline, plus API
nav-flash ; blink the current line after jumping
;;neotree ; a project drawer, like NERDTree for vim
ophints ; highlight the region an operation acts on
(popup ; tame sudden yet inevitable temporary windows
 +all ; catch all popups that start with an asterix
 +defaults) ; default popup rules
;;(tabs ; an tab bar for Emacs
;; +centaur-tabs) ; ... with prettier tabs
treemacs ; a project drawer, like neotree but cooler
;;unicode ; extended unicode support for various languages
(vc-gutter +pretty) ; vcs diff in the fringe
vi-tilde-fringe ; fringe tildes to mark beyond EOB
(window-select +numbers) ; visually switch windows
workspaces ; tab emulation, persistence & separate workspaces
zen ; distraction-free coding or writing
#+end_src

#+name: doom-editor
#+begin_src emacs-lisp
(evil +everywhere) ; come to the dark side, we have cookies
file-templates ; auto-snippets for empty files
fold ; (nigh) universal code folding
(format) ; automated prettiness
;;god ; run Emacs commands without modifier keys
;;lispy ; vim for lisp, for people who don't like vim
multiple-cursors ; editing in many places at once
;;objed ; text object editing for the innocent
;;parinfer ; turn lisp into python, sort of
rotate-text ; cycle region at point between text candidates
snippets ; my elves. They type so I don't have to
;;word-wrap ; soft wrapping with language-aware indent
#+end_src

#+name: doom-emacs
#+begin_src emacs-lisp
(dired +icons) ; making dired pretty [functional]
electric ; smarter, keyword-based electric-indent
(ibuffer +icons) ; interactive buffer management
undo ; persistent, smarter undo for your inevitable mistakes
vc ; version-control and Emacs, sitting in a tree
#+end_src

#+name: doom-term
#+begin_src emacs-lisp
;;eshell ; the elisp shell that works everywhere
;;shell ; simple shell REPL for Emacs
;;term ; basic terminal emulator for Emacs
vterm ; the best terminal emulation in Emacs
#+end_src

#+name: doom-checkers
#+begin_src emacs-lisp
syntax ; tasing you for every semicolon you forget
;; spell ; tasing you for misspelling mispelling
grammar ; tasing grammar mistake every you make
#+end_src

#+name: doom-tools
#+begin_src emacs-lisp
ansible ; a crucible for infrastructure as code
biblio ; Writes a PhD for you (citation needed)
;;collab ; buffers with friends
;;debugger ; FIXME stepping through code, to help you add bugs
;;direnv ; be direct about your environment
docker ; port everything to containers
;;editorconfig ; let someone else argue about tabs vs spaces
;;ein ; tame Jupyter notebooks with emacs
(eval +overlay) ; run code, run (also, repls)
;;gist ; interacting with github gists
(lookup ; helps you navigate your code and documentation
 +dictionary ; dictionary/thesaurus is nice
 +docsets) ; ...or in Dash docsets locally
lsp ; Language Server Protocol
(magit ; a git porcelain for Emacs
 +forge) ; interface with git forges
make ; run make tasks from Emacs
;;pass ; password manager for nerds
pdf ; pdf enhancements
;;prodigy ; FIXME managing external services & code builders
;;terraform ; infrastructure as code
;;tmux ; an API for interacting with tmux
;;tree-sitter ; syntax and parsing, sitting in a tree...
upload ; map local to remote projects via ssh/ftp
#+end_src

#+name: doom-os
#+begin_src emacs-lisp
(:if (featurep :system 'macos) macos) ; improve compatibility with macOS
tty ; improve the terminal Emacs experience
#+end_src

**** Language support

We can be rather liberal with enabling support for languages as the associated
packages/configuration are (usually) only loaded when first opening an
associated file.

#+name: doom-lang
#+begin_src emacs-lisp
;;agda ; types of types of types of types...
;;beancount ; mind the GAAP
;;(cc +lsp) ; C > C++ == 1
;;clojure ; java with a lisp
;;common-lisp ; if you've seen one lisp, you've seen them all
;;coq ; proofs-as-programs
;;crystal ; ruby at the speed of c
;;csharp ; unity, .NET, and mono shenanigans
data ; config/data formats
;;(dart +flutter) ; paint ui and not much else
;;dhall ; JSON with FP sprinkles
;;elixir ; erlang done right
;;elm ; care for a cup of TEA?
emacs-lisp ; drown in parentheses
;;erlang ; an elegant language for a more civilized age
ess ; emacs speaks statistics
;;faust ; dsp, but you get to keep your soul
;;fsharp ; ML stands for Microsoft's Language
;;fstar ; (dependent) types and (monadic) effects and Z3
;;gdscript ; the language you waited for
;;(graphql +lsp) ; Give queries a REST
(go +lsp) ; the hipster dialect
;;(haskell +lsp) ; a language that's lazier than I am
;;hy ; readability of scheme w/ speed of python
;;idris ;
json ; At least it ain't XML
;;(java +lsp) ; the poster child for carpal tunnel syndrome
(javascript +lsp) ; all(hope(abandon(ye(who(enter(here))))))
(julia +lsp) ; Python, R, and MATLAB in a blender
;;kotlin ; a better, slicker Java(Script)
(latex ; writing papers in Emacs has never been so fun
 +latexmk ; what else would you use?
 +cdlatex ; quick maths symbols
 +fold) ; fold the clutter away nicities
;;lean ; proof that mathematicians need help
;;factor ; for when scripts are stacked against you
;;ledger ; an accounting system in Emacs
lua ; one-based indices? one-based indices
markdown ; writing docs for people to ignore
;;nim ; python + lisp at the speed of c
nix ; I hereby declare "nix geht mehr!"
;;ocaml ; an objective camel
(org ; organize your plain life in plain text
 +dragndrop ; drag & drop files/images into org buffers
 ;;+hugo ; use Emacs for hugo blogging
 +noter ; enhanced PDF notetaking
 +jupyter ; ipython/jupyter support for babel
 +pandoc ; export-with-pandoc support
 +gnuplot ; who doesn't like pretty pictures
 ;;+pomodoro ; be fruitful with the tomato technique
 +present ; using org-mode for presentations
 +roam2) ; wander around notes
;;php ; perl's insecure younger brother
;;plantuml ; diagrams for confusing people more
;;purescript ; javascript, but functional
(python +lsp +pyright) ; beautiful is better than ugly
;;qt ; the 'cutest' gui framework ever
;;racket ; a DSL for DSLs
;;raku ; the artist formerly known as perl6
;;rest ; Emacs as a REST client
;;rst ; ReST in peace
;;(ruby +rails) ; 1.step {|i| p "Ruby is #{i.even? ? 'love' : 'life'}"}
(rust +lsp) ; Fe2O3.unwrap().unwrap().unwrap().unwrap()
;;scala ; java, but good
scheme ; a fully conniving family of lisps
sh ; she sells {ba,z,fi}sh shells on the C xor
;;sml ; no, the /other/ ML
;;solidity ; do you need a blockchain? No.
;;swift ; who asked for emoji variables?
;;terra ; Earth and Moon in alignment for performance.
web ; the tubes
yaml ; JSON, but readable
zig ; C, but simpler
#+end_src

**** Input

#+name: doom-input
#+begin_src emacs-lisp
;;bidi ; (tfel ot) thgir etirw uoy gnipleh
;;chinese
;;japanese
;;layout ; auie,ctsrnm is the superior home row
#+end_src

**** Everything in Emacs

It's just too convenient being able to have everything in Emacs.
I couldn't resist the Email and Feed modules.

#+name: doom-email
#+begin_src emacs-lisp
(:if (executable-find "mu") (mu4e +org))
;;notmuch
;;(wanderlust +gmail)
#+end_src

#+name: doom-app
#+begin_src emacs-lisp
;;calendar ; A dated approach to timetabling
;;emms ; Multimedia in Emacs is music to my ears
everywhere ; *leave* Emacs!? You must be joking.
irc ; how neckbeards socialize
(rss +org) ; emacs as an RSS reader
;;twitter ; twitter client https://twitter.com/vnought
#+end_src

*** Profiles

Doom has support for multiple configuration profiles. For general usage, this
isn't a particularly useful feature, but for niche use cases it's fantastic.

#+begin_src emacs-lisp :tangle ~/.config/emacs/profiles.el :noweb-ref none
((orgdev (env ("DOOMDIR" . "~/.config/doom.orgdev"))))
#+end_src

**** Org development profile
:PROPERTIES:
:header-args:emacs-lisp: :noweb-ref none
:END:

For development purposes, it's handy to have a more minimal config without my
many customisations and interacting packages. Let's go ahead and create a
near-minimal new config:

#+begin_src emacs-lisp :tangle ../doom.orgdev/init.el :mkdirp yes
;;; init.el -*- lexical-binding: t; -*-
(doom! :completion vertico
 :editor evil
 :config (default +bindings))
#+end_src

#+begin_src emacs-lisp :tangle ../doom.orgdev/packages.el :noweb no-export
(unpin! org) ; there be bugs
#+end_src

#+begin_src emacs-lisp :tangle ../doom.orgdev/config.el
(require 'org)
(load-theme 'modus-operandi t)
#+end_src

*** Visual Settings
**** Font Face
***** Setting fonts

'Fira Code' is nice, and 'Overpass' makes for a nice sans companion. We just need to
fiddle with the font sizes a tad so that they visually match. Just for fun I'm
trying out JetBrains Mono though. So far I have mixed feelings on it, some
aspects are nice, but on others I prefer Fira.

#+begin_src emacs-lisp
(setq doom-font (font-spec :family "JetBrains Mono" :size 24)
 doom-big-font (font-spec :family "JetBrains Mono" :size 36)
 doom-variable-pitch-font (font-spec :family "Overpass" :size 26)
 doom-symbol-font (font-spec :family "JuliaMono")
 doom-emoji-font (font-spec :family "Twitter Color Emoji") ; Just used by me
 doom-serif-font (font-spec :family "IBM Plex Mono" :size 22 :weight 'light))
#+end_src

#+attr_html: :class invertible :alt Screenshot of the fonts within Emacs.
[[https://code.tecosaur.net/tec/emacs-config/media/branch/master/misc/screenshots/font-face.png]]

In addition to these fonts, Merriweather is used with =nov.el=, and Alegreya as a
serifed proportional font used by =mixed-pitch-mode= for =writeroom-mode= with Org
files.

***** Emojis

Emacs (28+) has an ~emoji~ script table. We're about to use it, but before doing
so we're going to excise a few characters that I actually want rendered as
using the symbol font (not as emojis).

#+begin_src emacs-lisp
(dolist (char '(?⏩ ?⏪ ?❓))
 (set-char-table-range char-script-table char 'symbol))
#+end_src

To actually sort out emojis, all that's really needed here is to apply
=doom-emoji-font=, which needs to be done /here/ because it's not /actually/ a Doom
font variable, but rather my own addition.

#+begin_src emacs-lisp
(add-hook! 'after-setting-font-hook
 (defun +emoji-set-font ()
 (set-fontset-font t 'emoji doom-emoji-font nil 'prepend)))
#+end_src

We might as well also construct a regexp to make identifying emojis if buffers
more convenient.

#+begin_src emacs-lisp
(defvar +emoji-rx
 (let (emojis)
 (map-char-table
 (lambda (char set)
 (when (eq set 'emoji)
 (push (copy-tree char) emojis)))
 char-script-table)
 (rx-to-string `(any ,@emojis)))
 "A regexp to find all emoji-script characters.")
#+end_src

For the sake of convenient insertion, we'll also register some emoji aliases
based on common usage.

#+begin_src emacs-lisp
(setq emoji-alternate-names
 '(("🙂" ":)")
 ("😄" ":D")
 ("😉" ";)")
 ("🙁" ":(")
 ("😆" "laughing face" "xD")
 ("🤣" "ROFL face")
 ("😢" ":'(")
 ("🥲" ":')")
 ("😮" ":o")
 ("😑" ":|")
 ("😎" "cool face")
 ("🤪" "goofy face")
 ("🤥" "pinnochio face" "liar face")
 ("😠" ">:(")
 ("😡" "angry+ face")
 ("🤬" "swearing face")
 ("🤢" "sick face")
 ("😈" "smiling imp")
 ("👿" "frowning imp")
 ("❤️" "<3")
 ("🫡" "o7")
 ("👍" "+1")
 ("👎" "-1")
 ("👈" "left")
 ("👉" "right")
 ("👆" "up")
 ("💯" "100")
 ("💸" "flying money")))
#+end_src

Lastly, when using Emacs 28+ it would be nice to open the nice emoji dispatch
with the leader key as well as =C-x 8 e=. Since =SPC e= is unclaimed, let's just use
that until we have a better use for it (we could also split up the insertion and
querying commands in other parts of the map).

#+begin_src emacs-lisp
(when (>= emacs-major-version 29)
 (map! :leader
 (:prefix ("e" . "Emoji")
 :desc "Search" "s" #'emoji-search
 :desc "Recent" "r" #'emoji-recent
 :desc "List" "l" #'emoji-list
 :desc "Describe" "d" #'emoji-describe
 :desc "Insert" "i" #'emoji-insert
 :desc "Insert" "e" #'emoji-insert)))
#+end_src

***** Checking the system

Because we care about how things look let's add a check to make sure we're told
if the system doesn't have any of those fonts. We can obtain a list of installed
fonts with either ~(font-family-list)~ or with the ~fc-list~ command.

#+name: detect-missing-fonts
#+begin_src emacs-lisp :noweb-ref none
(setq required-fonts '("JetBrains ?Mono.*" "Overpass" "JuliaMono" "IBM Plex Mono"
 "Merriweather" "Alegreya" "Twitter Color Emoji"))

(setq available-fonts
 (delete-dups
 (or (font-family-list)
 (and (executable-find "fc-list")
 (with-temp-buffer
 (call-process "fc-list" nil t nil ":" "family")
 (split-string (buffer-string) "[,\n]"))))))

(setq missing-fonts
 (delq nil (mapcar
 (lambda (font)
 (unless (delq nil (mapcar (lambda (f)
 (string-match-p (format "^%s$" font) f))
 available-fonts))
 font))
 required-fonts)))
#+end_src

We can then use this to create a =doctor= check.

#+begin_src emacs-lisp :noweb yes :noweb-ref doctor
(let (required-fonts available-fonts missing-fonts)
 <<detect-missing-fonts>>
 (if available-fonts
 (dolist (font missing-fonts)
 (warn! (format "Missing font: %s." font)))
 (warn! "Unable to check for missing fonts, is fc-list installed?")))
#+end_src

Furthermore, when fonts /are/ missing, it could be good to check the state of
affairs on startup.

#+name: warn-missing-fonts
#+begin_src emacs-lisp :tangle no :noweb yes :noweb-ref none
<<detect-missing-fonts>>

(if missing-fonts
 (pp-to-string
 `(unless noninteractive
 (add-hook! 'doom-init-ui-hook
 (run-at-time nil nil
 (lambda ()
 (let (required-fonts available-fonts missing-fonts)
 <<detect-missing-fonts>>
 (message "%s missing the following fonts: %s"
 (propertize "Warning!" 'face '(bold warning))
 (mapconcat (lambda (font)
 (propertize font 'face 'font-lock-variable-name-face))
 ',missing-fonts
 ", ")))
 (sleep-for 0.5))))))
 ";; No missing fonts detected")
#+end_src

#+begin_src emacs-lisp :noweb no-export
<<warn-missing-fonts()>>
#+end_src

This way whenever fonts are missing, after Doom's UI has initialised, a warning
listing the missing fonts should appear for at least half a second.

**** Theme

The ~doom-one~ theme is nice and all, but I find the ~vibrant~ variant nicer. With
the light themes, I rather like ~doom-tomorrow-day~. I'd like to pick the default
from them based on the system theme. Thanks to the continued expansion of the
=xdg-desktop-portal= protocols, we can read this from D-Bus on most systems.

#+name: default-theme
#+begin_src emacs-lisp :noweb-ref none
(let ((light-theme 'doom-tomorrow-day)
 (dark-theme 'doom-vibrant)
 (system-theme
 (or (and (memq system-type '(gnu gnu/linux gnu/kfreebsd))
 (require 'dbus nil t)
 (caar
 (ignore-errors
 (dbus-call-method
 :session
 "org.freedesktop.portal.Desktop" "/org/freedesktop/portal/desktop"
 "org.freedesktop.portal.Settings" "Read"
 "org.freedesktop.appearance" "color-scheme"))))
 0)))
 (pcase system-theme
 (1 dark-theme)
 (2 light-theme)
 (_ dark-theme)))
#+end_src

We'll use the appropriate theme as the default, but let's also accept the theme
as an environment variable =DOOM_THEME= for fun.

#+begin_src emacs-lisp :noweb yes
(setq doom-theme ; Set according to the env var or system-dependent default
 (let ((env-theme (getenv "DOOM_THEME")))
 (if env-theme
 (intern env-theme) ; Note: `intern-soft' doesn't work here
 '<<default-theme()>>)))
#+end_src

Oh, and with the nice selection doom provides there's no reason for me to want
the defaults.

#+begin_src emacs-lisp
(delq! t custom-theme-load-path)
#+end_src

While the theme environment variable is nice for flexibility, when starting
Emacs in a terminal it doesn't help us set the right sort of theme
automatically. However, we can check if we're in a terminal and pick a default
theme colour accordingly.

#+begin_src emacs-lisp
(declare-function 'xterm-query "xterm")

(defvar term-background-rgb nil
 "A RGB triple corresponding to the current terminal background, if known.")

(defun +interpret-term-bg ()
 "Examine an OSC color query response, and set `term-background-rgb' accordingly."
 (let ((str "")
 chr)
 ;; The reply should be: \e] 11 ; rgb: NUMBER1 / NUMBER2 / NUMBER3 \e \\
 (while (and (setq chr (xterm--read-event-for-query)) (not (equal chr ?\\)))
 (setq str (concat str (string chr))))
 (when (string-match
 "rgb:\\([a-f0-9]+\\)/\\([a-f0-9]+\\)/\\([a-f0-9]+\\)" str)
 (let ((r (string-to-number (match-string 1 str) 16))
 (g (string-to-number (match-string 2 str) 16))
 (b (string-to-number (match-string 3 str) 16)))
 (setq term-background-rgb (list r g b))))))

(defun +doom-init-theme-termaware ()
 "Update `doom-theme' if in a terminal, unless DOOM_THEME has been set."
 (let (term-shade)
 (when (and (not (display-graphic-p (selected-frame)))
 (not (getenv "DOOM_THEME"))
 (require 'xterm nil t))
 (message "Querying terminal background color")
 (xterm--query "\e]11;?\e\\" '(("\e]11;" . +interpret-term-bg)))
 (when term-background-rgb
 (setq term-shade (if (< (apply #'+ term-background-rgb) (* 0.6 3 65535))
 'dark 'light))
 (pcase term-shade
 ('dark (setq doom-theme 'doom-vibrant))
 ('light (setq doom-theme 'doom-tomorrow-day)))))
 (doom-init-theme-h)))
#+end_src

Lastly, I had some issues with theme race conditions, which seem to be resolved
by moving =doom-init-theme-h= around. Henrik attempted to help with this in May
2021 but we didn't manage to pin down the issue. It may be worth periodically
checking back and seeing if this is still needed. We might as well inject
~+doom-init-theme-termaware~ while we're at it.

#+begin_src emacs-lisp
(remove-hook 'window-setup-hook #'doom-init-theme-h)
(remove-hook 'after-init-hook #'doom-init-theme-h)
(add-hook 'after-init-hook #'+doom-init-theme-termaware 'append)
#+end_src

**** Line numbers

Relative line numbers are fantastic for knowing how far away line numbers are,
then =ESC 12 <UP>= gets you exactly where you think.

#+begin_src emacs-lisp
(setq display-line-numbers-type 'relative)
#+end_src

*** Some helper macros

There are a few handy macros added by doom, namely
- ~load!~ for loading external ~.el~ files relative to this one
- ~use-package!~ for configuring packages
- ~add-load-path!~ for adding directories to the ~load-path~ where ~Emacs~ looks when
 you load packages with ~require~ or ~use-package~
- ~map!~ for binding new keys

*** Allow babel execution in CLI actions

In this config I sometimes generate code to include in my config.
This works nicely, but for it to work with =doom sync= et. al. I need to make sure
that Org doesn't try to confirm that I want to allow evaluation (I do!).

Thankfully Doom supports =$DOOMDIR/cli.el= file which is sourced every time a CLI
command is run, so we can just enable evaluation by setting
~org-confirm-babel-evaluate~ to ~nil~ there.
While we're at it, we should silence ~org-babel-execute-src-block~ to
avoid polluting the output.

#+begin_src emacs-lisp :tangle cli.el :noweb-ref none
;;; cli.el -*- lexical-binding: t; -*-
(setq org-confirm-babel-evaluate nil)

(defun doom-shut-up-a (orig-fn &rest args)
 (quiet! (apply orig-fn args)))

(advice-add 'org-babel-execute-src-block :around #'doom-shut-up-a)
#+end_src

*** Elisp REPL

I think an elisp REPL sounds like a fun idea, even if not a particularly useful
one 😛. We can do this by adding a new command in =cli.el=.

#+begin_src emacs-lisp :tangle cli.el :noweb-ref none
(defcli! repl ((in-rlwrap-p ("--rl") "For internal use only."))
 "Start an elisp REPL."
 (require 'core-start)
 (when (and (executable-find "rlwrap") (not in-rlwrap-p))
 ;; For autocomplete
 (setq autocomplete-file "/tmp/doom_elisp_repl_symbols")
 (unless (file-exists-p autocomplete-file)
 (princ "\e[0;33mInitialising autocomplete list...\e[0m\n")
 (with-temp-buffer
 (cl-do-all-symbols (s)
 (let ((sym (symbol-name s)))
 (when (string-match-p "\\`[[:ascii:]][[:ascii:]]+\\'" sym)
 (insert sym "\n"))))
 (write-region nil nil autocomplete-file)))
 (princ "\e[F")
 (exit! "rlwrap" "-f" autocomplete-file
 (concat doom-emacs-dir "bin/doom") "repl" "--rl"))

 (doom-initialize-packages)
 (require 'engrave-faces-ansi)
 (setq engrave-faces-ansi-color-mode '3-bit)

 ;; For some reason (require 'parent-mode) doesn't work :(
 (defun parent-mode-list (mode)
 "Return a list of MODE and all its parent modes.

The returned list starts with the parent-most mode and ends with MODE."
 (let ((result ()))
 (parent-mode--worker mode (lambda (mode)
 (push mode result)))
 result))
 (defun parent-mode--worker (mode func)
 "For MODE and all its parent modes, call FUNC.

FUNC is first called for MODE, then for its parent, then for the parent's
parent, and so on.

MODE shall be a symbol referring to a function.
FUNC shall be a function taking one argument."
 (funcall func mode)
 (when (not (fboundp mode))
 (signal 'void-function (list mode)))
 (let ((modefunc (symbol-function mode)))
 (if (symbolp modefunc)
 ;; Hande all the modes that use (defalias 'foo-parent-mode (stuff)) as
 ;; their parent
 (parent-mode--worker modefunc func)
 (let ((parentmode (get mode 'derived-mode-parent)))
 (when parentmode
 (parent-mode--worker parentmode func))))))
 (provide 'parent-mode)
 ;; Some extra highlighting (needs parent-mode)
 (require 'rainbow-delimiters)
 (require 'highlight-quoted)
 (require 'highlight-numbers)
 (setq emacs-lisp-mode-hook '(rainbow-delimiters-mode
 highlight-quoted-mode
 highlight-numbers-mode))
 ;; Pretty print
 (defun pp-sexp (sexp)
 (with-temp-buffer
 (cl-prettyprint sexp)
 (emacs-lisp-mode)
 (font-lock-ensure)
 (with-current-buffer (engrave-faces-ansi-buffer)
 (princ (string-trim (buffer-string)))
 (kill-buffer (current-buffer)))))
 ;; Now do the REPL
 (defvar accumulated-input nil)
 (while t
 (condition-case nil
 (let ((input (if accumulated-input
 (read-string "\e[31m .\e[0m ")
 (read-string "\e[31mλ:\e[0m "))))
 (setq input (concat accumulated-input
 (when accumulated-input "\n")
 input))
 (cond
 ((string-match-p "\\`[[:space:]]*\\'" input)
 nil)
 ((string= input "exit")
 (princ "\n") (kill-emacs 0))
 (t
 (condition-case err
 (let ((input-sexp (car (read-from-string input))))
 (setq accumulated-input nil)
 (pp-sexp (eval input-sexp))
 (princ "\n"))
 ;; Caused when sexp in unbalanced
 (end-of-file (setq accumulated-input input))
 (error
 (cl-destructuring-bind (backtrace &optional type data . _)
 (cons (doom-cli--backtrace) err)
 (princ (concat "\e[1;31mERROR:\e[0m " (get type 'error-message)))
 (princ "\n ")
 (pp-sexp (cons type data))
 (when backtrace
 (print! (bold "Backtrace:"))
 (print-group!
 (dolist (frame (seq-take backtrace 10))
 (print!
 "%0.74s" (replace-regexp-in-string
 "[\n\r]" "\\\\n"
 (format "%S" frame))))))
 (princ "\n")))))))
 ;; C-d causes an end-of-file error
 (end-of-file (princ "exit\n") (kill-emacs 0)))
 (unless accumulated-input (princ "\n"))))
#+end_src

*** Htmlize command

Why not have a command to htmlize files? This is basically a little test of my
engrave-faces package because it somehow seems to work without a GUI, while the
htmlize package doesn't.

#+begin_src emacs-lisp :tangle cli.el :noweb-ref none
(defcli! htmlize (file)
 "Export a FILE buffer to HTML."

 (print! "Htmlizing %s" file)

 (doom-initialize)
 (require 'highlight-numbers)
 (require 'highlight-quoted)
 (require 'rainbow-delimiters)
 (require 'engrave-faces-html)

 ;; Lighten org-mode
 (when (string= "org" (file-name-extension file))
 (setcdr (assoc 'org after-load-alist) nil)
 (setq org-load-hook nil)
 (require 'org)
 (setq org-mode-hook nil)
 (add-hook 'engrave-faces-before-hook
 (lambda () (if (eq major-mode 'org-mode)
 (org-show-all)))))

 (engrave-faces-html-file file))
#+end_src

*** Org buffer creation

Let's make creating an Org buffer just that little bit easier.

#+begin_src emacs-lisp
(evil-define-command +evil-buffer-org-new (_count file)
 "Creates a new ORG buffer replacing the current window, optionally
 editing a certain FILE"
 :repeat nil
 (interactive "P<f>")
 (if file
 (evil-edit file)
 (let ((buffer (generate-new-buffer "*new org*")))
 (set-window-buffer nil buffer)
 (with-current-buffer buffer
 (org-mode)
 (setq-local doom-real-buffer-p t)))))

(map! :leader
 (:prefix "b"
 :desc "New empty Org buffer" "o" #'+evil-buffer-org-new))
#+end_src

*** Dashboard

#+call: confpkg()

**** A fancy splash screen

#+call: confpkg("fancy-splash", prefix="")

Emacs can render an image as the splash screen, but I think we can do better
than just a completely static image. Since, SVG images in particular are
supported, we can use them as the basis for a fancier splash screen image setup
--- with themeable, resizing images.

With the effort I'm putting into this, it would be nice to have a good image,
and [[https://github.com/MarioRicalde][@MarioRicalde]] came up with a cracker! He's also provided me with a nice
Emacs-style /E/. I was using the black-hole image, but when I stripped down the
splash screen to something more minimal I switched to just using the /E/.

#+attr_latex: :width 0.2\linewidth
#+attr_html: :style width:20% :alt Fancy Emacs "E"
[[file:misc/splash-images/emacs-e-template.svg]]

#+begin_src emacs-lisp
(defvar fancy-splash-image-directory
 (expand-file-name "misc/splash-images/" doom-user-dir)
 "Directory in which to look for splash image templates.")

(defvar fancy-splash-image-template
 (expand-file-name "emacs-e-template.svg" fancy-splash-image-directory)
 "Default template svg used for the splash image.
Colours are substituted as per `fancy-splash-template-colours'.")
#+end_src

Special named colours can be used as the basis for theming, with a simple
replacement system.

#+begin_src emacs-lisp
(defvar fancy-splash-template-colours
 '(("#111112" :face default :attr :foreground)
 ("#8b8c8d" :face shadow)
 ("#eeeeef" :face default :attr :background)
 ("#e66100" :face highlight :attr :background)
 ("#1c71d8" :face font-lock-keyword-face)
 ("#f5c211" :face font-lock-type-face)
 ("#813d9c" :face font-lock-constant-face)
 ("#865e3c" :face font-lock-function-name-face)
 ("#2ec27e" :face font-lock-string-face)
 ("#c01c28" :face error)
 ("#000001" :face ansi-color-black)
 ("#ff0000" :face ansi-color-red)
 ("#ff00ff" :face ansi-color-magenta)
 ("#00ff00" :face ansi-color-green)
 ("#ffff00" :face ansi-color-yellow)
 ("#0000ff" :face ansi-color-blue)
 ("#00ffff" :face ansi-color-cyan)
 ("#fffffe" :face ansi-color-white))
 "Alist of colour-replacement plists.
Each plist is of the form (\"$placeholder\" :doom-color 'key :face 'face).
If the current theme is a doom theme :doom-color will be used,
otherwise the colour will be face foreground.")
#+end_src

If we want to make sure an image is themed, we can look for unrecognised hex
strings that are not greyscale (as greyscale can be expected in the form of a
transparent overlay).

#+begin_src emacs-lisp
(defun fancy-splash-check-buffer ()
 "Check the current SVG buffer for bad colours."
 (interactive)
 (when (eq major-mode 'image-mode)
 (xml-mode))
 (when (and (featurep 'rainbow-mode)
 (not (bound-and-true-p rainbow-mode)))
 (rainbow-mode 1))
 (let* ((colours (mapcar #'car fancy-splash-template-colours))
 (colourise-hex
 (lambda (hex)
 (propertize
 hex
 'face `((:foreground
 ,(if (< 0.5
 (cl-destructuring-bind (r g b) (x-color-values hex)
 ;; Values taken from `rainbow-color-luminance'
 (/ (+ (* .2126 r) (* .7152 g) (* .0722 b))
 (* 256 255 1.0))))
 "white" "black")
 (:background ,hex))))))
 (cn 96)
 (colour-menu-entries
 (mapcar
 (lambda (colour)
 (cl-incf cn)
 (cons cn
 (cons
 (substring-no-properties colour)
 (format " (%s) %s %s"
 (propertize (char-to-string cn)
 'face 'font-lock-keyword-face)
 (funcall colourise-hex colour)
 (propertize
 (symbol-name
 (plist-get
 (cdr (assoc colour fancy-splash-template-colours))
 :face))
 'face 'shadow)))))
 colours))
 (colour-menu-template
 (format
 "Colour %%s is unexpected! Should this be one of the following?\n
%s
 %s to ignore
 %s to quit"
 (mapconcat
 #'cddr
 colour-menu-entries
 "\n")
 (propertize "SPC" 'face 'font-lock-keyword-face)
 (propertize "ESC" 'face 'font-lock-keyword-face)))
 (colour-menu-choice-keys
 (append (mapcar #'car colour-menu-entries)
 (list ?\s)))
 (buf (get-buffer-create "*fancy-splash-lint-colours-popup*"))
 (good-colour-p
 (lambda (colour)
 (or (assoc colour fancy-splash-template-colours)
 ;; Check if greyscale
 (or (and (= (length colour) 4)
 (= (aref colour 1) ; r
 (aref colour 2) ; g
 (aref colour 3))) ; b
 (and (= (length colour) 7)
 (string= (substring colour 1 3) ; rr =
 (substring colour 3 5)) ; gg
 (string= (substring colour 3 5) ; gg =
 (substring colour 5 7))))))) ; bb
 (prompt-to-replace
 (lambda (target)
 (with-current-buffer buf
 (erase-buffer)
 (insert (format colour-menu-template
 (funcall colourise-hex target)))
 (setq-local cursor-type nil)
 (set-buffer-modified-p nil)
 (goto-char (point-min)))
 (save-window-excursion
 (pop-to-buffer buf)
 (fit-window-to-buffer (get-buffer-window buf))
 (car (alist-get
 (read-char-choice
 (format "Select replacement, %s-%s or SPC: "
 (char-to-string (caar colour-menu-entries))
 (char-to-string (caar (last colour-menu-entries))))
 colour-menu-choice-keys)
 colour-menu-entries))))))
 (save-excursion
 (goto-char (point-min))
 (while (re-search-forward "#[0-9A-Fa-f]\\{6\\}\\|#[0-9A-Fa-f]\\{3\\}" nil t)
 (recenter)
 (let* ((colour (match-string 0))
 (replacement (and (not (funcall good-colour-p colour))
 (funcall prompt-to-replace colour))))
 (when replacement
 (replace-match replacement t t))))
 (message "Done"))))
#+end_src

To make it easier to produce themeable images, we can also provide an Inkscape
colour palette.

#+begin_src text :tangle ~/.config/inkscape/palettes/Emacs Fancy Splash.gpl :mkdirp yes
GIMP Palette
Name: Emacs Fancy Splash Template
#
 17 17 18 #111112 Foreground
139 140 141 #8b8c8d Shadow
238 238 239 #eeeeef Background
230 97 0 #e66100 Colour 1 (Highlight)
 28 113 216 #1c71d8 Colour 2 (Keyword)
245 194 17 #f5c211 Colour 3 (Type)
129 61 156 #813d9c Colour 4 (Constant)
134 94 60 #865e3c Colour 5 (Function)
 46 194 126 #2ec27e Colour 6 (String)
192 28 40 #c01c28 Colour 7 (Error)
 0 0 1 #000001 Black
255 0 0 #ff0000 Red
255 0 255 #ff00ff Magenta
 0 255 0 #00ff00 Green
255 255 0 #ffff00 Yellow
 0 0 255 #0000ff Blue
 0 255 255 #00ffff Cyan
255 255 254 #fffffe White
#+end_src

Since we're going to be generating theme-specific versions of splash images, it
would be good to have a cache directory.

#+begin_src emacs-lisp
(defvar fancy-splash-cache-dir (expand-file-name "theme-splashes/" doom-cache-dir))
#+end_src

To set up dynamic resizing, we'll use a list specifying the image height at
various frame-height thresholds, with a few extra bells and whistles (such as
the ability to change image too).

#+begin_src emacs-lisp
(defvar fancy-splash-sizes
 `((:height 300 :min-height 50 :padding (0 . 2))
 (:height 250 :min-height 42 :padding (2 . 4))
 (:height 200 :min-height 35 :padding (3 . 3))
 (:height 150 :min-height 28 :padding (3 . 3))
 (:height 100 :min-height 20 :padding (2 . 2))
 (:height 75 :min-height 15 :padding (2 . 1))
 (:height 50 :min-height 10 :padding (1 . 0))
 (:height 1 :min-height 0 :padding (0 . 0)))
 "List of plists specifying image sizing states.
Each plist should have the following properties:
- :height, the height of the image
- :min-height, the minimum `frame-height' for image
- :padding, a `+doom-dashboard-banner-padding' (top . bottom) padding
 specification to apply
Optionally, each plist may set the following two properties:
- :template, a non-default template file
- :file, a file to use instead of template")
#+end_src

Now that's we've set up the customisation approach, we need to work out the
mechanics for actually implementing this. To start with, a basic utility
function to get the relevant file path.

#+begin_src emacs-lisp
(defun fancy-splash-filename (theme template height)
 "Get the file name for the splash image with THEME and of HEIGHT."
 (expand-file-name (format "%s-%s-%d.svg" theme (file-name-base template) height) fancy-splash-cache-dir))
#+end_src

Now to go about actually generating the images. To adjust the sizing on demand,
we will offer two mechanisms:
1. A special =$height= token which is replaced with the desired height
2. Recognition of =height=100=, in which case =100= will be replaced with the
 desired height and any =width= property will be removed.

#+begin_src emacs-lisp
(defun fancy-splash-generate-image (template height)
 "Create a themed image from TEMPLATE of HEIGHT.
The theming is performed using `fancy-splash-template-colours'
and the current theme."
 (with-temp-buffer
 (insert-file-contents template)
 (goto-char (point-min))
 (if (re-search-forward "$height" nil t)
 (replace-match (number-to-string height) t t)
 (if (re-search-forward "height=\"100\\(?:\\.0[0-9]*\\)?\"" nil t)
 (progn
 (replace-match (format "height=\"%s\"" height) t t)
 (goto-char (point-min))
 (when (re-search-forward "\\([\t\n]\\)width=\"[\\.0-9]+\"[\t\n]*" nil t)
 (replace-match "\\1")))
 (warn "Warning! fancy splash template: neither $height nor height=100 not found in %s" template)))
 (dolist (substitution fancy-splash-template-colours)
 (goto-char (point-min))
 (let* ((replacement-colour
 (face-attribute (plist-get (cdr substitution) :face)
 (or (plist-get (cdr substitution) :attr) :foreground)
 nil 'default))
 (replacement-hex
 (if (string-prefix-p "#" replacement-colour)
 replacement-colour
 (apply 'format "#%02x%02x%02x"
 (mapcar (lambda (c) (ash c -8))
 (color-values replacement-colour))))))
 (while (search-forward (car substitution) nil t)
 (replace-match replacement-hex nil nil))))
 (unless (file-exists-p fancy-splash-cache-dir)
 (make-directory fancy-splash-cache-dir t))
 (let ((inhibit-message t))
 (write-region nil nil (fancy-splash-filename (car custom-enabled-themes) template height)))))
#+end_src

We may as well generate each theme's appropriate images in bunk.

#+begin_src emacs-lisp
(defun fancy-splash-generate-all-images ()
 "Perform `fancy-splash-generate-image' in bulk."
 (dolist (size fancy-splash-sizes)
 (unless (plist-get size :file)
 (fancy-splash-generate-image
 (or (plist-get size :template)
 fancy-splash-image-template)
 (plist-get size :height)))))
#+end_src

It would be nice to have a simple check function which will just generate the
set of relevant images if needed, and do nothing if they already exist.

#+begin_src emacs-lisp
(defun fancy-splash-ensure-theme-images-exist (&optional height)
 "Ensure that the relevant images exist.
Use the image of HEIGHT to check, defaulting to the height of the first
specification in `fancy-splash-sizes'. If that file does not exist for
the current theme, `fancy-splash-generate-all-images' is called. "
 (unless (file-exists-p
 (fancy-splash-filename
 (car custom-enabled-themes)
 fancy-splash-image-template
 (or height (plist-get (car fancy-splash-sizes) :height))))
 (fancy-splash-generate-all-images)))
#+end_src

In case we switch out the images used (or something else goes wrong), it would
be good to have a convenient method to clear this cache.

#+begin_src emacs-lisp
(defun fancy-splash-clear-cache (&optional delete-files)
 "Clear all cached fancy splash images.
Optionally delete all cache files and regenerate the currently relevant set."
 (interactive (list t))
 (dolist (size fancy-splash-sizes)
 (unless (plist-get size :file)
 (let ((image-file
 (fancy-splash-filename
 (car custom-enabled-themes)
 (or (plist-get size :template)
 fancy-splash-image-template)
 (plist-get size :height))))
 (image-flush (create-image image-file) t))))
 (message "Fancy splash image cache cleared!")
 (when delete-files
 (delete-directory fancy-splash-cache-dir t)
 (fancy-splash-generate-all-images)
 (message "Fancy splash images cache deleted!")))
#+end_src

In a similar way, it could be fun to allow for switching the template used. We
can support this by looking for files ending in =-template.svg= and running
~image-flush~ via ~fancy-splash-clear-cache~.

#+begin_src emacs-lisp
(defun fancy-splash-switch-template ()
 "Switch the template used for the fancy splash image."
 (interactive)
 (let ((new (completing-read
 "Splash template: "
 (mapcar
 (lambda (template)
 (replace-regexp-in-string "-template\\.svg$" "" template))
 (directory-files fancy-splash-image-directory nil "-template\\.svg\\'"))
 nil t)))
 (setq fancy-splash-image-template
 (expand-file-name (concat new "-template.svg") fancy-splash-image-directory))
 (fancy-splash-clear-cache)
 (message "") ; Clear message from `fancy-splash-clear-cache'.
 (setq fancy-splash--last-size nil)
 (fancy-splash-apply-appropriate-image)))
#+end_src

Now we can ensure that the desired images exist, we need to work out which
particular one we want. This is really just a matter of comparing the frame
height to the set of presets.

#+begin_src emacs-lisp
(defun fancy-splash-get-appropriate-size ()
 "Find the firt `fancy-splash-sizes' with min-height of at least frame height."
 (let ((height (frame-height)))
 (cl-some (lambda (size) (when (>= height (plist-get size :min-height)) size))
 fancy-splash-sizes)))
#+end_src

We now want to apply the appropriate image to the dashboard. At the same time,
we don't want to do so needlessly, so we may as well record the size and theme
to determine when a refresh is actually needed.

#+begin_src emacs-lisp
(setq fancy-splash--last-size nil)
(setq fancy-splash--last-theme nil)

(defun fancy-splash-apply-appropriate-image (&rest _)
 "Ensure the appropriate splash image is applied to the dashboard.
This function's signature is \"&rest _\" to allow it to be used
in hooks that call functions with arguments."
 (let ((appropriate-size (fancy-splash-get-appropriate-size)))
 (unless (and (equal appropriate-size fancy-splash--last-size)
 (equal (car custom-enabled-themes) fancy-splash--last-theme))
 (unless (plist-get appropriate-size :file)
 (fancy-splash-ensure-theme-images-exist (plist-get appropriate-size :height)))
 (setq fancy-splash-image
 (or (plist-get appropriate-size :file)
 (fancy-splash-filename (car custom-enabled-themes)
 fancy-splash-image-template
 (plist-get appropriate-size :height)))
 +doom-dashboard-banner-padding (plist-get appropriate-size :padding)
 fancy-splash--last-size appropriate-size
 fancy-splash--last-theme (car custom-enabled-themes))
 (+doom-dashboard-reload))))
#+end_src

**** ASCII banner

If we're operating in a terminal (or =emacclient=) we see an ASCII banner instead
of the graphical one. I'd also like to use something simple for this.

#+begin_src emacs-lisp
(defun doom-dashboard-draw-ascii-emacs-banner-fn ()
 (let* ((banner
 '(",---.,-.-.,---.,---.,---."
 "|---'| | |,---|| `---."
 "`---'` ' '`---^`---'`---'"))
 (longest-line (apply #'max (mapcar #'length banner))))
 (put-text-property
 (point)
 (dolist (line banner (point))
 (insert (+doom-dashboard--center
 +doom-dashboard--width
 (concat
 line (make-string (max 0 (- longest-line (length line)))
 32)))
 "\n"))
 'face 'doom-dashboard-banner)))
#+end_src

Now we just need this as Doom's ASCII banner function.

#+begin_src emacs-lisp
(unless (display-graphic-p) ; for some reason this messes up the graphical splash screen atm
 (setq +doom-dashboard-ascii-banner-fn #'doom-dashboard-draw-ascii-emacs-banner-fn))
#+end_src

**** Splash phrases

#+call: confpkg("splash-phrases", prefix="")

Having an aesthetically pleasing image is all very well and good, but I'm aiming
for minimal, not clinical --- it would be good to inject some fun into the
dashboard. After trawling around the internet for a bit, I've found three
sources of fun phrases, namely:
+ a nonsense corporate jargon generator,
+ a selection of random developer excuses, and
+ a collection of fun but rather useless facts.

I used to have a fancy method that used web APIs for these and inserted an
invisible placeholder into the dashboard which was asynchronously replaced on
the result of (debounced) requests to the APIs. While that actually worked quite
well, I realised that it would be much better and simpler if I simply copied the
phrases sources to local files and did the random selection / generation in
elisp.

Let's start off by setting the local folder to put the phrase source files in.

#+begin_src emacs-lisp
(defvar splash-phrase-source-folder
 (expand-file-name "misc/splash-phrases" doom-user-dir)
 "A folder of text files with a fun phrase on each line.")
#+end_src

Now we want to support two "phrase systems"
1. A complete file of phrases, one phrase per line
2. A collection of phrase-components, put together to form a phrase

It would be good to specify/detect which of the two cases apply based on the
file name alone. I've done this by setting the simple check that if the file
name contains =-N-= (where =N= is some number) then it is taken as the =N=​th phrase
component, with everything preceding the =-N-= token taken as the collection
identifier, and everything after =-N-= ignored.

#+begin_src emacs-lisp
(defvar splash-phrase-sources
 (let* ((files (directory-files splash-phrase-source-folder nil "\\.txt\\'"))
 (sets (delete-dups (mapcar
 (lambda (file)
 (replace-regexp-in-string "\\(?:-[0-9]+-\\w+\\)?\\.txt" "" file))
 files))))
 (mapcar (lambda (sset)
 (cons sset
 (delq nil (mapcar
 (lambda (file)
 (when (string-match-p (regexp-quote sset) file)
 file))
 files))))
 sets))
 "A list of cons giving the phrase set name, and a list of files which contain phrase components.")
#+end_src

Let's fix the phrase set in use, and pick a random phrase source on startup.

#+begin_src emacs-lisp
(defvar splash-phrase-set
 (nth (random (length splash-phrase-sources)) (mapcar #'car splash-phrase-sources))
 "The default phrase set. See `splash-phrase-sources'.")
#+end_src

While having a random set of phrases is fantastic the vast majority of the time,
I expect that occasionally I'll feel in the mood to change the phrase set or
pick a particular one, so some functions for that would be nice.

#+begin_src emacs-lisp
(defun splash-phrase-set-random-set ()
 "Set a new random splash phrase set."
 (interactive)
 (setq splash-phrase-set
 (nth (random (1- (length splash-phrase-sources)))
 (cl-set-difference (mapcar #'car splash-phrase-sources) (list splash-phrase-set))))
 (+doom-dashboard-reload t))

(defun splash-phrase-select-set ()
 "Select a specific splash phrase set."
 (interactive)
 (setq splash-phrase-set (completing-read "Phrase set: " (mapcar #'car splash-phrase-sources)))
 (+doom-dashboard-reload t))
#+end_src

If we're going to be selecting phrases from a large list of lines, it could be
worth caching the list of lines.

#+begin_src emacs-lisp
(defvar splash-phrase--cached-lines nil)
#+end_src

Now let's write a function that will pick a random line from a file, using
~splash-phrase--cached-lines~ if possible.

#+begin_src emacs-lisp
(defun splash-phrase-get-from-file (file)
 "Fetch a random line from FILE."
 (let ((lines (or (cdr (assoc file splash-phrase--cached-lines))
 (cdar (push (cons file
 (with-temp-buffer
 (insert-file-contents (expand-file-name file splash-phrase-source-folder))
 (split-string (string-trim (buffer-string)) "\n")))
 splash-phrase--cached-lines)))))
 (nth (random (length lines)) lines)))
#+end_src

With this, we now have enough to generate random phrases on demand.

#+begin_src emacs-lisp
(defun splash-phrase (&optional set)
 "Construct a splash phrase from SET. See `splash-phrase-sources'."
 (mapconcat
 #'splash-phrase-get-from-file
 (cdr (assoc (or set splash-phrase-set) splash-phrase-sources))
 " "))
#+end_src

I originally thought this might be enough, but some phrases are a tad long, and
this isn't exactly doom-dashboard appropriate. In such cases we need to split
lines, re-centre them, and add some whitespace. While we're at it, we may as
well make it that you can click on the phrase to replace it with new one.

#+begin_src emacs-lisp
(defun splash-phrase-dashboard-formatted ()
 "Get a splash phrase, flow it over multiple lines as needed, and fontify it."
 (mapconcat
 (lambda (line)
 (+doom-dashboard--center
 +doom-dashboard--width
 (with-temp-buffer
 (insert-text-button
 line
 'action
 (lambda (_) (+doom-dashboard-reload t))
 'face 'doom-dashboard-menu-title
 'mouse-face 'doom-dashboard-menu-title
 'help-echo "Random phrase"
 'follow-link t)
 (buffer-string))))
 (split-string
 (with-temp-buffer
 (insert (splash-phrase))
 (setq fill-column (min 70 (/ (* 2 (window-width)) 3)))
 (fill-region (point-min) (point-max))
 (buffer-string))
 "\n")
 "\n"))
#+end_src

Almost there now, this just needs some centreing and newlines.

#+begin_src emacs-lisp
(defun splash-phrase-dashboard-insert ()
 "Insert the splash phrase surrounded by newlines."
 (insert "\n" (splash-phrase-dashboard-formatted) "\n"))
#+end_src

**** Quick actions

When using the dashboard, there are often a small number of actions I will take.
As the dashboard is it's own major mode, there is no need to suffer the tyranny
of unnecessary keystrokes --- we can simply bind common actions to a single key!

#+begin_src emacs-lisp
(defun +doom-dashboard-setup-modified-keymap ()
 (setq +doom-dashboard-mode-map (make-sparse-keymap))
 (map! :map +doom-dashboard-mode-map
 :desc "Find file" :ng "f" #'find-file
 :desc "Recent files" :ng "r" #'consult-recent-file
 :desc "Config dir" :ng "C" #'doom/open-private-config
 :desc "Open config.org" :ng "c" (cmd! (find-file (expand-file-name "config.org" doom-user-dir)))
 :desc "Open org-mode root" :ng "O" (cmd! (find-file (expand-file-name "lisp/org/" doom-user-dir)))
 :desc "Open dotfile" :ng "." (cmd! (doom-project-find-file "~/.config/"))
 :desc "Notes (roam)" :ng "n" #'org-roam-node-find
 :desc "Switch buffer" :ng "b" #'+vertico/switch-workspace-buffer
 :desc "Switch buffers (all)" :ng "B" #'consult-buffer
 :desc "IBuffer" :ng "i" #'ibuffer
 :desc "Previous buffer" :ng "p" #'previous-buffer
 :desc "Set theme" :ng "t" #'consult-theme
 :desc "Quit" :ng "Q" #'save-buffers-kill-terminal
 :desc "Show keybindings" :ng "h" (cmd! (which-key-show-keymap '+doom-dashboard-mode-map))))

(add-transient-hook! #'+doom-dashboard-mode (+doom-dashboard-setup-modified-keymap))
(add-transient-hook! #'+doom-dashboard-mode :append (+doom-dashboard-setup-modified-keymap))
(add-hook! 'doom-init-ui-hook :append (+doom-dashboard-setup-modified-keymap))
#+end_src

Unfortunately the show keybindings help doesn't currently work as intended, but
this is still quite nice overall.

Now that the dashboard is so convenient, I'll want to make it easier to get to.
#+begin_src emacs-lisp
(map! :leader :desc "Dashboard" "d" #'+doom-dashboard/open)
#+end_src

**** Putting it all together

With the splash image and phrase generation worked out, we can almost put
together the desired dashboard from scratch, we just need to re-create the
benchmark information by itself.

#+begin_src emacs-lisp
(defun +doom-dashboard-benchmark-line ()
 "Insert the load time line."
 (when doom-init-time
 (insert
 "\n\n"
 (propertize
 (+doom-dashboard--center
 +doom-dashboard--width
 (doom-display-benchmark-h 'return))
 'face 'doom-dashboard-loaded))))
#+end_src

With ~doom-display-benchmark-h~ displayed here, I don't see the need for it to be
shown in the minibuffer as well.

#+begin_src emacs-lisp
(remove-hook 'doom-after-init-hook #'doom-display-benchmark-h)
#+end_src

Now we can create the desired dashboard by setting ~+doom-dashboard-functions~ to
just have:
+ The "widget banner" (splash image)
+ The benchmark line
+ A random phrase
This gets rid of two segments I'm not particularly interested in seeing
+ The shortmenu
+ The footer (github link)

#+begin_src emacs-lisp
(setq +doom-dashboard-functions
 (list #'doom-dashboard-widget-banner
 #'+doom-dashboard-benchmark-line
 #'splash-phrase-dashboard-insert))
#+end_src

At this point there are just a few minor tweaks I'd still like to make to the
dashboard.

#+begin_src emacs-lisp
(defun +doom-dashboard-tweak (&optional _)
 (with-current-buffer (get-buffer +doom-dashboard-name)
 (setq-local line-spacing 0.2
 mode-line-format nil
 mode-name ""
 evil-normal-state-cursor (list nil))))
#+end_src

Now we can just add this as a mode hook.

#+begin_src emacs-lisp
(add-hook '+doom-dashboard-mode-hook #'+doom-dashboard-tweak)
#+end_src

Unfortunately, the initialisation of =doom-modeline= interferes with the set
~mode-line-format~ value. To get around this, we can re-apply
~+doom-dashboard-tweak~ as a slightly late init hook, after =doom-modeline= has been
loaded.

#+begin_src emacs-lisp
(add-hook 'doom-after-init-hook #'+doom-dashboard-tweak 1)
#+end_src

Lastly, with the buffer name being shown in the frame title thanks to some [[Window title][other
configuration]], we might as well display something a bit prettier than =*doom*=.

#+begin_src emacs-lisp
(setq +doom-dashboard-name "► Doom"
 doom-fallback-buffer-name +doom-dashboard-name)
#+end_src

The end result is a minimal but rather nice splash screen.

#+attr_html: :class invertible :alt The splash screen, just loaded.
[[https://code.tecosaur.net/tec/emacs-config/media/branch/master/misc/screenshots/splash-screen.png]]

To keep the splash image up to date, we just need to check it every time the
frame size or theme is changed.

#+begin_src emacs-lisp
(add-hook 'window-size-change-functions #'fancy-splash-apply-appropriate-image)
(add-hook 'doom-load-theme-hook #'fancy-splash-apply-appropriate-image)
#+end_src

*** Config doctor

We can collect checks throughout this config and put them in a =doctor.el= file
that will be run as part of =doom doctor=. This will complement the =setup.sh=
approach.

#+begin_src emacs-lisp :tangle doctor.el :noweb yes :noweb-ref none
;;; doctor.el -*- lexical-binding: t; no-byte-compile: t; -*-

<<doctor>>
#+end_src

** Other things

This stub for the shell setup scrip needs to appear before any
other setup shell source blocks.
#+begin_src shell :exports none :comments no :tangle-mode (identity #o755)
#!/usr/bin/env bash
#+end_src

*** Editor interaction
**** Mouse buttons

#+call: confpkg("Better jumper mouse")

#+begin_src emacs-lisp
(map! :n [mouse-8] #'better-jumper-jump-backward
 :n [mouse-9] #'better-jumper-jump-forward)
#+end_src

*** Window title

#+call: confpkg("Frame title")

I'd like to have just the buffer name, then if applicable the project folder
#+begin_src emacs-lisp
(setq frame-title-format
 '(""
 (:eval
 (if (string-match-p (regexp-quote (or (bound-and-true-p org-roam-directory) "\u0000"))
 (or buffer-file-name ""))
 (replace-regexp-in-string
 ".*/[0-9]*-?" "☰ "
 (subst-char-in-string ?_ ?\s buffer-file-name))
 "%b"))
 (:eval
 (when-let ((project-name (and (featurep 'projectile) (projectile-project-name))))
 (unless (string= "-" project-name)
 (format (if (buffer-modified-p) " ◉ %s" "  ●  %s") project-name))))))
#+end_src

For example when I open my config file it the window will be titled =config.org ●
doom= then as soon as I make a change it will become =config.org ◉ doom=.

*** Systemd daemon

For running a systemd service for a Emacs server I have the following. =zsh -c= is
used to ensure that =.zshenv= is loaded.

#+name: emacsclient service
#+begin_src systemd :tangle ~/.config/systemd/user/emacs.service :mkdirp yes
[Unit]
Description=Emacs server daemon
Documentation=info:emacs man:emacs(1) https://gnu.org/software/emacs/
Wants=gpg-agent.service

[Service]
Type=forking
ExecStart=zsh -c 'emacs --daemon && emacsclient -c --eval "(delete-frame)"'
ExecStop=/usr/bin/emacsclient --no-wait --eval "(progn (setq kill-emacs-hook nil) (kill emacs))"
Environment=COLORTERM=truecolor
Restart=on-failure

[Install]
WantedBy=default.target
#+end_src

which is then enabled by
#+begin_src shell :tangle (if (string= "enabled\n" (shell-command-to-string "systemctl --user is-enabled emacs.service")) "no" "setup.sh")
systemctl --user enable emacs.service
#+end_src

We can also add a =doctor= warning should this not be enabled.

#+begin_src emacs-lisp :noweb-ref doctor
(unless (string= "enabled\n" (shell-command-to-string "systemctl --user is-enabled emacs.service"))
 (warn! "Emacsclient service is not enabled."))
#+end_src

For some reason if a frame isn't opened early in the initialisation process, the
daemon doesn't seem to like opening frames later --- hence the ~&& emacsclient~
part of the =ExecStart= value.

It can now be nice to use this as a 'default app' for opening files. If we add
an appropriate desktop entry, and enable it in the desktop environment.

#+begin_src conf :tangle ~/.local/share/applications/emacs-client.desktop :mkdirp yes
[Desktop Entry]
Name=Emacs client
GenericName=Text Editor
Comment=A flexible platform for end-user applications
MimeType=text/english;text/plain;text/x-makefile;text/x-c++hdr;text/x-c++src;text/x-chdr;text/x-csrc;text/x-java;text/x-moc;text/x-pascal;text/x-tcl;text/x-tex;application/x-shellscript;text/x-c;text/x-c++;
Exec=emacsclient -create-frame --alternate-editor="" --no-wait %F
Icon=emacs
Type=Application
Terminal=false
Categories=TextEditor;Utility;
StartupWMClass=Emacs
Keywords=Text;Editor;
X-KDE-StartupNotify=false
#+end_src

When the daemon is running, I almost always want to do a few particular things
with it, so I may as well eat the load time at startup. We also want to keep
=mu4e= running.

It would be good to start the IRC client (=circe=) too, but that seems to have
issues when started in a non-graphical session.

Lastly, while I'm not sure quite why it happens, but after a bit it seems that
new Emacsclient frames start on the =*scratch*= buffer instead of the dashboard.
I prefer the dashboard, so let's ensure that's always switched to in new frames.

#+call: confpkg("Emacs daemon setup")

#+name: daemon initialisation
#+begin_src emacs-lisp
(defun greedily-do-daemon-setup ()
 (require 'org)
 (when (require 'mu4e nil t)
 (setq mu4e-confirm-quit t)
 (setq +mu4e-lock-greedy t)
 (setq +mu4e-lock-relaxed t)
 (when (+mu4e-lock-available t)
 (mu4e--start)))
 (when (require 'elfeed nil t)
 (run-at-time nil (* 8 60 60) #'elfeed-update)))

(when (daemonp)
 (add-hook 'emacs-startup-hook #'greedily-do-daemon-setup)
 (add-hook! 'server-after-make-frame-hook
 (unless (string-match-p "*draft\\|*stdin\\|emacs-everywhere" (buffer-name))
 (switch-to-buffer +doom-dashboard-name))))
#+end_src

*** Emacs client wrapper

I frequently want to make use of Emacs while in a terminal emulator. To make
this easier, I can construct a few handy aliases.

However, a little convenience script in =~/.local/bin= can have the same effect,
be available beyond the specific shell I plop the alias in, then also allow me
to add a few bells and whistles --- namely:
+ Accepting stdin by putting it in a temporary file and immediately opening it.
+ Guessing that the =tty= is a good idea when ~$DISPLAY~ is unset (relevant with SSH
 sessions, among other things).
+ With a whiff of 24-bit colour support, sets ~TERM~ variable to a =terminfo= that
 (probably) announces 24-bit colour support.
+ Changes GUI =emacsclient= instances to be non-blocking by default (~--no-wait~),
 and instead take a flag to suppress this behaviour (~-w~).

I would use =sh=, but using arrays for argument manipulation is just too
convenient, so I'll raise the requirement to =bash=. Since arrays are the only
'extra' compared to =sh=, other shells like =ksh= etc. should work too.

#+name: e
#+begin_src shell :tangle ~/.local/bin/e :mkdirp yes :tangle-mode (identity #o755) :comments no
#!/usr/bin/env bash
force_tty=false
force_wait=false
stdin_mode=""

args=()

while :; do
 case "$1" in
 -t | -nw | --tty)
 force_tty=true
 shift ;;
 -w | --wait)
 force_wait=true
 shift ;;
 -m | --mode)
 stdin_mode=" ($2-mode)"
 shift 2 ;;
 -h | --help)
 echo -e "\033[1mUsage: e [-t] [-m MODE] [OPTIONS] FILE [-]\033[0m

Emacs client convenience wrapper.

\033[1mOptions:\033[0m
\033[0;34m-h, --help\033[0m Show this message
\033[0;34m-t, -nw, --tty\033[0m Force terminal mode
\033[0;34m-w, --wait\033[0m Don't supply \033[0;34m--no-wait\033[0m to graphical emacsclient
\033[0;34m-\033[0m Take \033[0;33mstdin\033[0m (when last argument)
\033[0;34m-m MODE, --mode MODE\033[0m Mode to open \033[0;33mstdin\033[0m with

Run \033[0;32memacsclient --help\033[0m to see help for the emacsclient."
 exit 0 ;;
 --*=*)
 set -- "$@" "${1%%=*}" "${1#*=}"
 shift ;;
 ,*)
 if ["$#" = 0]; then
 break; fi
 args+=("$1")
 shift ;;
 esac
done

if [! "${#args[*]}" = 0] && ["${args[-1]}" = "-"]; then
 unset 'args[-1]'
 TMP="$(mktemp /tmp/emacsstdin-XXX)"
 cat > "$TMP"
 args+=(--eval "(let ((b (generate-new-buffer \"*stdin*\"))) (switch-to-buffer b) (insert-file-contents \"$TMP\") (delete-file \"$TMP\")${stdin_mode})")
fi

if [-z "$DISPLAY"] || $force_tty; then
 # detect terminals with sneaky 24-bit support
 if { ["$COLORTERM" = truecolor] || ["$COLORTERM" = 24bit]; } \
 && ["$(tput colors 2>/dev/null)" -lt 257]; then
 if echo "$TERM" | grep -q "^\w\+-[0-9]"; then
 termstub="${TERM%%-*}"; else
 termstub="${TERM#*-}"; fi
 if infocmp "$termstub-direct" >/dev/null 2>&1; then
 TERM="$termstub-direct"; else
 TERM="xterm-direct"; fi # should be fairly safe
 fi
 emacsclient --tty -create-frame --alternate-editor="$ALTERNATE_EDITOR" "${args[@]}"
else
 if ! $force_wait; then
 args+=(--no-wait); fi
 emacsclient -create-frame --alternate-editor="$ALTERNATE_EDITOR" "${args[@]}"
fi
#+end_src

Now, to set an alias to use =e= with Magit, and then for maximum laziness we can
set aliases for the terminal-forced variants.
#+begin_src shell :tangle no
alias m='e --eval "(progn (magit-status) (delete-other-windows))"'
alias mt="m -t"
alias et="e -t"
#+end_src

*** Prompt to run setup script

#+call: confpkg("Setup script prompt")

At various points in this config, content is conditionally tangled to
=./setup.sh=. It's no good just putting content there if it isn't run though.
To help remind me to run it when needed, let's add a little prompt when there's
anything to be run.

#+name: run-setup
#+begin_src emacs-lisp :noweb-ref none
(if (file-exists-p "setup.sh")
 (if (string-empty-p (string-trim (with-temp-buffer (insert-file-contents "setup.sh") (buffer-string)) "#!/usr/bin/env bash"))
 (message ";; Setup script is empty")
 (message ";; Detected content in the setup script")
 (pp-to-string
 `(unless noninteractive
 (defun +config-run-setup ()
 (when-let ((setup-file (expand-file-name "setup.sh" doom-user-dir))
 ((file-exists-p setup-file))
 (setup-content (string-trim (with-temp-buffer (insert-file-contents setup-file) (buffer-string))
 "#!/usr/bin/env bash"))
 ((not (string-empty-p setup-content)))
 ((yes-or-no-p (format "%s The setup script has content. Check and run the script?"
 (propertize "Warning!" 'face '(bold warning))))))
 (find-file setup-file)
 (when (yes-or-no-p "Would you like to run this script?")
 (async-shell-command "./setup.sh"))))
 (add-hook! 'doom-init-ui-hook
 (run-at-time nil nil #'+config-run-setup)))))
 (message ";; setup.sh did not exist during tangle. Tangle again.")
 (pp-to-string
 `(unless noninteractive
 (add-hook! 'doom-init-ui-hook #'+literate-tangle-async-h))))
#+end_src

#+begin_src emacs-lisp :noweb no-export
<<run-setup()>>
#+end_src

*** Grabbing source block content as a string

In a few places in this configuration, it is desirable to grab a source block's
content as a string. We can use a noweb =<<replacement>>= form, however that
doesn't work with string escaping.

We can get around this by using noweb execution and write an name (unexported)
babel block that will grab the content of another named source block as a
string. Note that this does not currently expand nested noweb references.

#+name: grab
#+begin_src emacs-lisp :var name="" pre="" post="" :noweb-ref none
;; Babel block: grab(name &optional pre post)
;; NAME is the name of the source block to grab.
;; PRE is a string to prepend to the content of the block.
;; POST is a string to append to the content of the block.
(if-let ((block-pos (org-babel-find-named-block name))
 (block (org-element-at-point block-pos)))
 (format "%S" (concat pre (string-trim (org-element-property :value block)) post))
 ;; look for :noweb-ref matches
 (let (block-contents)
 (org-element-cache-map
 (lambda (src)
 (when (and (not (org-in-commented-heading-p nil src))
 (not (org-in-archived-heading-p nil src))
 (let* ((lang (org-element-property :language src))
 (params
 (apply
 #'org-babel-merge-params
 (append
 (org-with-point-at (org-element-property :begin src)
 (org-babel-params-from-properties lang t))
 (mapcar
 (lambda (h)
 (org-babel-parse-header-arguments h t))
 (cons (org-element-property :parameters src)
 (org-element-property :header src))))))
 (ref (alist-get :noweb-ref params)))
 (equal ref name)))
 (push (org-babel--normalize-body src)
 block-contents)))
 :granularity 'element
 :restrict-elements '(src-block))
 (and block-contents
 (format "%S"
 (concat
 pre
 (mapconcat
 #'identity
 (nreverse block-contents)
 "\n\n")
 post)))))
#+end_src

There we go, that's all it takes! This can be used via the form =<<grab("block-name")>>=.

* Packages
** Loading instructions
:PROPERTIES:
:header-args:emacs-lisp: :tangle no
:END:

This is where you install packages, by declaring them with the ~package!~ macro in
=packages.el=, then running ~doom refresh~ on the command line.
This file shouldn't be byte compiled.
#+begin_src emacs-lisp :tangle "packages.el" :comments no
;; -*- no-byte-compile: t; -*-
#+end_src

You'll then need to restart Emacs for your changes to take effect! Or at least,
run =M-x doom/reload=.

Warning: Don't disable core packages listed in =~/.config/emacs/core/packages.el=.
Doom requires these, and disabling them may have terrible side effects.

*** Packages in MELPA/ELPA/emacsmirror

To install ~some-package~ from MELPA, ELPA or emacsmirror:
#+begin_src emacs-lisp
(package! some-package)
#+end_src

*** Packages from git repositories

To install a package directly from a particular repo, you'll need to specify
a ~:recipe~. You'll find documentation on what ~:recipe~ accepts [[https://github.com/raxod502/straight.el#the-recipe-format][here]]:
#+begin_src emacs-lisp
(package! another-package
 :recipe (:host github :repo "username/repo"))
#+end_src

If the package you are trying to install does not contain a ~PACKAGENAME.el~
file, or is located in a subdirectory of the repo, you'll need to specify
~:files~ in the ~:recipe~:
#+begin_src emacs-lisp
(package! this-package
 :recipe (:host github :repo "username/repo"
 :files ("some-file.el" "src/lisp/*.el")))
#+end_src

*** Disabling built-in packages

If you'd like to disable a package included with Doom, for whatever reason,
you can do so here with the ~:disable~ property:
#+begin_src emacs-lisp
(package! builtin-package :disable t)
#+end_src
You can override the recipe of a built in package without having to specify
all the properties for ~:recipe~. These will inherit the rest of its recipe
from Doom or MELPA/ELPA/Emacsmirror:
#+begin_src emacs-lisp
(package! builtin-package :recipe (:nonrecursive t))
(package! builtin-package-2 :recipe (:repo "myfork/package"))
#+end_src

Specify a ~:branch~ to install a package from a particular branch or tag.
#+begin_src emacs-lisp
(package! builtin-package :recipe (:branch "develop"))
#+end_src

** Convenience
*** Avy

#+call: confpkg("!Pkg avy")

#+begin_quote
From the =:config default= module.
#+end_quote

What a wonderful way to jump to buffer positions, and it uses the QWERTY
home-row for jumping. Very convenient ... except I'm using Colemak.

#+name: avy-colemak-setup
#+begin_src emacs-lisp :noweb-ref none
(after! avy
 ;; home row priorities: 8 6 4 5 - - 1 2 3 7
 (setq avy-keys '(?n ?e ?i ?s ?t ?r ?i ?a)))
#+end_src

Now let's just have this included when an ErgoDox is found via =dmesg=.

#+name: avy-detect-colemak
#+begin_src emacs-lisp :noweb no-export :noweb-ref none :noweb-prefix no
(if (= 0 (call-process "sh" nil nil nil "-c" "dmesg | grep -q 'ErgoDox'"))
 (pp '<<avy-colemak-setup>>)
 ";; Avy: Colemak layout not detected (ErgoDox not mentioned in dmesg).")
#+end_src

#+begin_src emacs-lisp :noweb no-export
<<avy-detect-colemak()>>
#+end_src

*** Rotate (window management)

The =rotate= package just adds the ability to rotate window layouts, but that
sounds nice to me.

#+begin_src emacs-lisp :tangle packages.el
(package! rotate :pin "4e9ac3ff800880bd9b705794ef0f7c99d72900a6")
#+end_src

*** Emacs Everywhere

#+call: confpkg("!Pkg emacs-everywhere")

The name says it all. It's loaded and set up (a bit) by =:app everywhere=, however
as I develop this I want the unpinned version I have as a submodule.

#+begin_src emacs-lisp :tangle packages.el
(package! emacs-everywhere :recipe (:local-repo "lisp/emacs-everywhere"))
(unpin! emacs-everywhere)
#+end_src

Additionally, I'm going to make some personal choices that aren't made in the
Doom module.

#+begin_src emacs-lisp
(use-package! emacs-everywhere
 :if (daemonp)
 :config
 (require 'spell-fu)
 (setq emacs-everywhere-major-mode-function #'org-mode
 emacs-everywhere-frame-name-format "Edit ∷ %s — %s")
 (defadvice! emacs-everywhere-raise-frame ()
 :after #'emacs-everywhere-set-frame-name
 (setq emacs-everywhere-frame-name (format emacs-everywhere-frame-name-format
 (emacs-everywhere-app-class emacs-everywhere-current-app)
 (truncate-string-to-width
 (emacs-everywhere-app-title emacs-everywhere-current-app)
 45 nil nil "…")))
 ;; need to wait till frame refresh happen before really set
 (run-with-timer 0.1 nil #'emacs-everywhere-raise-frame-1))
 (defun emacs-everywhere-raise-frame-1 ()
 (call-process "wmctrl" nil nil nil "-a" emacs-everywhere-frame-name)))
#+end_src

*** Which-key

#+call: confpkg("!Pkg which-key")

#+begin_quote
From the =:core packages= module.
#+end_quote

Let's make this popup a bit faster
#+begin_src emacs-lisp
(setq which-key-idle-delay 0.5) ;; I need the help, I really do
#+end_src

I also think that having =evil-= appear in so many popups is a bit too verbose,
let's change that, and do a few other similar tweaks while we're at it.
#+begin_src emacs-lisp
(setq which-key-allow-multiple-replacements t)
(after! which-key
 (pushnew!
 which-key-replacement-alist
 '(("" . "\\`+?evil[-:]?\\(?:a-\\)?\\(.*\\)") . (nil . "◂\\1"))
 '(("\\`g s" . "\\`evilem--?motion-\\(.*\\)") . (nil . "◃\\1"))
))
#+end_src

#+attr_html: :class invertible :alt Whichkey triggered on an evil motion
[[https://code.tecosaur.net/tec/emacs-config/media/branch/master/misc/screenshots/whichkey-evil.png]]

** Tools
*** Abbrev

#+call: confpkg()

Abbrev mode is great, and something I make use of in multiple ways. As such, I
want it on by default.

#+begin_src emacs-lisp
(setq-default abbrev-mode t)
#+end_src

Abbrev-mode can save and load abbreviations from an "abbrev file", which I'd
like to locate in my Doom config folder.

#+begin_src emacs-lisp
(setq abbrev-file-name (expand-file-name "abbrev.el" doom-user-dir))
#+end_src

I need to think more on how I want to manage abbrev changes in the current
session, but for now I'm going to be overly cautious and avoid any modifications
to the global abbrev file that I don't make myself.

#+begin_src emacs-lisp
(setq save-abbrevs nil)
#+end_src

*** Very large files

#+call: confpkg("!Pkg VLF")

The /very large files/ mode loads large files in chunks, allowing one to open
ridiculously large files.

#+begin_src emacs-lisp :tangle packages.el
(package! vlf :recipe (:host github :repo "emacs-straight/vlf" :files ("*.el"))
 :pin "d500f39672b35bf8551fdfafa892c551626c8d54")
#+end_src

To make VLF available without delaying startup, we'll just load it in quiet moments.

#+begin_src emacs-lisp :noweb no-export :noweb-prefix no
(use-package! vlf-setup
 :defer-incrementally vlf-tune vlf-base vlf-write
 vlf-search vlf-occur vlf-follow vlf-ediff vlf
 :commands vlf vlf-mode
 :init
 (defvar vlf-application 'ask) ; Avoid load-order issues
 <<vlf-largefile-prompt>>
 :config
 (advice-remove 'abort-if-file-too-large #'ad-Advice-abort-if-file-too-large)
 <<vlf-linenum-offset>>
 <<vlf-search-chunking>>)
#+end_src

Now, there are one or two tweaks worth applying to VLF. For starters, it goes to
the liberty of advising ~abort-if-file-too-large~, and in doing so removes the
option of opening files literally. I think that's a bit much, so we can remove
the advice and instead override ~files--ask-user-about-large-file~ (the more
appropriate function, I think) as a simpler approach, just sacrificing the
original behaviour with src_elisp{(setq vlf-application 'always)} (which I can't
imagine using anyway).

#+name: vlf-largefile-prompt
#+begin_src emacs-lisp :noweb-ref none
(defadvice! +files--ask-about-large-file-vlf (size op-type filename offer-raw)
 "Like `files--ask-user-about-large-file', but with support for `vlf'."
 :override #'files--ask-user-about-large-file
 (if (eq vlf-application 'dont-ask)
 (progn (vlf filename) (error ""))
 (let ((prompt (format "File %s is large (%s), really %s?"
 (file-name-nondirectory filename)
 (funcall byte-count-to-string-function size) op-type)))
 (if (not offer-raw)
 (if (y-or-n-p prompt) nil 'abort)
 (let ((choice
 (car
 (read-multiple-choice
 prompt '((?y "yes")
 (?n "no")
 (?l "literally")
 (?v "vlf"))
 (files--ask-user-about-large-file-help-text
 op-type (funcall byte-count-to-string-function size))))))
 (cond ((eq choice ?y) nil)
 ((eq choice ?l) 'raw)
 ((eq choice ?v)
 (vlf filename)
 (error ""))
 (t 'abort)))))))
#+end_src

As you go from one chunk fetched by VLF to the next, the displayed line number
of the first line /in each chunk/ is unchanged. I think it's reasonable to hope
for an /overall/ line number, and by tracking chunk's cumulative line numbers we
can implement this behaviour fairly easily.

#+name: vlf-linenum-offset
#+begin_src emacs-lisp :noweb-ref none
(defvar-local +vlf-cumulative-linenum '((0 . 0))
 "An alist keeping track of the cumulative line number.")

(defun +vlf-update-linum ()
 "Update the line number offset."
 (let ((linenum-offset (alist-get vlf-start-pos +vlf-cumulative-linenum)))
 (setq display-line-numbers-offset (or linenum-offset 0))
 (when (and linenum-offset (not (assq vlf-end-pos +vlf-cumulative-linenum)))
 (push (cons vlf-end-pos (+ linenum-offset
 (count-lines (point-min) (point-max))))
 +vlf-cumulative-linenum))))

(add-hook 'vlf-after-chunk-update-hook #'+vlf-update-linum)

;; Since this only works with absolute line numbers, let's make sure we use them.
(add-hook! 'vlf-mode-hook (setq-local display-line-numbers t))
#+end_src

The other thing that doesn't work too well with VLF is searching with anything
other than =M-x occur=. This is because trying to go to the next match at the end
of a chunk usually wraps the point to the beginning of the chunk, instead of
moving to the next chunk.

#+name: vlf-search-chunking
#+begin_src emacs-lisp :noweb-ref none
(defun +vlf-next-chunk-or-start ()
 (if (= vlf-file-size vlf-end-pos)
 (vlf-jump-to-chunk 1)
 (vlf-next-batch 1))
 (goto-char (point-min)))

(defun +vlf-last-chunk-or-end ()
 (if (= 0 vlf-start-pos)
 (vlf-end-of-file)
 (vlf-prev-batch 1))
 (goto-char (point-max)))

(defun +vlf-isearch-wrap ()
 (if isearch-forward
 (+vlf-next-chunk-or-start)
 (+vlf-last-chunk-or-end)))

(add-hook! 'vlf-mode-hook (setq-local isearch-wrap-function #'+vlf-isearch-wrap))
#+end_src

Unfortunately, since evil-search doesn't have an analogue to
~isearch-wrap-function~, we can't easily add support to it.

*** Eros

#+call: confpkg("!Pkg Eros")

#+begin_quote
From the =:tools eval= module.
#+end_quote

This package enables the very nice inline evaluation with =gr= and =gR=. The prefix
could be slightly nicer though.
#+begin_src emacs-lisp
(setq eros-eval-result-prefix "⟹ ") ; default =>
#+end_src

*** EVIL

#+call: confpkg("!Pkg evil")

#+begin_quote
From the =:editor evil= module.
#+end_quote

When I want to make a substitution, I want it to be global more often than not
--- so let's make that the default.

Now, EVIL cares a fair bit about keeping compatibility with Vim's default
behaviour. I don't. There are some particular settings that I'd rather be
something else, so let's change them.

#+begin_src emacs-lisp
(after! evil
 (setq evil-ex-substitute-global t ; I like my s/../.. to by global by default
 evil-move-cursor-back nil ; Don't move the block cursor when toggling insert mode
 evil-kill-on-visual-paste nil)) ; Don't put overwritten text in the kill ring
#+end_src

I don't use ~evil-escape-mode~, so I may as well turn it off, I've heard it
contributes a typing delay. I'm not sure it's much, but it is an extra
~pre-command-hook~ that I don't benefit from, so...
It seems that there's a dedicated package for this, so instead of just disabling
the mode on startup, let's prevent installation of the package.

#+begin_src emacs-lisp :tangle packages.el :noweb-ref none
(package! evil-escape :disable t)
#+end_src

*** GPTel

#+call: confpkg("!Pkg gptel")

#+begin_src emacs-lisp :tangle packages.el
(package! gptel :pin "94bf19da93aee9a101429d7ecbfbb9c7c5b67216")
#+end_src

#+begin_src emacs-lisp
(use-package! gptel
 :commands gptel gptel-menu gptel-mode gptel-send
 :config
 (let ((groq-backend
 (gptel-make-openai "Groq"
 :host "api.groq.com"
 :endpoint "/openai/v1/chat/completions"
 :stream t
 :key (lambda () (or (secrets-get-secret "Login" "groq")
 (secrets-get-secret "kdewallet" "groq")))
 :models '("llama3-70b-8192"
 "llama3-8b-8192"
 "llama-3.1-70b-versatile"
 "llama-3.1-8b-instant"
 "llama-3.2-1b-preview"
 "deepseek-r1-distill-llama-70b"
 "mixtral-8x7b-32768"
 "gemma-7b-it"
 "gemma2-9b-it")))
 (openai-backend
 (gptel-make-openai "ChatGPT"
 :host "api.openai.com"
 :stream t
 :key (lambda () (or (secrets-get-secret "Login" "openai")
 (secrets-get-secret "kdewallet" "openai")))
 :models '("gpt-4o" "gpt-4o-mini" "chatgpt-4o-latest"
 "o1" "o1-mini")))
 (anthropic-backend
 (gptel-make-anthropic "Claude"
 :stream t
 :key (lambda () (or (secrets-get-secret "Login" "anthropic")
 (secrets-get-secret "kdewallet" "anthropic")))
 :models '("claude-3-5-sonnet-20240620"
 "claude-3-sonnet-20240229"
 "claude-3-haiku-20240307")))
 (ollama-backend
 (let (ollama-models)
 (when (executable-find "ollama")
 (with-temp-buffer
 (call-process "ollama" nil t nil "list")
 (goto-char (point-min))
 (forward-line 1)
 (while (and (not (eobp)) (looking-at "[^ \t]+"))
 (push (match-string 0) ollama-models)
 (forward-line 1)))
 (gptel-make-ollama "Ollama" :models ollama-models :stream t)))))
 (setq-default gptel-model "llama-3.1-70b-versatile"
 gptel-backend groq-backend))
 (delete (assoc "ChatGPT" gptel--known-backends) gptel--known-backends)
 (setq gptel-default-mode #'org-mode))
#+end_src

*** Headlice

#+call: confpkg("!Pkg Headlice")

Dealing with licenses and in particular license headers is frankly a bit of a
pain, and so I've written a package so that this just takes care of itself and I
don't have to think about it.

#+begin_src emacs-lisp :tangle packages.el
(package! headlice :recipe (:local-repo "lisp/headlice"
 :files (:defaults "licenses" "headers")))
#+end_src

The author of this package has set some pretty good defaults, but as usual there
are some specific personal preferences I'd like to apply, and then there's the
minor matter of hooking it into Emacs/Doom.

#+begin_src emacs-lisp
(use-package! headlice
 :hook (prog-mode . headlice-auto-insert)
 :config
 (setq headlice-preferred-license 'mpl
 headlice-use-spdx-headers t
 headlice-ignored-licenses '(gpl-3)
 headlice-user-email "contact@tecosaur.net")
 (defalias '+file-templates/insert-license #'headlice-create-license))
#+end_src

*** Consult

#+call: confpkg("!Pkg Consult")

#+begin_quote
From the =:completion vertico= module.
#+end_quote

Since we're using [[Marginalia]] too, the separation between buffers and files is
already clear, and there's no need for a different face.

#+begin_src emacs-lisp
(after! consult
 (set-face-attribute 'consult-file nil :inherit 'consult-buffer)
 (setf (plist-get (alist-get 'perl consult-async-split-styles-alist) :initial) ";"))
#+end_src

*** Magit

#+call: confpkg("!Pkg Magit")

#+begin_quote
From the =:tools magit= module.
#+end_quote

[[xkcd:1597]]

Magit is great as-is, thanks for making such a lovely package [[https://github.com/tarsius][Jonas]]!

There's still a room for a little tweaking though...

#+begin_src emacs-lisp :noweb no-export :noweb-prefix no
<<magit-toplevel>>
(after! magit
 <<magit-tweaks>>)
#+end_src

**** Easier forge remotes
:PROPERTIES:
:header-args:emacs-lisp: :noweb-ref magit-tweaks
:END:

When creating a new project, I often want the remote to be to my personal Forgejo
instance. Let's make that a bit more streamlined by introducing a quick-entry
"default forge" option.

#+begin_src emacs-lisp
(defvar +magit-default-forge-remote "git@ssh.tecosaur.net:tec/%s.git"
 "Format string that fills out to a remote from the repo name.
Set to nil to disable this functionality.")
#+end_src

While we're at it, when creating a remote with the same name as my Github
username in a project where an HTTPS GitHub remote already exists, let's make
the pre-filled remote URL use ssh.

#+begin_src emacs-lisp
(defadvice! +magit-remote-add--streamline-forge-a (args)
 "Prompt to setup a remote using `+magit-default-forge-remote'."
 :filter-args #'magit-remote-add
 (interactive
 (let ((default-name
 (subst-char-in-string
 ?\s ?-
 (file-name-nondirectory
 (directory-file-name
 (or (doom-project-root) default-directory))))))
 (or (and +magit-default-forge-remote
 (not (magit-list-remotes))
 (eq (read-char-choice
 (format "Setup %s remote? [y/n]: "
 (replace-regexp-in-string
 "\\`\\(?:[^@]+@\\|https://\\)\\([^:/]+\\)[:/].*\\'" "\\1"
 +magit-default-forge-remote))
 '(?y ?n))
 ?y)
 (let ((name (read-string "Name: " default-name)))
 (list "origin" (format +magit-default-forge-remote name)
 (transient-args 'magit-remote))))
 (let ((origin (magit-get "remote.origin.url"))
 (remote (magit-read-string-ns "Remote name"))
 (gh-user (magit-get "github.user")))
 (and (equal remote gh-user)
 (if origin
 (and
 (string-match "\\`https://github\\.com/\\([^/]+\\)/\\([^/]+\\)\\.git\\'"
 origin)
 (not (string= (match-string 1 origin) gh-user)))
 t)
 (setq origin
 (if origin
 (replace-regexp-in-string
 "\\`https://github\\.com/" "git@github.com:"
 origin)
 (format "git@github.com:%s/%s" gh-user (read-string "GitHub repo Name: " default-name)))))
 (list remote
 (magit-read-url
 "Remote url"
 (and origin
 (string-match "\\([^:/]+\\)/[^/]+\\(\\.git\\)?\\'" origin)
 (replace-match remote t t origin 1)))
 (transient-args 'magit-remote))))))
 args)
#+end_src

**** Commit message templates
:PROPERTIES:
:header-args:emacs-lisp: :noweb-ref magit-tweaks
:END:

One little thing I want to add is some per-project commit message templates.

#+begin_src emacs-lisp :noweb-ref magit-toplevel
(defvar +magit-project-commit-templates-alist nil
 "Alist of toplevel dirs and template hf strings/functions.")
#+end_src

#+begin_src emacs-lisp
(defun +magit-fill-in-commit-template ()
 "Insert template from `+magit-fill-in-commit-template' if applicable."
 (when-let ((template (and (save-excursion (goto-char (point-min)) (string-match-p "\\`\\s-*$" (thing-at-point 'line)))
 (cdr (assoc (file-name-base (directory-file-name (magit-toplevel)))
 +magit-project-commit-templates-alist)))))
 (goto-char (point-min))
 (insert (if (stringp template) template (funcall template)))
 (goto-char (point-min))
 (end-of-line)))
(add-hook 'git-commit-setup-hook #'+magit-fill-in-commit-template 90)
#+end_src

This is particularly useful when creating commits for Org, as they need to
follow [[https://orgmode.org/worg/org-contribute.html#commit-messages][a certain format]] and sometimes I forget elements (oops!).
#+begin_src emacs-lisp
(defun +org-commit-message-template ()
 "Create a skeleton for an Org commit message based on the staged diff."
 (let (change-data last-file file-changes temp-point)
 (with-temp-buffer
 (apply #'call-process magit-git-executable
 nil t nil
 (append
 magit-git-global-arguments
 (list "diff" "--cached")))
 (goto-char (point-min))
 (while (re-search-forward "^@@\\|^\\+\\+\\+ b/" nil t)
 (if (looking-back "^\\+\\+\\+ b/" (line-beginning-position))
 (progn
 (push (list last-file file-changes) change-data)
 (setq last-file (buffer-substring-no-properties (point) (line-end-position))
 file-changes nil))
 (setq temp-point (line-beginning-position))
 (re-search-forward "^\\+\\|^-" nil t)
 (end-of-line)
 (cond
 ((string-match-p "\\.el$" last-file)
 (when (re-search-backward "^\\(?:[+-]? *\\|@@[+-\\d,]+@@ \\)(\\(?:cl-\\)?\\(?:defun\\|defvar\\|defmacro\\|defcustom\\)" temp-point t)
 (re-search-forward "\\(?:cl-\\)?\\(?:defun\\|defvar\\|defmacro\\|defcustom\\) \\([^[:space:]\n]+\\)" nil t)
 (push (match-string 1) file-changes)))
 ((string-match-p "\\.org$" last-file)
 (when (re-search-backward "^[+-]*+ \\|^@@[+-\\d,]+@@ *+ " temp-point t)
 (re-search-forward "@@ *+ " nil t)
 (push (buffer-substring-no-properties (point) (line-end-position)) file-changes)))))))
 (setq file-changes (delete-dups file-changes))
 (push (list last-file file-changes) change-data)
 (setq change-data (delete '(nil nil) change-data))
 (concat
 (if (= 1 (length change-data))
 (replace-regexp-in-string "^.*/\\|.[a-z]+$" "" (caar change-data))
 "?")
 ": \n\n"
 (mapconcat
 (lambda (file-changes)
 (if (cadr file-changes)
 (format "* %s (%s): "
 (car file-changes)
 (mapconcat #'identity (cadr file-changes) ", "))
 (format "* %s: " (car file-changes))))
 change-data
 "\n\n"))))

(add-to-list '+magit-project-commit-templates-alist (cons "org" #'+org-commit-message-template))
#+end_src

This relies on two small entries in the git config files which improves the hunk
heading line selection for elisp and Org files.

#+begin_src gitconfig
[diff "lisp"]
 xfuncname = "^(((;;;+)|\\(|([\t]+\\(((cl-|el-patch-)?def(un|var|macro|method|custom)|gb/))).*)$"

[diff "org"]
 xfuncname = "^(*+ +.*)$"
#+end_src

**** Magit delta

[[https://github.com/dandavison/delta/][Delta]] is a git diff syntax highlighter written in rust. The author also wrote a
package to hook this into the Magit diff view (which don't get any syntax
highlighting by default). This requires the ~delta~ binary. It's packaged on some
distributions, but most reliably installed through Rust's package manager cargo.

#+begin_src shell :eval no :tangle (if (or (not (executable-find "cargo")) (executable-find "delta")) "no" "setup.sh")
cargo install git-delta
#+end_src

Now we can make use of the package for this.
#+begin_src emacs-lisp :tangle packages.el :noweb-ref none
;; (package! magit-delta :recipe (:host github :repo "dandavison/magit-delta") :pin "5fc7dbddcfacfe46d3fd876172ad02a9ab6ac616")
#+end_src

All that's left is to hook it into magit
#+begin_src emacs-lisp :noweb-ref none
;; (magit-delta-mode +1)
#+end_src
Unfortunately this currently seems to mess things up, which is something I'll
want to look into later.

*** MPRIS

It's nice to be able to interact with MPRIS players. This would just be a
dependency of =org-music= or =doom-modeline-media-player=, but I haven't made it
available on any an elisp archives. Thankfully most Emacs package managers make
using Git repository URLs pretty easy these days.

#+begin_src emacs-lisp :tangle packages.el
(package! mpris :recipe (:local-repo "lisp/mpris"))
#+end_src

*** Smerge

#+call: confpkg("!Pkg Smerge")

For repeated operations, a hydra would be helpful. But I prefer transient.
#+begin_src emacs-lisp
(defun smerge-repeatedly ()
 "Perform smerge actions again and again"
 (interactive)
 (smerge-mode 1)
 (smerge-transient))
(after! transient
 (transient-define-prefix smerge-transient ()
 [["Move"
 ("n" "next" (lambda () (interactive) (ignore-errors (smerge-next)) (smerge-repeatedly)))
 ("p" "previous" (lambda () (interactive) (ignore-errors (smerge-prev)) (smerge-repeatedly)))]
 ["Keep"
 ("b" "base" (lambda () (interactive) (ignore-errors (smerge-keep-base)) (smerge-repeatedly)))
 ("u" "upper" (lambda () (interactive) (ignore-errors (smerge-keep-upper)) (smerge-repeatedly)))
 ("l" "lower" (lambda () (interactive) (ignore-errors (smerge-keep-lower)) (smerge-repeatedly)))
 ("a" "all" (lambda () (interactive) (ignore-errors (smerge-keep-all)) (smerge-repeatedly)))
 ("RET" "current" (lambda () (interactive) (ignore-errors (smerge-keep-current)) (smerge-repeatedly)))]
 ["Diff"
 ("<" "upper/base" (lambda () (interactive) (ignore-errors (smerge-diff-base-upper)) (smerge-repeatedly)))
 ("=" "upper/lower" (lambda () (interactive) (ignore-errors (smerge-diff-upper-lower)) (smerge-repeatedly)))
 (">" "base/lower" (lambda () (interactive) (ignore-errors (smerge-diff-base-lower)) (smerge-repeatedly)))
 ("R" "refine" (lambda () (interactive) (ignore-errors (smerge-refine)) (smerge-repeatedly)))
 ("E" "ediff" (lambda () (interactive) (ignore-errors (smerge-ediff)) (smerge-repeatedly)))]
 ["Other"
 ("c" "combine" (lambda () (interactive) (ignore-errors (smerge-combine-with-next)) (smerge-repeatedly)))
 ("r" "resolve" (lambda () (interactive) (ignore-errors (smerge-resolve)) (smerge-repeatedly)))
 ("k" "kill current" (lambda () (interactive) (ignore-errors (smerge-kill-current)) (smerge-repeatedly)))
 ("q" "quit" (lambda () (interactive) (smerge-auto-leave)))]]))
#+end_src
*** Corfu

#+call: confpkg("!Pkg Corfu", after="corfu")

#+begin_quote
From the =:completion corfu= module.
#+end_quote

I like completion, but I don't like to feel spammed by it, so let's up the delay.

#+begin_src emacs-lisp
(setq corfu-auto-delay 0.5)
#+end_src

*** Projectile

#+call: confpkg("!Pkg Projectile")

#+begin_quote
From the =:core packages= module.
#+end_quote

Looking at documentation via =SPC h f= and =SPC h v= and looking at the source can
add package src directories to projectile. This isn't desirable in my opinion.

#+begin_src emacs-lisp
(setq projectile-ignored-projects
 (list "~/" "/tmp" (expand-file-name "straight/repos" doom-local-dir)))
(defun projectile-ignored-project-function (filepath)
 "Return t if FILEPATH is within any of `projectile-ignored-projects'"
 (or (mapcar (lambda (p) (string-prefix-p p filepath)) projectile-ignored-projects)))
#+end_src

*** Jinx

#+call: confpkg()

Minad's Jinx spell-checker looks pretty nifty. When Henrik and I (or someone
else) have some more bandwidth, I think it would be good to incorporate with
Doom.

In the meantime, let's use it here.

#+begin_src emacs-lisp :tangle packages.el :noweb-ref none
(package! jinx)
#+end_src

**** Configuration

Jinx has some pretty lovely defaults out of the box, we'll just be making a few
tweaks.

#+begin_src emacs-lisp
(use-package! jinx
 :defer t
 :init
 (add-hook 'doom-init-ui-hook #'global-jinx-mode)
 :config
 ;; Use my custom dictionary
 (setq jinx-languages "en-custom")
 ;; Extra face(s) to ignore
 (push 'org-inline-src-block
 (alist-get 'org-mode jinx-exclude-faces))
 ;; Take over the relevant bindings.
 (after! ispell
 (global-set-key [remap ispell-word] #'jinx-correct))
 (after! evil-commands
 (global-set-key [remap evil-next-flyspell-error] #'jinx-next)
 (global-set-key [remap evil-prev-flyspell-error] #'jinx-previous))
 ;; I prefer for `point' to end up at the start of the word,
 ;; not just after the end.
 (advice-add 'jinx-next :after (lambda (_) (left-word))))
#+end_src

**** Autocorrect

#+call: confpkg()

I used to have a small collection of configuration here, but then it grew
larger, and now it's a package.

#+begin_src emacs-lisp :tangle packages.el
(package! autocorrect :recipe (:local-repo "lisp/autocorrect"))
#+end_src

To integrate Jinx with the =autocorrect= package, we need to tell it:
+ About corrections made with Jinx
+ How to tell if a word is spelled correctly with Jinx
+ When it's appropriate to make an autocorrection

#+begin_src emacs-lisp
(use-package! autocorrect
 :after jinx
 :config
 ;; Integrate with Jinx
 (defun autocorrect-jinx-record-correction (overlay corrected)
 "Record that Jinx corrected the text in OVERLAY to CORRECTED."
 (let ((text
 (buffer-substring-no-properties
 (overlay-start overlay)
 (overlay-end overlay))))
 (autocorrect-record-correction text corrected)))

 (defun autocorrect-jinx-check-spelling (word)
 "Check if WORD is valid."
 ;; Mostly a copy of `jinx--word-valid-p', just without the buffer substring.
 ;; It would have been nice if `jinx--word-valid-p' implemented like this
 ;; with `jinx--this-word-valid-p' (or similar) as the at-point variant.
 (or (member word jinx--session-words)
 ;; Allow capitalized words
 (and (string-match-p "\\`[[:upper:]][[:lower:]]+\\'" word)
 (cl-loop
 for w in jinx--session-words
 thereis (and (string-equal-ignore-case word w)
 (string-match-p "\\`[[:lower:]]+\\'" w))))
 (cl-loop for dict in jinx--dicts
 thereis (jinx--mod-check dict word))))

 (defun autocorrect-jinx-appropriate (pos)
 "Return non-nil if it is appropriate to spellcheck at POS according to jinx."
 (and (not (jinx--face-ignored-p pos))
 (not (jinx--regexp-ignored-p pos))))

 (setq autocorrect-check-spelling-function #'autocorrect-jinx-check-spelling)
 (add-to-list 'autocorrect-predicates #'autocorrect-jinx-appropriate)
 (advice-add 'jinx--correct-replace :before #'autocorrect-jinx-record-correction)

 ;; Run setup
 (run-with-idle-timer 0.5 nil #'autocorrect-setup)

 ;; Make work with evil-mode
 (evil-collection-set-readonly-bindings 'autocorrect-list-mode-map)
 (evil-collection-define-key 'normal 'autocorrect-list-mode-map
 (kbd "a") #'autocorrect-create-correction
 (kbd "x") #'autocorrect-remove-correction
 (kbd "i") #'autocorrect-ignore-word))
#+end_src

**** Downloading dictionaries

Let's get a nice big dictionary from [[http://app.aspell.net/create][SCOWL Custom List/Dictionary Creator]] with
the following configuration
- size :: 80 (huge)
- spellings :: British(-ise) and Australian
- spelling variants level :: 0
- diacritics :: keep
- extra lists :: hacker, roman numerals

***** Hunspell

#+begin_src shell :tangle (if (file-exists-p "~/.config/enchant/hunspell") "no" "setup.sh")
cd /tmp
if [! -d hunspell-en-custom]; then
 curl -o "hunspell-en-custom.zip" 'http://app.aspell.net/create?max_size=80&spelling=GBs&spelling=AU&max_variant=0&diacritic=keep&special=hacker&special=roman-numerals&encoding=utf-8&format=inline&download=hunspell'
 unzip "hunspell-en-custom.zip" -d hunspell-en-custom
fi

cd hunspell-en-custom
DESTDIR1="$HOME/.local/share/hunspell"
DESTDIR2="$HOME/.config/enchant/hunspell"
mkdir -p "$DESTDIR1"
mkdir -p "$DESTDIR2"
cp en-custom.{aff,dic} "$DESTDIR1"
cp en-custom.{aff,dic} "$DESTDIR2"
#+end_src

We will also add an accompanying =doctor= warning.

#+begin_src emacs-lisp :noweb-ref doctor
(unless (executable-find "hunspell")
 (warn! "Couldn't find hunspell executable."))
(unless (file-exists-p "~/.local/share/hunspell/en-custom.dic")
 (warn! "Custom hunspell dictionary is not present."))
#+end_src

***** Aspell

#+begin_src shell :tangle (if (file-expand-wildcards "~/.config/enchant/aspell/en-custom.multi") "no" "setup.sh")
cd /tmp
if [! -d aspell6-en-custom]; then
 curl -o "aspell6-en-custom.tar.bz2" 'http://app.aspell.net/create?max_size=80&spelling=GBs&spelling=AU&max_variant=0&diacritic=keep&special=hacker&special=roman-numerals&encoding=utf-8&format=inline&download=aspell'
 tar -xjf "aspell6-en-custom.tar.bz2"
fi

cd aspell6-en-custom
DESTDIR="$HOME/.config/enchant/" ./configure
sed -i 's/dictdir = .*/dictdir = "aspell"/' Makefile
sed -i 's/datadir = .*/datadir = "aspell"/' Makefile
make && make install
#+end_src

We will also add an accompanying =doctor= warning.

#+begin_src emacs-lisp :noweb-ref doctor
(unless (executable-find "aspell")
 (warn! "Couldn't find aspell executable."))
(unless (file-exists-p "~/.config/enchant/aspell/en-custom.multi")
 (warn! "Custom aspell dictionary is not present."))
#+end_src

*** TRAMP

#+call: confpkg("TRAMP")

Another lovely Emacs feature, TRAMP stands for /Transparent Remote Access,
Multiple Protocol/. In brief, it's a lovely way to wander around outside your
local filesystem.

**** Prompt recognition

Unfortunately, when connecting to remote machines Tramp can be a wee pit picky
with the prompt format. Let's try to get Bash, and be a bit more permissive with
prompt recognition.

#+begin_src emacs-lisp
(after! tramp
 (setenv "SHELL" "/bin/bash")
 (setq tramp-shell-prompt-pattern "\\(?:^\\|\n\\|\x0d\\)[^]#$%>\n]*#?[]#$%>] *\\(\e\\[[0-9;]*[a-zA-Z] *\\)*")) ;; default + 
#+end_src

**** Troubleshooting

In case the remote shell is misbehaving, here are some things to try

***** Zsh

There are some escape code you don't want, let's make it behave more considerately.
#+begin_src shell :eval no :tangle no
if [["$TERM" == "dumb"]]; then
 unset zle_bracketed_paste
 unset zle
 PS1='$ '
 return
fi
#+end_src

**** Guix

[[https://guix.gnu.org/][Guix]] puts some binaries that TRAMP looks for in unexpected locations.
That's no problem though, we just need to help TRAMP find them.

#+begin_src emacs-lisp
(after! tramp
 (appendq! tramp-remote-path
 '("~/.guix-profile/bin" "~/.guix-profile/sbin"
 "/run/current-system/profile/bin"
 "/run/current-system/profile/sbin")))
#+end_src

*** Auto activating snippets

#+call: confpkg("!Pkg AAS")

Sometimes pressing =TAB= is just too much.
#+begin_src emacs-lisp :tangle packages.el
(package! aas :recipe (:host github :repo "ymarco/auto-activating-snippets")
 :pin "ddc2b7a58a2234477006af348b30e970f73bc2c1")
#+end_src

#+begin_src emacs-lisp
(use-package! aas
 :commands aas-mode)
#+end_src

*** Screenshot

#+call: confpkg("!Pkg Screenshot")

This makes it a breeze to take lovely screenshots.

#+begin_src emacs-lisp :tangle packages.el
(package! screenshot :recipe (:local-repo "lisp/screenshot"))
#+end_src

#+attr_html: :class invertible :alt Example screenshot.el screenshot
[[https://code.tecosaur.net/tec/emacs-config/media/branch/master/misc/screenshots/screenshot.png]]

Some light configuring is all we need, so we can make use of the [[https://github.com/Calinou/0x0][0x0]] wrapper
file uploading script (which I've renamed to ~upload~).

#+begin_src emacs-lisp
(use-package! screenshot
 :defer t
 :config (setq screenshot-upload-fn "upload %s 2>/dev/null"))
#+end_src

*** Etrace

#+call: confpkg("!Pkg etrace")

The /Emacs Lisp Profiler/ (ELP) does a nice job recording information, but it
isn't the best for looking at results. =etrace= converts ELP's results to the
"Chromium Catapult Trace Event Format". This means that the output of =etrace= can
be loaded in something like the [[https://www.speedscope.app/][speedscope]] webapp for easier profile
investigation.

#+begin_src emacs-lisp :tangle packages.el
(package! etrace :recipe (:host github :repo "aspiers/etrace")
 :pin "2291ccf2f2ccc80a6aac4664e8ede736ceb672b7")
#+end_src

#+begin_src emacs-lisp
(use-package! etrace
 :after elp)
#+end_src

*** YASnippet

#+call: confpkg("!Pkg YASnippet")

#+begin_quote
From the =:editor snippets= module.
#+end_quote

Nested snippets are good, so let's enable that.
#+begin_src emacs-lisp
(setq yas-triggers-in-field t)
#+end_src

*** String inflection

#+call: confpkg("!Pkg String Inflection")

For when you want to change the case pattern for a symbol.
#+begin_src emacs-lisp :tangle packages.el
(package! string-inflection :pin "617df25e91351feffe6aff4d9e4724733449d608")
#+end_src

#+begin_src emacs-lisp
(use-package! string-inflection
 :commands (string-inflection-all-cycle
 string-inflection-toggle
 string-inflection-camelcase
 string-inflection-lower-camelcase
 string-inflection-kebab-case
 string-inflection-underscore
 string-inflection-capital-underscore
 string-inflection-upcase)
 :init
 (map! :leader :prefix ("c~" . "naming convention")
 :desc "cycle" "~" #'string-inflection-all-cycle
 :desc "toggle" "t" #'string-inflection-toggle
 :desc "CamelCase" "c" #'string-inflection-camelcase
 :desc "downCase" "d" #'string-inflection-lower-camelcase
 :desc "kebab-case" "k" #'string-inflection-kebab-case
 :desc "under_score" "_" #'string-inflection-underscore
 :desc "Upper_Score" "u" #'string-inflection-capital-underscore
 :desc "UP_CASE" "U" #'string-inflection-upcase)
 (after! evil
 (evil-define-operator evil-operator-string-inflection (beg end _type)
 "Define a new evil operator that cycles symbol casing."
 :move-point nil
 (interactive "<R>")
 (string-inflection-all-cycle)
 (setq evil-repeat-info '([?g ?~])))
 (define-key evil-normal-state-map (kbd "g~") 'evil-operator-string-inflection)))
#+end_src

*** Smart parentheses

#+call: confpkg("!Pkg SmartParens")

#+begin_quote
From the =:core packages= module.
#+end_quote

#+begin_src emacs-lisp
(sp-local-pair
 '(org-mode)
 "<<" ">>"
 :actions '(insert))
#+end_src

** Visuals
*** Info colours

#+call: confpkg("!Pkg Info colors")

This makes manual pages nicer to look at by adding variable pitch fontification
and colouring 🙂.

#+attr_html: :class invertible :style width:80% :alt Example info-colours page.
[[https://code.tecosaur.net/tec/emacs-config/media/branch/master/misc/screenshots/info-colours.png]]

#+begin_src emacs-lisp :tangle packages.el
(package! info-colors :pin "2e237c301ba62f0e0286a27c1abe48c4c8441143")
#+end_src

To use this we'll just hook it into =Info=.

#+begin_src emacs-lisp
(use-package! info-colors
 :commands (info-colors-fontify-node))

(add-hook 'Info-selection-hook 'info-colors-fontify-node)
#+end_src

#+attr_html: :class invertible :alt Example colourised info page
[[https://code.tecosaur.net/tec/emacs-config/media/branch/master/misc/screenshots/info-coloured.png]]

*** Modus themes

Proteolas did a lovely job with the Modus themes, so much so that they were
welcomed into Emacs 28. However, he is also rather attentive with updates, and
so I'd like to make sure we have a recent version.

#+begin_src emacs-lisp :tangle packages.el
(package! modus-themes :pin "f3cd4d6983566dab0ef3bcddf812cfd565d00d08" :pin "3576d14f06f245c3111496bfb035bb0926f48089")
#+end_src

*** Spacemacs themes

#+begin_src emacs-lisp :tangle packages.el
(package! spacemacs-theme :pin "a7c5dccb4a037ba1f090015fc8ffb9566c64e369")
#+end_src

*** Theme magic

#+call: confpkg("!Pkg Theme magic")

With all our fancy Emacs themes, my terminal is missing out!
#+begin_src emacs-lisp :tangle packages.el
(package! theme-magic :pin "844c4311bd26ebafd4b6a1d72ddcc65d87f074e3")
#+end_src

This operates using =pywal=, which is present in some repositories, but most
reliably installed with =pip=.

#+begin_src shell :eval no :tangle (if (executable-find "wal") "no" "setup.sh")
sudo python3 -m pip install pywal
#+end_src

We can also add a =doctor= check.

#+begin_src emacs-lisp :noweb-ref doctor
(unless (executable-find "wal")
 (warn! "Couldn't find the pywal executable (wal), theme-magic will not function."))
#+end_src

Theme magic takes a look at a number of faces, the saturation levels, and colour
differences to try to cleverly pick eight colours to use. However, it uses the
same colours for the light variants, and doesn't always make the best picks.
Since we're using =doom-themes=, our life is a little easier and we can use the
colour utilities from Doom themes to easily grab sensible colours and generate
lightened versions --- let's do that.

#+begin_src emacs-lisp
(use-package! theme-magic
 :commands theme-magic-from-emacs
 :config
 (defadvice! theme-magic--auto-extract-16-doom-colors ()
 :override #'theme-magic--auto-extract-16-colors
 (list
 (face-attribute 'default :background)
 (doom-color 'error)
 (doom-color 'success)
 (doom-color 'type)
 (doom-color 'keywords)
 (doom-color 'constants)
 (doom-color 'functions)
 (face-attribute 'default :foreground)
 (face-attribute 'shadow :foreground)
 (doom-blend 'base8 'error 0.1)
 (doom-blend 'base8 'success 0.1)
 (doom-blend 'base8 'type 0.1)
 (doom-blend 'base8 'keywords 0.1)
 (doom-blend 'base8 'constants 0.1)
 (doom-blend 'base8 'functions 0.1)
 (face-attribute 'default :foreground))))
#+end_src

*** Simple comment markup

#+call: confpkg("!Pkg simple-comment-markup")

I find that every now and then I sprinkle a little markup in code comments. Of
course, this doesn't get fortified as it's ultimately meaningless ... but it
would be nice if it was, just slightly. Surprisingly, I couldn't find a package
for this, so I made one.

#+begin_src emacs-lisp :tangle packages.el
(package! simple-comment-markup :recipe (:local-repo "lisp/simple-comment-markup"))
#+end_src

Let's use both basic Org markup and Markdown code backticks, to cover most
situations decently.

#+begin_src emacs-lisp
(use-package! simple-comment-markup
 :hook (prog-mode . simple-comment-markup-mode)
 :config
 (setq simple-comment-markup-set '(org markdown-code)))
#+end_src

*** Doom modeline

#+call: confpkg("!Pkg Doom modeline", after="doom-modeline")

#+begin_quote
From the =:ui modeline= module.
#+end_quote

**** Modified buffer colour

The modeline is very nice and pretty, however I have a few niggles with the
defaults. For starters, by default ~red~ text is used to indicate an unsaved file.
This makes me feel like something's gone /wrong/, so let's tone that down to
orange.

#+begin_src emacs-lisp
(custom-set-faces!
 '(doom-modeline-buffer-modified :foreground "orange"))
#+end_src

**** Height

The default size (=25=) makes for a rather narrow mode line. To me, the modeline
feels a bit comfier if we give it a bit more space. I find =45= adds roughly a
third of the line height as padding above and below.

#+begin_src emacs-lisp
(setq doom-modeline-height 45)
#+end_src

**** File encoding

While we're modifying the modeline, when we have the default file encoding (=LF
UTF-8=), it really isn't worth noting in the modeline. So, why not conditionally
hide it?

#+begin_src emacs-lisp
(defun doom-modeline-conditional-buffer-encoding ()
 "We expect the encoding to be LF UTF-8, so only show the modeline when this is not the case"
 (setq-local doom-modeline-buffer-encoding
 (unless (and (memq (plist-get (coding-system-plist buffer-file-coding-system) :category)
 '(coding-category-undecided coding-category-utf-8))
 (not (memq (coding-system-eol-type buffer-file-coding-system) '(1 2))))
 t)))

(add-hook 'after-change-major-mode-hook #'doom-modeline-conditional-buffer-encoding)
#+end_src

**** Analogue clock

Now that my code for an analogue clock icon has been upstreamed, all I do here
is adjust the size slightly 🙂.

#+begin_src emacs-lisp
(setq doom-modeline-time-clock-size 0.65)
#+end_src

**** Media player

Sometimes (particularly when reading a novel, with Emacs full-screened) it would
be nice to know what I'm listening to. We can put this information in the
modeline with my media player package.

#+begin_src emacs-lisp :tangle packages.el :noweb-ref none
(package! doom-modeline-media-player
 :recipe (:local-repo "lisp/doom-modeline-media-player"))
#+end_src

To enable the lazy loading, we make =doom-modeline= aware of the segment function
in ~:init~, and the segment function itself is autoloaded.

#+begin_src emacs-lisp
(use-package! doom-modeline-media-player
 :defer t
 :init
 (after! doom-modeline
 (add-to-list 'doom-modeline-fn-alist
 (cons 'media-player #'doom-modeline-segment--media-player)))
 :config
 (defun +single-fullscreen-window-p ()
 (and (memq (frame-parameter nil 'fullscreen) '(fullscreen fullboth))
 (not (consp (car (window-tree))))))
 (setq doom-modeline-media-player #'+single-fullscreen-window-p
 doom-modeline-media-player-playback-indication 'dim))
#+end_src

**** PDF modeline

I think the PDF modeline could do with tweaking. I raised [[https://github.com/seagle0128/doom-modeline/pull/425][an issue]] on this,
however the response was basically "put your preferences in your personal
config, the current default is sensible" --- so here we are.

First up I'm going to want a segment for just the buffer file name, and a PDF
icon. Then we'll redefine two functions used to generate the modeline.

#+begin_src emacs-lisp
(doom-modeline-def-segment buffer-name
 "Display the current buffer's name, without any other information."
 (concat
 (doom-modeline-spc)
 (doom-modeline--buffer-name)))

(doom-modeline-def-segment pdf-icon
 "PDF icon from nerd-icons."
 (concat
 (doom-modeline-icon sucicon "nf-seti-pdf" nil nil
 (doom-modeline-spc)
 :face (if (doom-modeline--active)
 'nerd-icons-red
 'mode-line-inactive)
 :v-adjust 0.02)))

(defun doom-modeline-update-pdf-pages ()
 "Update PDF pages."
 (setq doom-modeline--pdf-pages
 (let ((current-page-str (number-to-string (eval `(pdf-view-current-page))))
 (total-page-str (number-to-string (pdf-cache-number-of-pages))))
 (concat
 (propertize
 (concat (make-string (- (length total-page-str) (length current-page-str)) ?)
 " P" current-page-str)
 'face 'mode-line)
 (propertize (concat "/" total-page-str) 'face 'doom-modeline-buffer-minor-mode)))))

(doom-modeline-def-segment pdf-pages
 "Display PDF pages."
 (if (doom-modeline--active) doom-modeline--pdf-pages
 (propertize doom-modeline--pdf-pages 'face 'mode-line-inactive)))

(doom-modeline-def-modeline 'pdf
 '(bar window-number pdf-pages pdf-icon buffer-name)
 '(media-player misc-info matches major-mode process vcs))
#+end_src

*** Keycast

#+call: confpkg("!Pkg Keycast")

For some reason, I find myself demoing Emacs every now and then. Showing what
keyboard stuff I'm doing on-screen seems helpful. While [[https://gitlab.com/screenkey/screenkey][screenkey]] does exist,
having something that doesn't cover up screen content is nice.

#+attr_html: :class invertible :alt Screenshot of Keycast-mode in action
[[https://code.tecosaur.net/tec/emacs-config/media/branch/master/misc/screenshots/keycast.png]]

#+begin_src emacs-lisp :tangle packages.el
(package! keycast :pin "53514c3dc3dfb7d4c3a65898b0b3edb69b6536c2")
#+end_src

Let's just make sure this is lazy-loaded appropriately.
#+begin_src emacs-lisp
(use-package! keycast
 :commands keycast-mode
 :config
 (define-minor-mode keycast-mode
 "Show current command and its key binding in the mode line."
 :global t
 (if keycast-mode
 (progn
 (add-hook 'pre-command-hook 'keycast--update t)
 (add-to-list 'global-mode-string '("" mode-line-keycast " ")))
 (remove-hook 'pre-command-hook 'keycast--update)
 (setq global-mode-string (remove '("" mode-line-keycast " ") global-mode-string))))
 (custom-set-faces!
 '(keycast-command :inherit doom-modeline-debug
 :height 0.9)
 '(keycast-key :inherit custom-modified
 :height 1.1
 :weight bold)))
#+end_src

*** Screencast

#+call: confpkg("!Pkg Screencast")

In a similar manner to [[Keycast]], [[https://gitlab.com/ambrevar/emacs-gif-screencast][gif-screencast]] may come in handy.
#+begin_src emacs-lisp :tangle packages.el
(package! gif-screencast :pin "6798656d3d3107d16e30cc26bc3928b00e50c1ca")
#+end_src

We can lazy load this using the start/stop commands.

I initially installed ~scrot~ for this, since it was the default capture program.
However it raised ~glib error: Saving to file ... failed~ each time it was run.
Google didn't reveal any easy fixed, so I switched to [[https://github.com/naelstrof/maim][maim]]. We now need to pass
it the window ID. This doesn't change throughout the lifetime of an Emacs
instance, so as long as a single window is used ~xdotool getactivewindow~ will
give a satisfactory result.

It seems that when new colours appear, that tends to make ~gifsicle~ introduce
artefacts. To avoid this we pre-populate the colour map using the current doom
theme.

#+begin_src emacs-lisp
(use-package! gif-screencast
 :commands gif-screencast-mode
 :config
 (map! :map gif-screencast-mode-map
 :g "<f8>" #'gif-screencast-toggle-pause
 :g "<f9>" #'gif-screencast-stop)
 (setq gif-screencast-program "maim"
 gif-screencast-args `("--quality" "3" "-i" ,(string-trim-right
 (shell-command-to-string
 "xdotool getactivewindow")))
 gif-screencast-optimize-args '("--batch" "--optimize=3" "--usecolormap=/tmp/doom-color-theme"))
 (defun gif-screencast-write-colormap ()
 (write-region
 (replace-regexp-in-string
 "\n+" "\n"
 (mapconcat (lambda (c) (if (listp (cdr c))
 (cadr c))) doom-themes--colors "\n"))
 nil "/tmp/doom-color-theme"))
 (gif-screencast-write-colormap)
 (add-hook 'doom-load-theme-hook #'gif-screencast-write-colormap))
#+end_src

*** Mixed pitch

#+call: confpkg("!Pkg mixed pitch")

#+begin_quote
From the =:ui zen= module.
#+end_quote

We'd like to use mixed pitch in certain modes. If we simply add a hook, when
directly opening a file with (a new) Emacs =mixed-pitch-mode= runs before UI
initialisation, which is problematic. To resolve this, we create a hook that
runs after UI initialisation and both
+ conditionally enables =mixed-pitch-mode=
+ sets up the mixed pitch hooks

#+begin_src emacs-lisp
(defvar mixed-pitch-modes '(org-mode LaTeX-mode markdown-mode gfm-mode Info-mode)
 "Modes that `mixed-pitch-mode' should be enabled in, but only after UI initialisation.")
(defun init-mixed-pitch-h ()
 "Hook `mixed-pitch-mode' into each mode in `mixed-pitch-modes'.
Also immediately enables `mixed-pitch-modes' if currently in one of the modes."
 (when (memq major-mode mixed-pitch-modes)
 (mixed-pitch-mode 1))
 (dolist (hook mixed-pitch-modes)
 (add-hook (intern (concat (symbol-name hook) "-hook")) #'mixed-pitch-mode)))
(add-hook 'doom-init-ui-hook #'init-mixed-pitch-h)
#+end_src

As mixed pitch uses the variable =mixed-pitch-face=, we can create a new function
to apply mixed pitch with a serif face instead of the default (see the
subsequent face definition). This was created for writeroom mode.

#+begin_src emacs-lisp
(autoload #'mixed-pitch-serif-mode "mixed-pitch"
 "Change the default face of the current buffer to a serifed variable pitch, while keeping some faces fixed pitch." t)

(setq! variable-pitch-serif-font (font-spec :family "Alegreya" :size 27))

(after! mixed-pitch
 (setq mixed-pitch-set-height t)
 (set-face-attribute 'variable-pitch-serif nil :font variable-pitch-serif-font)
 (defun mixed-pitch-serif-mode (&optional arg)
 "Change the default face of the current buffer to a serifed variable pitch, while keeping some faces fixed pitch."
 (interactive)
 (let ((mixed-pitch-face 'variable-pitch-serif))
 (mixed-pitch-mode (or arg 'toggle)))))
#+end_src

Now, as Harfbuzz is currently used in Emacs, we'll be missing out on the
following Alegreya ligatures:
#+begin_center
ff /ff/ ffi /ffi/ ffj /ffj/ ffl /ffl/
fft /fft/ fi /fi/ fj /fj/ ft /ft/
Th /Th/
#+end_center

Thankfully, it isn't to hard to add these to the ~composition-function-table~.
#+begin_src emacs-lisp
(set-char-table-range composition-function-table ?f '(["\\(?:ff?[fijlt]\\)" 0 font-shape-gstring]))
(set-char-table-range composition-function-table ?T '(["\\(?:Th\\)" 0 font-shape-gstring]))
#+end_src

**** Variable pitch serif font

#+call: confpkg()

It would be nice if we were able to make use of a serif version of the
=variable-pitch= face. Since this doesn't already exist, let's create it.

#+begin_src emacs-lisp
(defface variable-pitch-serif
 '((t (:family "serif")))
 "A variable-pitch face with serifs."
 :group 'basic-faces)
#+end_src

For ease of use, let's also set up an easy way of setting the ~:font~ attribute.

#+begin_src emacs-lisp
(defcustom variable-pitch-serif-font (font-spec :family "serif")
 "The font face used for `variable-pitch-serif'."
 :group 'basic-faces
 :type '(restricted-sexp :tag "font-spec" :match-alternatives (fontp))
 :set (lambda (symbol value)
 (set-face-attribute 'variable-pitch-serif nil :font value)
 (set-default-toplevel-value symbol value)))
#+end_src

*** Marginalia

#+call: confpkg("!Pkg Marginalia")

#+begin_quote
Part of the =:completion vertico= module.
#+end_quote

Marginalia is nice, but the file metadata annotations are a little too plain.
Specifically, I have these gripes
+ File attributes would be nicer if coloured
+ I don't care about the user/group information if the user/group is me
+ When a file time is recent, a relative age (e.g. =2h ago=) is more useful than
 the date
+ An indication of file fatness would be nice

Thanks to the ~marginalia-annotator-registry~, we don't have to advise, we can
just add a new =file= annotator.

Another small thing is the face used for docstrings. At the moment it's =(italic
shadow)=, but I don't like that.

#+begin_src emacs-lisp
(after! marginalia
 (setq marginalia-censor-variables nil)

 (defadvice! +marginalia--anotate-local-file-colorful (cand)
 "Just a more colourful version of `marginalia--anotate-local-file'."
 :override #'marginalia--annotate-local-file
 (when-let (attrs (file-attributes (substitute-in-file-name
 (marginalia--full-candidate cand))
 'integer))
 (marginalia--fields
 ((marginalia--file-owner attrs)
 :width 12 :face 'marginalia-file-owner)
 ((marginalia--file-modes attrs))
 ((+marginalia-file-size-colorful (file-attribute-size attrs))
 :width 7)
 ((+marginalia--time-colorful (file-attribute-modification-time attrs))
 :width 12))))

 (defun +marginalia--time-colorful (time)
 (let* ((seconds (float-time (time-subtract (current-time) time)))
 (color (doom-blend
 (face-attribute 'marginalia-date :foreground nil t)
 (face-attribute 'marginalia-documentation :foreground nil t)
 (/ 1.0 (log (+ 3 (/ (+ 1 seconds) 345600.0)))))))
 ;; 1 - log(3 + 1/(days + 1)) % grey
 (propertize (marginalia--time time) 'face (list :foreground color))))

 (defun +marginalia-file-size-colorful (size)
 (let* ((size-index (/ (log (+ 1 size)) 7.0))
 (color (if (< size-index 10000000) ; 10m
 (doom-blend 'orange 'green size-index)
 (doom-blend 'red 'orange (- size-index 1)))))
 (propertize (file-size-human-readable size) 'face (list :foreground color)))))
#+end_src

*** Centaur Tabs

#+call: confpkg("!Pkg Centaur Tabs")

#+begin_quote
From the =:ui tabs= module.
#+end_quote

We want to make the tabs a nice, comfy size (~36~), with icons. The modifier
marker is nice, but the particular default Unicode one causes a lag spike, so
let's just switch to an ~o~, which still looks decent but doesn't cause any
issues.
An 'active-bar' is nice, so let's have one of those. If we have it ~under~ needs us to
turn on ~x-underline-at-decent~ though. For some reason this didn't seem to work
inside the src_elisp{(after! ...)} block ¯_(ツ)_/¯.
Then let's change the font to a sans serif, but the default one doesn't fit too
well somehow, so let's switch to 'P22 Underground Book'; it looks much nicer.

#+begin_src emacs-lisp
(after! centaur-tabs
 (centaur-tabs-mode -1)
 (setq centaur-tabs-height 36
 centaur-tabs-set-icons t
 centaur-tabs-modified-marker "o"
 centaur-tabs-close-button "×"
 centaur-tabs-set-bar 'above
 centaur-tabs-gray-out-icons 'buffer)
 (centaur-tabs-change-fonts "P22 Underground Book" 160))
;; (setq x-underline-at-descent-line t)
#+end_src

*** Nerd Icons

#+call: confpkg("!Pkg Nerd Icons")

#+begin_quote
From the =:core packages= module.
#+end_quote

=nerd-icons= does a generally great job giving file names icons. One minor
niggle I have is that when /I/ open a =.m= file, it's much more likely to be Matlab
than Objective-C. As such, it'll be switching the icon associated with =.m=.

#+begin_src emacs-lisp
(after! nerd-icons
 (when-let ((matlab-icon (assoc "matlab" nerd-icons-extension-icon-alist)))
 (setcdr (assoc "m" nerd-icons-extension-icon-alist)
 (cdr matlab-icon))))
#+end_src

*** Prettier page breaks

#+call: confpkg("!Pkg page break lines")

In some files, =^L= appears as a page break character. This isn't that visually
appealing, and Steve Purcell has been nice enough to make a package to display
these as horizontal rules.

#+begin_src emacs-lisp :tangle packages.el
(package! page-break-lines :recipe (:host github :repo "purcell/page-break-lines")
 :pin "982571749c8fe2b5e2997dd043003a1b9fe87b38")
#+end_src

We can go from "better" to "where has this been all my life?" by now making page
navigation easy with some simple keybindings lifted from [[http://xahlee.info/emacs/emacs/modernization_formfeed.html][Xah Lee]]'s post on the
form feed. Making ~forward-page~ and ~backward-page~ work with Evil mode also takes
a little tweaking, so we might as well do that too while we're at it.

We can also make the displayed horizontal rule communicate more useful
information by making it the same as the fill column. While this could be
accomplished by just =setq=​ing the rule width to the default ~fill-column~ value,
it would be better for it to always match the local buffer value. This may be
accomplished with advise, but it's a bit cleaner (and even simpler) to just turn
the width variable into an alias for ~fill-column~.

#+begin_src emacs-lisp
(use-package! page-break-lines
 :hook (prog-mode . page-break-lines-mode)
 :init
 (autoload 'turn-on-page-break-lines-mode "page-break-lines")
 :config
 (defvaralias 'page-break-lines-max-width 'fill-column)
 (defun +evil-forward-page ()
 "Call `forward-page', such that it works as intended with evil-mode."
 (interactive)
 (when (eq (char-after (point)) ?\^L)
 (forward-char 1))
 (forward-page))
 (defun +evil-backward-page ()
 "Call `backward-page', such that it works as intended with evil-mode."
 (interactive)
 (when (eq (char-after (point)) ?\^L)
 (backward-char 1))
 (backward-page))
 (map! :prefix "g"
 :desc "Prev page break" :nv "[" #'+evil-backward-page
 :desc "Next page break" :nv "]" #'+evil-forward-page)
 (map! "<C-M-prior>" #'+evil-backward-page
 "<C-M-next>" #'+evil-forward-page))
#+end_src

With this setup, I find form-feeds to be a really convenient addition to my
coding workflow. Despite generally poor adoption, they are the only
language-independent form that "just works". While you could also use specially
crafted comment forms and a more complex setup, it's not as though the form-feed
is being used for anything else --- it's free real estate! 😉

*** Writeroom

#+call: confpkg("Writeroom")

#+begin_quote
From the =:ui zen= module.
#+end_quote

For starters, I think Doom is a bit over-zealous when zooming in
#+begin_src emacs-lisp
(setq +zen-text-scale 0.8)
#+end_src

Then, when using Org it would be nice to make a number of other aesthetic
tweaks. Namely:
+ Use a serifed variable-pitch font
+ Hiding headline leading stars
+ Using fleurons as headline bullets
+ Hiding line numbers
+ Removing outline indentation
+ Centring the text

#+begin_src emacs-lisp
(defvar +zen-serif-p t
 "Whether to use a serifed font with `mixed-pitch-mode'.")
(defvar +zen-org-starhide t
 "The value `org-modern-hide-stars' is set to.")

(after! writeroom-mode
 (defvar-local +zen--original-org-indent-mode-p nil)
 (defvar-local +zen--original-mixed-pitch-mode-p nil)
 (defun +zen-enable-mixed-pitch-mode-h ()
 "Enable `mixed-pitch-mode' when in `+zen-mixed-pitch-modes'."
 (when (apply #'derived-mode-p +zen-mixed-pitch-modes)
 (if writeroom-mode
 (progn
 (setq +zen--original-mixed-pitch-mode-p mixed-pitch-mode)
 (funcall (if +zen-serif-p #'mixed-pitch-serif-mode #'mixed-pitch-mode) 1))
 (funcall #'mixed-pitch-mode (if +zen--original-mixed-pitch-mode-p 1 -1)))))
 (defun +zen-prose-org-h ()
 "Reformat the current Org buffer appearance for prose."
 (when (eq major-mode 'org-mode)
 (setq display-line-numbers nil
 visual-fill-column-width 60
 org-adapt-indentation nil)
 (when (featurep 'org-modern)
 (setq-local org-modern-star '("🙘" "🙙" "🙚" "🙛")
 ;; org-modern-star '("🙐" "🙑" "🙒" "🙓" "🙔" "🙕" "🙖" "🙗")
 org-modern-hide-stars +zen-org-starhide)
 (org-modern-mode -1)
 (org-modern-mode 1))
 (setq
 +zen--original-org-indent-mode-p org-indent-mode)
 (org-indent-mode -1)))
 (defun +zen-nonprose-org-h ()
 "Reverse the effect of `+zen-prose-org'."
 (when (eq major-mode 'org-mode)
 (when (bound-and-true-p org-modern-mode)
 (org-modern-mode -1)
 (org-modern-mode 1))
 (when +zen--original-org-indent-mode-p (org-indent-mode 1))))
 (pushnew! writeroom--local-variables
 'display-line-numbers
 'visual-fill-column-width
 'org-adapt-indentation
 'org-modern-mode
 'org-modern-star
 'org-modern-hide-stars)
 (add-hook 'writeroom-mode-enable-hook #'+zen-prose-org-h)
 (add-hook 'writeroom-mode-disable-hook #'+zen-nonprose-org-h))
#+end_src

#+attr_html: :class invertible :alt Writeroom applied to an Org file
[[https://code.tecosaur.net/tec/emacs-config/media/branch/master/misc/screenshots/writeroom-and-org.png]]

*** Treemacs

#+call: confpkg("!Pkg treemacs")

#+begin_quote
From the =:ui treemacs= module.
#+end_quote

Quite often there are superfluous files I'm not that interested in. There's no
good reason for them to take up space. Let's add a mechanism to ignore them.
#+begin_src emacs-lisp
(after! treemacs
 (defvar treemacs-file-ignore-extensions '()
 "File extension which `treemacs-ignore-filter' will ensure are ignored")
 (defvar treemacs-file-ignore-globs '()
 "Globs which will are transformed to `treemacs-file-ignore-regexps' which `treemacs-ignore-filter' will ensure are ignored")
 (defvar treemacs-file-ignore-regexps '()
 "RegExps to be tested to ignore files, generated from `treeemacs-file-ignore-globs'")
 (defun treemacs-file-ignore-generate-regexps ()
 "Generate `treemacs-file-ignore-regexps' from `treemacs-file-ignore-globs'"
 (setq treemacs-file-ignore-regexps (mapcar 'dired-glob-regexp treemacs-file-ignore-globs)))
 (if (equal treemacs-file-ignore-globs '()) nil (treemacs-file-ignore-generate-regexps))
 (defun treemacs-ignore-filter (file full-path)
 "Ignore files specified by `treemacs-file-ignore-extensions', and `treemacs-file-ignore-regexps'"
 (or (member (file-name-extension file) treemacs-file-ignore-extensions)
 (let ((ignore-file nil))
 (dolist (regexp treemacs-file-ignore-regexps ignore-file)
 (setq ignore-file (or ignore-file (if (string-match-p regexp full-path) t nil)))))))
 (add-to-list 'treemacs-ignored-file-predicates #'treemacs-ignore-filter))
#+end_src

Now, we just identify the files in question.
#+begin_src emacs-lisp
(setq treemacs-file-ignore-extensions
 '(;; LaTeX
 "aux"
 "ptc"
 "fdb_latexmk"
 "fls"
 "synctex.gz"
 "toc"
 ;; LaTeX - glossary
 "glg"
 "glo"
 "gls"
 "glsdefs"
 "ist"
 "acn"
 "acr"
 "alg"
 ;; LaTeX - pgfplots
 "mw"
 ;; LaTeX - pdfx
 "pdfa.xmpi"
))
(setq treemacs-file-ignore-globs
 '(;; LaTeX
 "*/_minted-*"
 ;; AucTeX
 "*/.auctex-auto"
 "*/_region_.log"
 "*/_region_.tex"))
#+end_src

*** Visual fill column

#+call: confpkg("!Pkg visual-fill-column", after="visual-fill-column")

This is already loaded by Doom, but it needs a patch applied for Emacs 29. I've
emailed this to the maintainer, hopefully Joost will take a look at it.

#+begin_example
Account for remapping in window width calculation

The window width calculation in
`visual-fill-column--window-max-text-width' uses `window-width' with the
active window as the sole argument. As of Emacs 29, this returns the
width of the window using the default face, even if the default face has
been remapped in the window: causing incorrect results when the window
is remapped.

Emacs 29 also introduces a special second argument value, `remap'
which (as we want) uses the remapped face, if applicable. This corrects
the width calculation. However, margin calculations are still done in
terms of the non-remapped default face, and so a conversion factor needs
to be applied when considering margins.
#+end_example

That's the problem/fix, I'll just overwrite the two functions in question with
the fixed versions for now.

#+begin_src emacs-lisp
(defun +visual-fill-column--window-max-text-width--fixed (&optional window)
 "Return the maximum possible text width of WINDOW.
The maximum possible text width is the width of the current text
area plus the margins, but excluding the fringes, scroll bar, and
right divider. WINDOW defaults to the selected window. The
return value is scaled to account for `text-scale-mode-amount'
and `text-scale-mode-step'."
 (or window (setq window (selected-window)))
 (let* ((margins (window-margins window))
 (buffer (window-buffer window))
 (scale (if (and visual-fill-column-adjust-for-text-scale
 (boundp 'text-scale-mode-step)
 (boundp 'text-scale-mode-amount))
 (with-current-buffer buffer
 (expt text-scale-mode-step
 text-scale-mode-amount))
 1.0))
 (remap-scale
 (if (>= emacs-major-version 29)
 (/ (window-width window 'remap) (float (window-width window)))
 1.0)))
 (truncate (/ (+ (window-width window (and (>= emacs-major-version 29) 'remap))
 (* (or (car margins) 0) remap-scale)
 (* (or (cdr margins) 0) remap-scale))
 (float scale)))))

(advice-add 'visual-fill-column--window-max-text-width
 :override #'+visual-fill-column--window-max-text-width--fixed)

(defun +visual-fill-column--set-margins--fixed (window)
 "Set window margins for WINDOW."
 ;; Calculate left & right margins.
 (let* ((total-width (visual-fill-column--window-max-text-width window))
 (remap-scale
 (if (>= emacs-major-version 29)
 (/ (window-width window 'remap) (float (window-width window)))
 1.0))
 (width (or visual-fill-column-width
 fill-column))
 (margins (if (< (- total-width width) 0) ; margins must be >= 0
 0
 (round (/ (- total-width width) remap-scale))))
 (left (if visual-fill-column-center-text
 (/ margins 2)
 0))
 (right (- margins left)))

 (if visual-fill-column-extra-text-width
 (let ((add-width (visual-fill-column--add-extra-width left right visual-fill-column-extra-text-width)))
 (setq left (car add-width)
 right (cdr add-width))))

 ;; put an explicitly R2L buffer on the right side of the window
 (when (and (eq bidi-paragraph-direction 'right-to-left)
 (= left 0))
 (setq left right)
 (setq right 0))

 (set-window-margins window left right)))

(advice-add 'visual-fill-column--set-margins
 :override #'+visual-fill-column--set-margins--fixed)
#+end_src

** Frivolities
*** xkcd

#+call: confpkg("XKCD")

XKCD comics are fun.
#+begin_src emacs-lisp :tangle packages.el
(package! xkcd :pin "80011da2e7def8f65233d4e0d790ca60d287081d")
#+end_src

We want to set this up so it loads nicely in [[*Extra links][Extra links]].
#+begin_src emacs-lisp
(use-package! xkcd
 :commands (xkcd-get-json
 xkcd-download xkcd-get
 ;; now for funcs from my extension of this pkg
 +xkcd-find-and-copy +xkcd-find-and-view
 +xkcd-fetch-info +xkcd-select)
 :config
 (setq xkcd-cache-dir (expand-file-name "xkcd/" doom-cache-dir)
 xkcd-cache-latest (concat xkcd-cache-dir "latest"))
 (unless (file-exists-p xkcd-cache-dir)
 (make-directory xkcd-cache-dir))
 (after! evil-snipe
 (add-to-list 'evil-snipe-disabled-modes 'xkcd-mode))
 :general (:states 'normal
 :keymaps 'xkcd-mode-map
 "<right>" #'xkcd-next
 "n" #'xkcd-next ; evil-ish
 "<left>" #'xkcd-prev
 "N" #'xkcd-prev ; evil-ish
 "r" #'xkcd-rand
 "a" #'xkcd-rand ; because image-rotate can interfere
 "t" #'xkcd-alt-text
 "q" #'xkcd-kill-buffer
 "o" #'xkcd-open-browser
 "e" #'xkcd-open-explanation-browser
 ;; extras
 "s" #'+xkcd-find-and-view
 "/" #'+xkcd-find-and-view
 "y" #'+xkcd-copy))
#+end_src

Let's also extend the functionality a whole bunch.
#+begin_src emacs-lisp
(after! xkcd
 (require 'emacsql-sqlite)

 (defun +xkcd-select ()
 "Prompt the user for an xkcd using `completing-read' and `+xkcd-select-format'. Return the xkcd number or nil"
 (let* (prompt-lines
 (-dummy (maphash (lambda (key xkcd-info)
 (push (+xkcd-select-format xkcd-info) prompt-lines))
 +xkcd-stored-info))
 (num (completing-read (format "xkcd (%s): " xkcd-latest) prompt-lines)))
 (if (equal "" num) xkcd-latest
 (string-to-number (replace-regexp-in-string "\\([0-9]+\\).*" "\\1" num)))))

 (defun +xkcd-select-format (xkcd-info)
 "Creates each completing-read line from an xkcd info plist. Must start with the xkcd number"
 (format "%-4s %-30s %s"
 (propertize (number-to-string (plist-get xkcd-info :num))
 'face 'counsel-key-binding)
 (plist-get xkcd-info :title)
 (propertize (plist-get xkcd-info :alt)
 'face '(variable-pitch font-lock-comment-face))))

 (defun +xkcd-fetch-info (&optional num)
 "Fetch the parsed json info for comic NUM. Fetches latest when omitted or 0"
 (require 'xkcd)
 (when (or (not num) (= num 0))
 (+xkcd-check-latest)
 (setq num xkcd-latest))
 (let ((res (or (gethash num +xkcd-stored-info)
 (puthash num (+xkcd-db-read num) +xkcd-stored-info))))
 (unless res
 (+xkcd-db-write
 (let* ((url (format "https://xkcd.com/%d/info.0.json" num))
 (json-assoc
 (if (gethash num +xkcd-stored-info)
 (gethash num +xkcd-stored-info)
 (json-read-from-string (xkcd-get-json url num)))))
 json-assoc))
 (setq res (+xkcd-db-read num)))
 res))

 ;; since we've done this, we may as well go one little step further
 (defun +xkcd-find-and-copy ()
 "Prompt for an xkcd using `+xkcd-select' and copy url to clipboard"
 (interactive)
 (+xkcd-copy (+xkcd-select)))

 (defun +xkcd-copy (&optional num)
 "Copy a url to xkcd NUM to the clipboard"
 (interactive "i")
 (let ((num (or num xkcd-cur)))
 (gui-select-text (format "https://xkcd.com/%d" num))
 (message "xkcd.com/%d copied to clipboard" num)))

 (defun +xkcd-find-and-view ()
 "Prompt for an xkcd using `+xkcd-select' and view it"
 (interactive)
 (xkcd-get (+xkcd-select))
 (switch-to-buffer "*xkcd*"))

 (defvar +xkcd-latest-max-age (* 60 60) ; 1 hour
 "Time after which xkcd-latest should be refreshed, in seconds")

 ;; initialise `xkcd-latest' and `+xkcd-stored-info' with latest xkcd
 (add-transient-hook! '+xkcd-select
 (require 'xkcd)
 (+xkcd-fetch-info xkcd-latest)
 (setq +xkcd-stored-info (+xkcd-db-read-all)))

 (add-transient-hook! '+xkcd-fetch-info
 (xkcd-update-latest))

 (defun +xkcd-check-latest ()
 "Use value in `xkcd-cache-latest' as long as it isn't older thabn `+xkcd-latest-max-age'"
 (unless (and (file-exists-p xkcd-cache-latest)
 (< (- (time-to-seconds (current-time))
 (time-to-seconds (file-attribute-modification-time (file-attributes xkcd-cache-latest))))
 +xkcd-latest-max-age))
 (let* ((out (xkcd-get-json "http://xkcd.com/info.0.json" 0))
 (json-assoc (json-read-from-string out))
 (latest (cdr (assoc 'num json-assoc))))
 (when (/= xkcd-latest latest)
 (+xkcd-db-write json-assoc)
 (with-current-buffer (find-file xkcd-cache-latest)
 (setq xkcd-latest latest)
 (erase-buffer)
 (insert (number-to-string latest))
 (save-buffer)
 (kill-buffer (current-buffer)))))
 (shell-command (format "touch %s" xkcd-cache-latest))))

 (defvar +xkcd-stored-info (make-hash-table :test 'eql)
 "Basic info on downloaded xkcds, in the form of a hashtable")

 (defadvice! xkcd-get-json--and-cache (url &optional num)
 "Fetch the Json coming from URL.
If the file NUM.json exists, use it instead.
If NUM is 0, always download from URL.
The return value is a string."
 :override #'xkcd-get-json
 (let* ((file (format "%s%d.json" xkcd-cache-dir num))
 (cached (and (file-exists-p file) (not (eq num 0))))
 (out (with-current-buffer (if cached
 (find-file file)
 (url-retrieve-synchronously url))
 (goto-char (point-min))
 (unless cached (re-search-forward "^$"))
 (prog1
 (buffer-substring-no-properties (point) (point-max))
 (kill-buffer (current-buffer))))))
 (unless (or cached (eq num 0))
 (xkcd-cache-json num out))
 out))

 (defadvice! +xkcd-get (num)
 "Get the xkcd number NUM."
 :override 'xkcd-get
 (interactive "nEnter comic number: ")
 (xkcd-update-latest)
 (get-buffer-create "*xkcd*")
 (switch-to-buffer "*xkcd*")
 (xkcd-mode)
 (let (buffer-read-only)
 (erase-buffer)
 (setq xkcd-cur num)
 (let* ((xkcd-data (+xkcd-fetch-info num))
 (num (plist-get xkcd-data :num))
 (img (plist-get xkcd-data :img))
 (safe-title (plist-get xkcd-data :safe-title))
 (alt (plist-get xkcd-data :alt))
 title file)
 (message "Getting comic...")
 (setq file (xkcd-download img num))
 (setq title (format "%d: %s" num safe-title))
 (insert (propertize title
 'face 'outline-1))
 (center-line)
 (insert "\n")
 (xkcd-insert-image file num)
 (if (eq xkcd-cur 0)
 (setq xkcd-cur num))
 (setq xkcd-alt alt)
 (message "%s" title))))

 (defconst +xkcd-db--sqlite-available-p
 (with-demoted-errors "+org-xkcd initialization: %S"
 (emacsql-sqlite-ensure-binary)
 t))

 (defvar +xkcd-db--connection (make-hash-table :test #'equal)
 "Database connection to +org-xkcd database.")

 (defun +xkcd-db--get ()
 "Return the sqlite db file."
 (expand-file-name "xkcd.db" xkcd-cache-dir))

 (defun +xkcd-db--get-connection ()
 "Return the database connection, if any."
 (gethash (file-truename xkcd-cache-dir)
 +xkcd-db--connection))

 (defconst +xkcd-db--table-schema
 '((xkcds
 [(num integer :unique :primary-key)
 (year :not-null)
 (month :not-null)
 (link :not-null)
 (news :not-null)
 (safe_title :not-null)
 (title :not-null)
 (transcript :not-null)
 (alt :not-null)
 (img :not-null)])))

 (defun +xkcd-db--init (db)
 "Initialize database DB with the correct schema and user version."
 (emacsql-with-transaction db
 (pcase-dolist (`(,table . ,schema) +xkcd-db--table-schema)
 (emacsql db [:create-table $i1 $S2] table schema))))

 (defun +xkcd-db ()
 "Entrypoint to the +org-xkcd sqlite database.
Initializes and stores the database, and the database connection.
Performs a database upgrade when required."
 (unless (and (+xkcd-db--get-connection)
 (emacsql-live-p (+xkcd-db--get-connection)))
 (let* ((db-file (+xkcd-db--get))
 (init-db (not (file-exists-p db-file))))
 (make-directory (file-name-directory db-file) t)
 (let ((conn (emacsql-sqlite db-file)))
 (set-process-query-on-exit-flag (emacsql-process conn) nil)
 (puthash (file-truename xkcd-cache-dir)
 conn
 +xkcd-db--connection)
 (when init-db
 (+xkcd-db--init conn)))))
 (+xkcd-db--get-connection))

 (defun +xkcd-db-query (sql &rest args)
 "Run SQL query on +org-xkcd database with ARGS.
SQL can be either the emacsql vector representation, or a string."
 (if (stringp sql)
 (emacsql (+xkcd-db) (apply #'format sql args))
 (apply #'emacsql (+xkcd-db) sql args)))

 (defun +xkcd-db-read (num)
 (when-let ((res
 (car (+xkcd-db-query [:select * :from xkcds
 :where (= num $s1)]
 num
 :limit 1))))
 (+xkcd-db-list-to-plist res)))

 (defun +xkcd-db-read-all ()
 (let ((xkcd-table (make-hash-table :test 'eql :size 4000)))
 (mapcar (lambda (xkcd-info-list)
 (puthash (car xkcd-info-list) (+xkcd-db-list-to-plist xkcd-info-list) xkcd-table))
 (+xkcd-db-query [:select * :from xkcds]))
 xkcd-table))

 (defun +xkcd-db-list-to-plist (xkcd-datalist)
 `(:num ,(nth 0 xkcd-datalist)
 :year ,(nth 1 xkcd-datalist)
 :month ,(nth 2 xkcd-datalist)
 :link ,(nth 3 xkcd-datalist)
 :news ,(nth 4 xkcd-datalist)
 :safe-title ,(nth 5 xkcd-datalist)
 :title ,(nth 6 xkcd-datalist)
 :transcript ,(nth 7 xkcd-datalist)
 :alt ,(nth 8 xkcd-datalist)
 :img ,(nth 9 xkcd-datalist)))

 (defun +xkcd-db-write (data)
 (+xkcd-db-query [:insert-into xkcds
 :values $v1]
 (list (vector
 (cdr (assoc 'num data))
 (cdr (assoc 'year data))
 (cdr (assoc 'month data))
 (cdr (assoc 'link data))
 (cdr (assoc 'news data))
 (cdr (assoc 'safe_title data))
 (cdr (assoc 'title data))
 (cdr (assoc 'transcript data))
 (cdr (assoc 'alt data))
 (cdr (assoc 'img data))
)))))
#+end_src

*** Selectric

#+call: confpkg("!Pkg Selectric")

Every so often, you want everyone else to /know/ that you're typing, or just to
amuse oneself. Introducing: typewriter sounds!
#+begin_src emacs-lisp :tangle packages.el
(package! selectric-mode :pin "1840de71f7414b7cd6ce425747c8e26a413233aa")
#+end_src

#+begin_src emacs-lisp
(use-package! selectic-mode
 :commands selectic-mode)
#+end_src

*** Wttrin

#+call: confpkg("!Pkg Wttrin")

Hey, let's get the weather in here while we're at it.
Unfortunately this seems slightly unmaintained ([[https://github.com/bcbcarl/emacs-wttrin/pulls][few open bugfix PRs]]) so let's
roll our [[file:lisp/wttrin/wttrin.el][own version]].
#+begin_src emacs-lisp :tangle packages.el
(package! wttrin :recipe (:local-repo "lisp/wttrin"))
#+end_src

#+begin_src emacs-lisp
(use-package! wttrin
 :commands wttrin)
#+end_src

*** Spray

#+call: confpkg("!Pkg Spray")

Why not flash words on the screen. Why not --- hey, it could be fun.
#+begin_src emacs-lisp :tangle packages.el
(package! spray :pin "74d9dcfa2e8b38f96a43de9ab0eb13364300cb46"
 :recipe (:host github :repo "emacsmirror/spray")) ; sr.ht can be flaky
#+end_src

It would be nice if Spray's default speed suited me better, and the keybindings
worked in evil mode. Let's do that and make the display slightly nicer while
we're at it.

#+begin_src emacs-lisp
(use-package! spray
 :commands spray-mode
 :config
 (setq spray-wpm 600
 spray-height 800)
 (defun spray-mode-hide-cursor ()
 "Hide or unhide the cursor as is appropriate."
 (if spray-mode
 (setq-local spray--last-evil-cursor-state evil-normal-state-cursor
 evil-normal-state-cursor '(nil))
 (setq-local evil-normal-state-cursor spray--last-evil-cursor-state)))
 (add-hook 'spray-mode-hook #'spray-mode-hide-cursor)
 (map! :map spray-mode-map
 "<return>" #'spray-start/stop
 "f" #'spray-faster
 "s" #'spray-slower
 "t" #'spray-time
 "<right>" #'spray-forward-word
 "h" #'spray-forward-word
 "<left>" #'spray-backward-word
 "l" #'spray-backward-word
 "q" #'spray-quit))
#+end_src

*** Elcord

#+call: confpkg("!Pkg Elcord")

What's even the point of using Emacs unless you're constantly telling everyone
about it?
#+begin_src emacs-lisp :tangle packages.el
(package! elcord :pin "deeb22f84378b382f09e78f1718bc4c39a3582b8")
#+end_src

#+begin_src emacs-lisp
(use-package! elcord
 :commands elcord-mode
 :config
 (setq elcord-use-major-mode-as-main-icon t))
#+end_src

** File types
*** Systemd

#+call: confpkg("!Pkg Systemd")

For editing systemd unit files
#+begin_src emacs-lisp :tangle packages.el
(package! systemd :pin "8742607120fbc440821acbc351fda1e8e68a8806")
#+end_src

#+begin_src emacs-lisp
(use-package! systemd
 :defer t)
#+end_src

* Applications
** Ebooks

#+call: confpkg()

[[xkcd:548]]

For managing my ebooks, I'll hook into the well-established ebook library
manager [[https://calibre-ebook.com/][calibre]]. A number of Emacs clients for this exist, but this seems like a
good option.
#+begin_src emacs-lisp :tangle packages.el
(package! calibredb :pin "7d33947462c77f9e87e8078fa7b7b398feeef0f7")
#+end_src

Then for reading them, the only currently viable options seems to be [[https://depp.brause.cc/nov.el/][nov.el]].
#+begin_src emacs-lisp :tangle packages.el
(package! nov :pin "b37d9380752e541db3f4b947c219ca54d50ca273")
#+end_src

Together these should give me a rather good experience reading ebooks.

=calibredb= lets us use calibre through Emacs, because who wouldn't want to use
something through Emacs?
#+begin_src emacs-lisp
(use-package! calibredb
 :commands calibredb
 :config
 (setq calibredb-root-dir "~/.local/share/calibre-library"
 calibredb-db-dir (expand-file-name "metadata.db" calibredb-root-dir))
 (map! :map calibredb-show-mode-map
 :ne "?" #'calibredb-entry-dispatch
 :ne "o" #'calibredb-find-file
 :ne "O" #'calibredb-find-file-other-frame
 :ne "V" #'calibredb-open-file-with-default-tool
 :ne "s" #'calibredb-set-metadata-dispatch
 :ne "e" #'calibredb-export-dispatch
 :ne "q" #'calibredb-entry-quit
 :ne "." #'calibredb-open-dired
 :ne [tab] #'calibredb-toggle-view-at-point
 :ne "M-t" #'calibredb-set-metadata--tags
 :ne "M-a" #'calibredb-set-metadata--author_sort
 :ne "M-A" #'calibredb-set-metadata--authors
 :ne "M-T" #'calibredb-set-metadata--title
 :ne "M-c" #'calibredb-set-metadata--comments)
 (map! :map calibredb-search-mode-map
 :ne [mouse-3] #'calibredb-search-mouse
 :ne "RET" #'calibredb-find-file
 :ne "?" #'calibredb-dispatch
 :ne "a" #'calibredb-add
 :ne "A" #'calibredb-add-dir
 :ne "c" #'calibredb-clone
 :ne "d" #'calibredb-remove
 :ne "D" #'calibredb-remove-marked-items
 :ne "j" #'calibredb-next-entry
 :ne "k" #'calibredb-previous-entry
 :ne "l" #'calibredb-virtual-library-list
 :ne "L" #'calibredb-library-list
 :ne "n" #'calibredb-virtual-library-next
 :ne "N" #'calibredb-library-next
 :ne "p" #'calibredb-virtual-library-previous
 :ne "P" #'calibredb-library-previous
 :ne "s" #'calibredb-set-metadata-dispatch
 :ne "S" #'calibredb-switch-library
 :ne "o" #'calibredb-find-file
 :ne "O" #'calibredb-find-file-other-frame
 :ne "v" #'calibredb-view
 :ne "V" #'calibredb-open-file-with-default-tool
 :ne "." #'calibredb-open-dired
 :ne "b" #'calibredb-catalog-bib-dispatch
 :ne "e" #'calibredb-export-dispatch
 :ne "r" #'calibredb-search-refresh-and-clear-filter
 :ne "R" #'calibredb-search-clear-filter
 :ne "q" #'calibredb-search-quit
 :ne "m" #'calibredb-mark-and-forward
 :ne "f" #'calibredb-toggle-favorite-at-point
 :ne "x" #'calibredb-toggle-archive-at-point
 :ne "h" #'calibredb-toggle-highlight-at-point
 :ne "u" #'calibredb-unmark-and-forward
 :ne "i" #'calibredb-edit-annotation
 :ne "DEL" #'calibredb-unmark-and-backward
 :ne [backtab] #'calibredb-toggle-view
 :ne [tab] #'calibredb-toggle-view-at-point
 :ne "M-n" #'calibredb-show-next-entry
 :ne "M-p" #'calibredb-show-previous-entry
 :ne "/" #'calibredb-search-live-filter
 :ne "M-t" #'calibredb-set-metadata--tags
 :ne "M-a" #'calibredb-set-metadata--author_sort
 :ne "M-A" #'calibredb-set-metadata--authors
 :ne "M-T" #'calibredb-set-metadata--title
 :ne "M-c" #'calibredb-set-metadata--comments))
#+end_src

Then, to actually read the ebooks we use =nov=.

#+attr_html: :class invertible :alt Excerpt of the GNU Emacs manual viewed through nov.el
[[https://code.tecosaur.net/tec/emacs-config/media/branch/master/misc/screenshots/nov.png]]

#+begin_src emacs-lisp
(use-package! nov
 :mode ("\\.epub\\'" . nov-mode)
 :config
 (map! :map nov-mode-map
 :n "RET" #'nov-scroll-up)

 (advice-add 'nov-render-title :override #'ignore)

 (defun +nov-mode-setup ()
 "Tweak nov-mode to our liking."
 (face-remap-add-relative 'variable-pitch
 :family "Merriweather"
 :height 1.4
 :width 'semi-expanded)
 (face-remap-add-relative 'default :height 1.3)
 (variable-pitch-mode 1)
 (setq-local line-spacing 0.2
 next-screen-context-lines 4
 shr-use-colors nil)
 (when (require 'visual-fill-column nil t)
 (setq-local visual-fill-column-center-text t
 visual-fill-column-width 64
 nov-text-width 106)
 (visual-fill-column-mode 1))
 (when (featurep 'hl-line-mode)
 (hl-line-mode -1))
 ;; Re-render with new display settings
 (nov-render-document)
 ;; Look up words with the dictionary.
 (add-to-list '+lookup-definition-functions #'+lookup/dictionary-definition))

 (add-hook 'nov-mode-hook #'+nov-mode-setup))
#+end_src

To enhance the reading experience, we can create a nice minimal modeline, with
just the basic bare minimum, information about the book/chapter, and possibly
currently playing media.

#+begin_src emacs-lisp
(after! doom-modeline
 (defvar doom-modeline-nov-title-max-length 40)
 (doom-modeline-def-segment nov-author
 (propertize
 (cdr (assoc 'creator nov-metadata))
 'face (doom-modeline-face 'doom-modeline-project-parent-dir)))
 (doom-modeline-def-segment nov-title
 (let ((title (or (cdr (assoc 'title nov-metadata)) "")))
 (if (<= (length title) doom-modeline-nov-title-max-length)
 (concat " " title)
 (propertize
 (concat " " (truncate-string-to-width title doom-modeline-nov-title-max-length nil nil t))
 'help-echo title))))
 (doom-modeline-def-segment nov-current-page
 (let ((words (count-words (point-min) (point-max))))
 (propertize
 (format " %d/%d"
 (1+ nov-documents-index)
 (length nov-documents))
 'face (doom-modeline-face 'doom-modeline-info)
 'help-echo (if (= words 1) "1 word in this chapter"
 (format "%s words in this chapter" words)))))
 (doom-modeline-def-segment scroll-percentage-subtle
 (concat
 (doom-modeline-spc)
 (propertize (format-mode-line '("" doom-modeline-percent-position "%%"))
 'face (doom-modeline-face 'shadow)
 'help-echo "Buffer percentage")))

 (doom-modeline-def-modeline 'nov
 '(workspace-name window-number nov-author nov-title nov-current-page scroll-percentage-subtle)
 '(media-player misc-info major-mode time))

 (add-to-list 'doom-modeline-mode-alist '(nov-mode . nov)))
#+end_src

** Calculator

#+call: confpkg()

Emacs includes the venerable =calc=, which is a pretty impressive RPN (Reverse
Polish Notation) calculator. However, we can do a bit to improve the experience.

*** CalcTeX

Everybody knows that mathematical expressions look best with LaTeX, so =calc='s
ability to create LaTeX representations of its expressions provides a lovely
opportunity which is taken advantage of in the CalcTeX package.

#+begin_src emacs-lisp :tangle packages.el
(package! calctex :recipe (:host github :repo "johnbcoughlin/calctex"
 :files ("*.el" "calctex/*.el" "calctex-contrib/*.el" "org-calctex/*.el" "vendor"))
 :pin "67a2e76847a9ea9eff1f8e4eb37607f84b380ebb")
#+end_src

#+attr_html: :class invertible :alt Demonstration of calc, prettified by calctex.
[[https://code.tecosaur.net/tec/emacs-config/media/branch/master/misc/screenshots/calc-with-calctex.png]]

We'd like to use CalcTeX too, so let's set that up, and fix some glaring
inadequacies --- why on earth would you commit a hard-coded path to an executable
that /only works on your local machine/, consequently breaking the package for
everyone else!?

#+begin_src emacs-lisp
(use-package! calctex
 :commands calctex-mode
 :init
 (add-hook 'calc-mode-hook #'calctex-mode)
 :config
 (setq calctex-additional-latex-packages "
\\usepackage[usenames]{xcolor}
\\usepackage{soul}
\\usepackage{adjustbox}
\\usepackage{amsmath}
\\usepackage{amssymb}
\\usepackage{siunitx}
\\usepackage{cancel}
\\usepackage{mathtools}
\\usepackage{mathalpha}
\\usepackage{xparse}
\\usepackage{arevmath}"
 calctex-additional-latex-macros
 (concat calctex-additional-latex-macros
 "\n\\let\\evalto\\Rightarrow"))
 (defadvice! no-messaging-a (orig-fn &rest args)
 :around #'calctex-default-dispatching-render-process
 (let ((inhibit-message t) message-log-max)
 (apply orig-fn args)))
 ;; Fix hardcoded dvichop path (whyyyyyyy)
 (let ((vendor-folder (concat (file-truename doom-local-dir)
 "straight/"
 (format "build-%s" emacs-version)
 "/calctex/vendor/")))
 (setq calctex-dvichop-sty (concat vendor-folder "texd/dvichop")
 calctex-dvichop-bin (concat vendor-folder "texd/dvichop")))
 (unless (file-exists-p calctex-dvichop-bin)
 (message "CalcTeX: Building dvichop binary")
 (let ((default-directory (file-name-directory calctex-dvichop-bin)))
 (call-process "make" nil nil nil))))
#+end_src

*** Defaults

Any sane person prefers radians and exact values.

#+begin_src emacs-lisp
(setq calc-angle-mode 'rad ; radians are rad
 calc-symbolic-mode t) ; keeps expressions like \sqrt{2} irrational for as long as possible
#+end_src

*** Embedded calc

Embedded calc is a lovely feature which let's us use calc to operate on LaTeX
maths expressions. The standard keybinding is a bit janky however (=C-x * e=), so
we'll add a localleader-based alternative.

#+begin_src emacs-lisp
(map! :map calc-mode-map
 :after calc
 :localleader
 :desc "Embedded calc (toggle)" "e" #'calc-embedded)
(map! :map org-mode-map
 :after org
 :localleader
 :desc "Embedded calc (toggle)" "E" #'calc-embedded)
(map! :map latex-mode-map
 :after latex
 :localleader
 :desc "Embedded calc (toggle)" "e" #'calc-embedded)
#+end_src

Unfortunately this operates without the (rather informative) calculator and
trail buffers, but we can advice it that we would rather like those in a side
panel.

#+begin_src emacs-lisp
(defvar calc-embedded-trail-window nil)
(defvar calc-embedded-calculator-window nil)

(defadvice! calc-embedded-with-side-pannel (&rest _)
 :after #'calc-do-embedded
 (when calc-embedded-trail-window
 (ignore-errors
 (delete-window calc-embedded-trail-window))
 (setq calc-embedded-trail-window nil))
 (when calc-embedded-calculator-window
 (ignore-errors
 (delete-window calc-embedded-calculator-window))
 (setq calc-embedded-calculator-window nil))
 (when (and calc-embedded-info
 (> (* (window-width) (window-height)) 1200))
 (let ((main-window (selected-window))
 (vertical-p (> (window-width) 80)))
 (select-window
 (setq calc-embedded-trail-window
 (if vertical-p
 (split-window-horizontally (- (max 30 (/ (window-width) 3))))
 (split-window-vertically (- (max 8 (/ (window-height) 4)))))))
 (switch-to-buffer "*Calc Trail*")
 (select-window
 (setq calc-embedded-calculator-window
 (if vertical-p
 (split-window-vertically -6)
 (split-window-horizontally (- (/ (window-width) 2))))))
 (switch-to-buffer "*Calculator*")
 (select-window main-window))))
#+end_src

** Newsfeed

#+call: confpkg()

RSS feeds are still a thing. Why not make use of them with =elfeed=.
I really like what [[https://github.com/fuxialexander/doom-emacs-private-xfu/tree/master/modules/app/rss][fuxialexander]] has going on, but I don't think I need a custom
module. Let's just try to patch on the main things I like the look of.

#+attr_html: :class invertible :alt Example elfeed entry
[[https://code.tecosaur.net/tec/emacs-config/media/branch/master/misc/screenshots/elfeed.png]]

*** Keybindings

#+begin_src emacs-lisp
(map! :map elfeed-search-mode-map
 :after elfeed-search
 [remap kill-this-buffer] "q"
 [remap kill-buffer] "q"
 :n doom-leader-key nil
 :n "q" #'+rss/quit
 :n "e" #'elfeed-update
 :n "r" #'elfeed-search-untag-all-unread
 :n "u" #'elfeed-search-tag-all-unread
 :n "s" #'elfeed-search-live-filter
 :n "RET" #'elfeed-search-show-entry
 :n "p" #'elfeed-show-pdf
 :n "+" #'elfeed-search-tag-all
 :n "-" #'elfeed-search-untag-all
 :n "S" #'elfeed-search-set-filter
 :n "b" #'elfeed-search-browse-url
 :n "y" #'elfeed-search-yank)
(map! :map elfeed-show-mode-map
 :after elfeed-show
 [remap kill-this-buffer] "q"
 [remap kill-buffer] "q"
 :n doom-leader-key nil
 :nm "q" #'+rss/delete-pane
 :nm "o" #'ace-link-elfeed
 :nm "RET" #'org-ref-elfeed-add
 :nm "n" #'elfeed-show-next
 :nm "N" #'elfeed-show-prev
 :nm "p" #'elfeed-show-pdf
 :nm "+" #'elfeed-show-tag
 :nm "-" #'elfeed-show-untag
 :nm "s" #'elfeed-show-new-live-search
 :nm "y" #'elfeed-show-yank)
#+end_src

*** Usability enhancements

#+begin_src emacs-lisp
(after! elfeed-search
 (set-evil-initial-state! 'elfeed-search-mode 'normal))
(after! elfeed-show-mode
 (set-evil-initial-state! 'elfeed-show-mode 'normal))

(after! evil-snipe
 (push 'elfeed-show-mode evil-snipe-disabled-modes)
 (push 'elfeed-search-mode evil-snipe-disabled-modes))
#+end_src

*** Visual enhancements

#+begin_src emacs-lisp
(after! elfeed

 (elfeed-org)
 (use-package! elfeed-link)

 (setq elfeed-search-filter "@1-week-ago +unread"
 elfeed-search-print-entry-function '+rss/elfeed-search-print-entry
 elfeed-search-title-min-width 80
 elfeed-show-entry-switch #'pop-to-buffer
 elfeed-show-entry-delete #'+rss/delete-pane
 elfeed-show-refresh-function #'+rss/elfeed-show-refresh--better-style
 shr-max-image-proportion 0.6)

 (add-hook! 'elfeed-show-mode-hook (hide-mode-line-mode 1))
 (add-hook! 'elfeed-search-update-hook #'hide-mode-line-mode)

 (defface elfeed-show-title-face '((t (:weight ultrabold :slant italic :height 1.5)))
 "title face in elfeed show buffer"
 :group 'elfeed)
 (defface elfeed-show-author-face `((t (:weight light)))
 "title face in elfeed show buffer"
 :group 'elfeed)
 (set-face-attribute 'elfeed-search-title-face nil
 :foreground 'nil
 :weight 'light)

 (defadvice! +rss-elfeed-wrap-h-nicer ()
 "Enhances an elfeed entry's readability by wrapping it to a width of
`fill-column' and centering it with `visual-fill-column-mode'."
 :override #'+rss-elfeed-wrap-h
 (setq-local truncate-lines nil
 shr-width 120
 visual-fill-column-center-text t
 default-text-properties '(line-height 1.1))
 (let ((inhibit-read-only t)
 (inhibit-modification-hooks t))
 (visual-fill-column-mode)
 ;; (setq-local shr-current-font '(:family "Merriweather" :height 1.2))
 (set-buffer-modified-p nil)))

 (defun +rss/elfeed-search-print-entry (entry)
 "Print ENTRY to the buffer."
 (let* ((elfeed-goodies/tag-column-width 40)
 (elfeed-goodies/feed-source-column-width 30)
 (title (or (elfeed-meta entry :title) (elfeed-entry-title entry) ""))
 (title-faces (elfeed-search--faces (elfeed-entry-tags entry)))
 (feed (elfeed-entry-feed entry))
 (feed-title
 (when feed
 (or (elfeed-meta feed :title) (elfeed-feed-title feed))))
 (tags (mapcar #'symbol-name (elfeed-entry-tags entry)))
 (tags-str (concat (mapconcat 'identity tags ",")))
 (title-width (- (window-width) elfeed-goodies/feed-source-column-width
 elfeed-goodies/tag-column-width 4))

 (tag-column (elfeed-format-column
 tags-str (elfeed-clamp (length tags-str)
 elfeed-goodies/tag-column-width
 elfeed-goodies/tag-column-width)
 :left))
 (feed-column (elfeed-format-column
 feed-title (elfeed-clamp elfeed-goodies/feed-source-column-width
 elfeed-goodies/feed-source-column-width
 elfeed-goodies/feed-source-column-width)
 :left)))

 (insert (propertize feed-column 'face 'elfeed-search-feed-face) " ")
 (insert (propertize tag-column 'face 'elfeed-search-tag-face) " ")
 (insert (propertize title 'face title-faces 'kbd-help title))
 (setq-local line-spacing 0.2)))

 (defun +rss/elfeed-show-refresh--better-style ()
 "Update the buffer to match the selected entry, using a mail-style."
 (interactive)
 (let* ((inhibit-read-only t)
 (title (elfeed-entry-title elfeed-show-entry))
 (date (seconds-to-time (elfeed-entry-date elfeed-show-entry)))
 (author (elfeed-meta elfeed-show-entry :author))
 (link (elfeed-entry-link elfeed-show-entry))
 (tags (elfeed-entry-tags elfeed-show-entry))
 (tagsstr (mapconcat #'symbol-name tags ", "))
 (nicedate (format-time-string "%a, %e %b %Y %T %Z" date))
 (content (elfeed-deref (elfeed-entry-content elfeed-show-entry)))
 (type (elfeed-entry-content-type elfeed-show-entry))
 (feed (elfeed-entry-feed elfeed-show-entry))
 (feed-title (elfeed-feed-title feed))
 (base (and feed (elfeed-compute-base (elfeed-feed-url feed)))))
 (erase-buffer)
 (insert "\n")
 (insert (format "%s\n\n" (propertize title 'face 'elfeed-show-title-face)))
 (insert (format "%s\t" (propertize feed-title 'face 'elfeed-search-feed-face)))
 (when (and author elfeed-show-entry-author)
 (insert (format "%s\n" (propertize author 'face 'elfeed-show-author-face))))
 (insert (format "%s\n\n" (propertize nicedate 'face 'elfeed-log-date-face)))
 (when tags
 (insert (format "%s\n"
 (propertize tagsstr 'face 'elfeed-search-tag-face))))
 ;; (insert (propertize "Link: " 'face 'message-header-name))
 ;; (elfeed-insert-link link link)
 ;; (insert "\n")
 (cl-loop for enclosure in (elfeed-entry-enclosures elfeed-show-entry)
 do (insert (propertize "Enclosure: " 'face 'message-header-name))
 do (elfeed-insert-link (car enclosure))
 do (insert "\n"))
 (insert "\n")
 (if content
 (if (eq type 'html)
 (elfeed-insert-html content base)
 (insert content))
 (insert (propertize "(empty)\n" 'face 'italic)))
 (goto-char (point-min))))

)
#+end_src

*** Functionality enhancements

#+begin_src emacs-lisp
(after! elfeed-show
 (require 'url)

 (defvar elfeed-pdf-dir
 (expand-file-name "pdfs/"
 (file-name-directory (directory-file-name elfeed-enclosure-default-dir))))

 (defvar elfeed-link-pdfs
 '(("https://www.jstatsoft.org/index.php/jss/article/view/v0\\([^/]+\\)" . "https://www.jstatsoft.org/index.php/jss/article/view/v0\\1/v\\1.pdf")
 ("http://arxiv.org/abs/\\([^/]+\\)" . "https://arxiv.org/pdf/\\1.pdf"))
 "List of alists of the form (REGEX-FOR-LINK . FORM-FOR-PDF)")

 (defun elfeed-show-pdf (entry)
 (interactive
 (list (or elfeed-show-entry (elfeed-search-selected :ignore-region))))
 (let ((link (elfeed-entry-link entry))
 (feed-name (plist-get (elfeed-feed-meta (elfeed-entry-feed entry)) :title))
 (title (elfeed-entry-title entry))
 (file-view-function
 (lambda (f)
 (when elfeed-show-entry
 (elfeed-kill-buffer))
 (pop-to-buffer (find-file-noselect f))))
 pdf)

 (let ((file (expand-file-name
 (concat (subst-char-in-string ?/ ?, title) ".pdf")
 (expand-file-name (subst-char-in-string ?/ ?, feed-name)
 elfeed-pdf-dir))))
 (if (file-exists-p file)
 (funcall file-view-function file)
 (dolist (link-pdf elfeed-link-pdfs)
 (when (and (string-match-p (car link-pdf) link)
 (not pdf))
 (setq pdf (replace-regexp-in-string (car link-pdf) (cdr link-pdf) link))))
 (if (not pdf)
 (message "No associated PDF for entry")
 (message "Fetching %s" pdf)
 (unless (file-exists-p (file-name-directory file))
 (make-directory (file-name-directory file) t))
 (url-copy-file pdf file)
 (funcall file-view-function file))))))

)
#+end_src

** Dictionary

#+call: confpkg(needs="sdcv")

Doom already loads =define-word=, and provides it's own definition service using
[[https://github.com/gromnitsky/wordnut][wordnut]]. However, using an offline dictionary possess a few compelling
advantages, namely:
+ speed
+ integration of multiple dictionaries
[[http://goldendict.org/][GoldenDict]] seems like the best option currently available, but lacks a CLI.
Hence, we'll fall back to [[https://dushistov.github.io/sdcv/][sdcv]] (a CLI version of StarDict) for now.
To interface with this, we'll use a my =lexic= package.

#+attr_html: :class invertible :alt Screenshot of the lexic-mode view of "literate"
[[https://code.tecosaur.net/tec/emacs-config/media/branch/master/misc/screenshots/lexic.png]]

#+begin_src emacs-lisp :tangle (if (executable-find "sdcv") "packages.el" "no")
(package! lexic :recipe (:local-repo "lisp/lexic"))
#+end_src

Given that a request for a CLI is the [[https://github.com/goldendict/goldendict/issues/37][most upvoted issue]] on GitHub for
GoldenDict, it's likely we'll be able to switch from ~sdcv~ to that in the future.

Since GoldenDict supports StarDict files, I expect this will be a relatively
painless switch.

We start off by loading =lexic=, then we'll integrate it into pre-existing
definition functionality (like ~+lookup/dictionary-definition~).
#+begin_src emacs-lisp
(use-package! lexic
 :commands lexic-search lexic-list-dictionary
 :config
 (map! :map lexic-mode-map
 :n "q" #'lexic-return-from-lexic
 :nv "RET" #'lexic-search-word-at-point
 :n "a" #'outline-show-all
 :n "h" (cmd! (outline-hide-sublevels 3))
 :n "o" #'lexic-toggle-entry
 :n "n" #'lexic-next-entry
 :n "N" (cmd! (lexic-next-entry t))
 :n "p" #'lexic-previous-entry
 :n "P" (cmd! (lexic-previous-entry t))
 :n "E" (cmd! (lexic-return-from-lexic) ; expand
 (switch-to-buffer (lexic-get-buffer)))
 :n "M" (cmd! (lexic-return-from-lexic) ; minimise
 (lexic-goto-lexic))
 :n "C-p" #'lexic-search-history-backwards
 :n "C-n" #'lexic-search-history-forwards
 :n "/" (cmd! (call-interactively #'lexic-search))))
#+end_src

Now let's use this instead of wordnet.
#+begin_src emacs-lisp
(defadvice! +lookup/dictionary-definition-lexic (identifier &optional arg)
 "Look up the definition of the word at point (or selection) using `lexic-search'."
 :override #'+lookup/dictionary-definition
 (interactive
 (list (or (doom-thing-at-point-or-region 'word)
 (read-string "Look up in dictionary: "))
 current-prefix-arg))
 (lexic-search identifier nil nil t))
#+end_src

Lastly, I want to make sure I have some dictionaries set up. I've put a tarball
of dictionaries online which we can download if none seem to be present on the
system.
#+begin_src shell :tangle (if (and (executable-find "sdcv") (not (file-exists-p (concat (or (getenv "STARDICT_DATA_DIR") (concat (or "~/.local/share" (getenv "XDG_DATA_HOME")) "/stardict")) "/dic")))) "setup.sh" "no")
DIC_FOLDER=${STARDICT_DATA_DIR:-${XDG_DATA_HOME:-$HOME/.local/share}/stardict}/dic
if [! -d "$DIC_FOLDER"]; then
 TMP="$(mktemp -d /tmp/dict-XXX)"
 cd "$TMP"
 curl -A "Mozilla/4.0" -o "stardict.tar.gz" "https://tecosaur.com/resources/config/stardict.tar.gz"
 tar -xf "stardict.tar.gz"
 rm "stardict.tar.gz"
 mkdir -p "$DIC_FOLDER"
 mv * "$DIC_FOLDER"
fi
#+end_src

We can also add a =doctor= dictionary check.

#+begin_src emacs-lisp :noweb-ref doctor
(if (executable-find "sdcv")
 (let ((dict-root (concat (or (getenv "STARDICT_DATA_DIR")
 (concat (or "~/.local/share"
 (getenv "XDG_DATA_HOME"))
 "/stardict"))
 "/dic"))
 (dicts '("webster" "synonyms" "etymology" "en-to-latin" "hitchcock" "elements")))
 (if (file-exists-p dict-root)
 (dolist (dict dicts)
 (unless (file-exists-p (file-name-concat dict-root dict))
 (warn! (format "Absent sdcv dictionary: %s." dict))))
 (warn! "Couldn't find any stcv dictionaries, lexic will not function")))
 (warn! "Couldn't find sdcv executable, lexic will be disabled"))
#+end_src

** Mail

#+call: confpkg(after="mu4e", via="require", pre="org-msg-accent")

[[xkcd:1467]]

*** Fetching

The contenders for this seem to be:
+ [[https://www.offlineimap.org/][OfflineIMAP]] ([[https://wiki.archlinux.org/index.php/OfflineIMAP][ArchWiki page]])
+ [[http://isync.sourceforge.net/mbsync.html][isync/mbsync]] ([[https://wiki.archlinux.org/index.php/isync][ArchWiki page]])

From perusing r/emacs the prevailing opinion seems to be that
+ isync is faster
+ isync works more reliably
So let's use that.

The config was straightforward, and is located at [[file:~/.mbsyncrc][~/.mbsyncrc]].
I'm currently successfully connecting to: Gmail, office365mail, and dovecot.
I'm also shoving passwords in my [[file:~/.authinfo.gpg][authinfo.gpg]] and fetching them using ~PassCmd~:
#+begin_src shell :tangle no :eval no
gpg2 -q --for-your-eyes-only --no-tty -d ~/.authinfo.gpg | awk '/machine IMAP_SERCER login EMAIL_ADDR/ {print $NF}'
#+end_src

We can run ~mbsync -a~ in a systemd service file or something, but we can do
better than that. [[https://github.com/vsemyonoff/easymail#usage][vsemyonoff/easymail]] seems like the sort of thing we want, but
is written for =notmuch= unfortunately. We can still use it for inspiration though.
Using [[https://gitlab.com/shackra/goimapnotify][goimapnotify]] we should be able to sync just after new
mail. Unfortunately this means /yet another/ config file :(

We install with
#+begin_src shell :eval no :tangle (if (and (executable-find "mu") (not (executable-find "goimapnotify"))) "setup.sh" "no")
go get -u gitlab.com/shackra/goimapnotify
ln -s ~/.local/share/go/bin/goimapnotify ~/.local/bin/
#+end_src

Here's the general plan:
1. Use ~goimapnotify~ to monitor mailboxes
 This needs it's own set of configs, and =systemd= services, which is a pain. We
 remove this pain by writing a python script (found below) to setup these
 config files, and systemd services by parsing the [[file:~/.mbsyncrc][~/.mbsyncrc]] file.
2. On new mail, call ~mbsync --pull --new ACCOUNT:BOX~
 We try to be as specific as possible, so ~mbsync~ returns as soon as possible,
 and we can /get those emails as soon as possible/.
3. Try to call ~mu index --lazy-fetch~.
 This fails if mu4e is already open (due to a write lock on the database), so
 in that case we just ~touch~ a tmp file (=/tmp/mu_reindex_now=).
4. Separately, we set up Emacs to check for the existance of
 =/tmp/mu_reindex_now= once a second while mu4e is
 running, and (after deleting the file) call ~mu4e-update-index~.

We can add a =doctor= check for these external dependencies.

#+begin_src emacs-lisp :noweb-ref doctor
(when (file-exists-p "~/.mail") ; We care about mail when the mail folder exists
 (unless (executable-find "mu")
 (error! "Couldn't find mail dependency mu."))
 (unless (executable-find "mbsync")
 (error! "Couldn't find mail dependency mbsync."))
 (unless (executable-find "msmtp")
 (error! "Couldn't find mail dependency msmtp."))
 (unless (executable-find "goimapnotify")
 (warn! "Couldn't find mail helper goimapnotify, mail syncs will be slower.")))
#+end_src

Let's start off by handling the elisp side of things

**** Rebuild mail index while using mu4e

#+begin_src emacs-lisp :noweb-ref mu4e-conf
(defvar mu4e-reindex-request-file "/tmp/mu_reindex_now"
 "Location of the reindex request, signaled by existance")
(defvar mu4e-reindex-request-min-seperation 5.0
 "Don't refresh again until this many second have elapsed.
Prevents a series of redisplays from being called (when set to an appropriate value)")

(defvar mu4e-reindex-request--file-watcher nil)
(defvar mu4e-reindex-request--file-just-deleted nil)
(defvar mu4e-reindex-request--last-time 0)

(defun mu4e-reindex-request--add-watcher ()
 (setq mu4e-reindex-request--file-just-deleted nil)
 (setq mu4e-reindex-request--file-watcher
 (file-notify-add-watch mu4e-reindex-request-file
 '(change)
 #'mu4e-file-reindex-request)))

(defadvice! mu4e-stop-watching-for-reindex-request ()
 :after #'mu4e--server-kill
 (if mu4e-reindex-request--file-watcher
 (file-notify-rm-watch mu4e-reindex-request--file-watcher)))

(defadvice! mu4e-watch-for-reindex-request ()
 :after #'mu4e--server-start
 (mu4e-stop-watching-for-reindex-request)
 (when (file-exists-p mu4e-reindex-request-file)
 (delete-file mu4e-reindex-request-file))
 (mu4e-reindex-request--add-watcher))

(defun mu4e-file-reindex-request (event)
 "Act based on the existance of `mu4e-reindex-request-file'"
 (if mu4e-reindex-request--file-just-deleted
 (mu4e-reindex-request--add-watcher)
 (when (equal (nth 1 event) 'created)
 (delete-file mu4e-reindex-request-file)
 (setq mu4e-reindex-request--file-just-deleted t)
 (mu4e-reindex-maybe t))))

(defun mu4e-reindex-maybe (&optional new-request)
 "Run `mu4e--server-index' if it's been more than
`mu4e-reindex-request-min-seperation'seconds since the last request,"
 (let ((time-since-last-request (- (float-time)
 mu4e-reindex-request--last-time)))
 (when new-request
 (setq mu4e-reindex-request--last-time (float-time)))
 (if (> time-since-last-request mu4e-reindex-request-min-seperation)
 (mu4e--server-index nil t)
 (when new-request
 (run-at-time (* 1.1 mu4e-reindex-request-min-seperation) nil
 #'mu4e-reindex-maybe)))))
#+end_src

**** Config transcoding & service management

As long as the =mbsyncrc= file exists, this is as easy as running

#+begin_src shell :tangle (if (and (executable-find "goimapnotify") (not (file-exists-p "~/.config/imapnotify"))) "setup.sh" "no")
~/.config/doom/misc/mbsync-imapnotify.py
#+end_src

Let's also add a =doctor= check for this.

#+begin_src emacs-lisp :noweb-ref doctor
(when (and (executable-find "goimapnotify")
 (not (file-exists-p "~/.config/imapnotify")))
 (warn! "goimapnotify is installed but not configured."))
#+end_src

When run without flags this will perform the following actions
+ Read, and parse [[file:~/.mbsyncrc][~/.mbsyncrc]], specifically recognising the following properties
 - ~IMAPAccount~
 - ~Host~
 - ~Port~
 - ~User~
 - ~Password~
 - ~PassCmd~
 - ~Patterns~
+ Call ~mbsync --list ACCOUNT~, and filter results according to ~Patterns~
+ Construct a imapnotify config for each account, with the following hooks
 - onNewMail :: src_shell{mbsync --pull ACCOUNT:MAILBOX}
 - onNewMailPost :: src_shell{if mu index --lazy-check; then test -f /tmp/mu_reindex_now && rm /tmp/mu_reindex_now; else touch /tmp/mu_reindex_now; fi}
+ Compare accounts list to previous accounts, enable/disable the relevant
 systemd services, called with the ~--now~ flag (start/stop services as well)

This script also supports the following flags
+ ~--status~ to get the status of the relevant systemd services supports =active=,
 =failing=, and =disabled=
+ ~--enable~ to enable all relevant systemd services
+ ~--disable~ to disable all relevant systemd services
#+begin_src python :tangle misc/mbsync-imapnotify.py :shebang "#!/usr/bin/env python3"
from pathlib import Path
import json
import re
import shutil
import subprocess
import sys
import fnmatch

mbsyncFile = Path("~/.mbsyncrc").expanduser()

imapnotifyConfigFolder = Path("~/.config/imapnotify/").expanduser()
imapnotifyConfigFolder.mkdir(exist_ok=True)
imapnotifyConfigFilename = "notify.conf"

imapnotifyDefault = {
 "host": "",
 "port": 993,
 "tls": True,
 "tlsOptions": {"rejectUnauthorized": True},
 "onNewMail": "",
 "onNewMailPost": "if mu index --lazy-check; then test -f /tmp/mu_reindex_now && rm /tmp/mu_reindex_now; else touch /tmp/mu_reindex_now; fi",
}

def stripQuotes(string):
 if string[0] == '"' and string[-1] == '"':
 return string[1:-1].replace('\\"', '"')

mbsyncInotifyMapping = {
 "Host": (str, "host"),
 "Port": (int, "port"),
 "User": (str, "username"),
 "Password": (str, "password"),
 "PassCmd": (stripQuotes, "passwordCmd"),
 "Patterns": (str, "_patterns"),
}

oldAccounts = [d.name for d in imapnotifyConfigFolder.iterdir() if d.is_dir()]

currentAccount = ""
currentAccountData = {}

successfulAdditions = []

def processLine(line):
 newAcc = re.match(r"^IMAPAccount ([^#]+)", line)

 linecontent = re.sub(r"(^|[^\\])#.*", "", line).split(" ", 1)
 if len(linecontent) != 2:
 return

 parameter, value = linecontent

 if parameter == "IMAPAccount":
 if currentAccountNumber > 0:
 finaliseAccount()
 newAccount(value)
 elif parameter in mbsyncInotifyMapping.keys():
 parser, key = mbsyncInotifyMapping[parameter]
 currentAccountData[key] = parser(value)
 elif parameter == "Channel":
 currentAccountData["onNewMail"] = f"mbsync --pull --new {value}:'%s'"

def newAccount(name):
 global currentAccountNumber
 global currentAccount
 global currentAccountData
 currentAccountNumber += 1
 currentAccount = name
 currentAccountData = {}
 print(f"\n\033[1;32m{currentAccountNumber}\033[0;32m - {name}\033[0;37m")

def accountToFoldername(name):
 return re.sub(r"[^A-Za-z0-9]", "", name)

def finaliseAccount():
 if currentAccountNumber == 0:
 return

 global currentAccountData
 try:
 currentAccountData["boxes"] = getMailBoxes(currentAccount)
 except subprocess.CalledProcessError as e:
 print(
 f"\033[1;31mError:\033[0;31m failed to fetch mailboxes (skipping): "
 + f"`{' '.join(e.cmd)}' returned code {e.returncode}\033[0;37m"
)
 return
 except subprocess.TimeoutExpired as e:
 print(
 f"\033[1;31mError:\033[0;31m failed to fetch mailboxes (skipping): "
 + f"`{' '.join(e.cmd)}' timed out after {e.timeout:.2f} seconds\033[0;37m"
)
 return

 if "_patterns" in currentAccountData:
 currentAccountData["boxes"] = applyPatternFilter(
 currentAccountData["_patterns"], currentAccountData["boxes"]
)

 # strip not-to-be-exported data
 currentAccountData = {
 k: currentAccountData[k] for k in currentAccountData if k[0] != "_"
 }

 parametersSet = currentAccountData.keys()
 currentAccountData = {**imapnotifyDefault, **currentAccountData}
 for key, val in currentAccountData.items():
 valColor = "\033[0;33m" if key in parametersSet else "\033[0;37m"
 print(f" \033[1;37m{key:<13} {valColor}{val}\033[0;37m")

 if (
 len(currentAccountData["boxes"]) > 15
 and "@gmail.com" in currentAccountData["username"]
):
 print(
 " \033[1;31mWarning:\033[0;31m Gmail raises an error when more than"
 + "\033[1;31m15\033[0;31m simultanious connections are attempted."
 + "\n You are attempting to monitor "
 + f"\033[1;31m{len(currentAccountData['boxes'])}\033[0;31m mailboxes.\033[0;37m"
)

 configFile = (
 imapnotifyConfigFolder
 / accountToFoldername(currentAccount)
 / imapnotifyConfigFilename
)
 configFile.parent.mkdir(exist_ok=True)

 json.dump(currentAccountData, open(configFile, "w"), indent=2)
 print(f" \033[0;35mConfig generated and saved to {configFile}\033[0;37m")

 global successfulAdditions
 successfulAdditions.append(accountToFoldername(currentAccount))

def getMailBoxes(account):
 boxes = subprocess.run(
 ["mbsync", "--list", account], check=True, stdout=subprocess.PIPE, timeout=10.0
)
 return boxes.stdout.decode("utf-8").strip().split("\n")

def applyPatternFilter(pattern, mailboxes):
 patternRegexs = getPatternRegexes(pattern)
 return [m for m in mailboxes if testPatternRegexs(patternRegexs, m)]

def getPatternRegexes(pattern):
 def addGlob(b):
 blobs.append(b.replace('\\"', '"'))
 return ""

 blobs = []
 pattern = re.sub(r' ?"([^"]+)"', lambda m: addGlob(m.groups()[0]), pattern)
 blobs.extend(pattern.split(" "))
 blobs = [
 (-1, fnmatch.translate(b[1::])) if b[0] == "!" else (1, fnmatch.translate(b))
 for b in blobs
]
 return blobs

def testPatternRegexs(regexCond, case):
 for factor, regex in regexCond:
 if factor * bool(re.match(regex, case)) < 0:
 return False
 return True

def processSystemdServices():
 keptAccounts = [acc for acc in successfulAdditions if acc in oldAccounts]
 freshAccounts = [acc for acc in successfulAdditions if acc not in oldAccounts]
 staleAccounts = [acc for acc in oldAccounts if acc not in successfulAdditions]

 if keptAccounts:
 print(f"\033[1;34m{len(keptAccounts)}\033[0;34m kept accounts:\033[0;37m")
 restartAccountSystemdServices(keptAccounts)

 if freshAccounts:
 print(f"\033[1;32m{len(freshAccounts)}\033[0;32m new accounts:\033[0;37m")
 enableAccountSystemdServices(freshAccounts)
 else:
 print(f"\033[0;32mNo new accounts.\033[0;37m")

 notActuallyEnabledAccounts = [
 acc for acc in successfulAdditions if not getAccountServiceState(acc)["enabled"]
]
 if notActuallyEnabledAccounts:
 print(
 f"\033[1;32m{len(notActuallyEnabledAccounts)}\033[0;32m accounts need re-enabling:\033[0;37m"
)
 enableAccountSystemdServices(notActuallyEnabledAccounts)

 if staleAccounts:
 print(f"\033[1;33m{len(staleAccounts)}\033[0;33m removed accounts:\033[0;37m")
 disableAccountSystemdServices(staleAccounts)
 else:
 print(f"\033[0;33mNo removed accounts.\033[0;37m")

def enableAccountSystemdServices(accounts):
 for account in accounts:
 print(f" \033[0;32m - \033[1;37m{account:<18}", end="\033[0;37m", flush=True)
 if setSystemdServiceState(
 "enable", f"goimapnotify@{accountToFoldername(account)}.service"
):
 print("\033[1;32m enabled")

def disableAccountSystemdServices(accounts):
 for account in accounts:
 print(f" \033[0;33m - \033[1;37m{account:<18}", end="\033[0;37m", flush=True)
 if setSystemdServiceState(
 "disable", f"goimapnotify@{accountToFoldername(account)}.service"
):
 print("\033[1;33m disabled")

def restartAccountSystemdServices(accounts):
 for account in accounts:
 print(f" \033[0;34m - \033[1;37m{account:<18}", end="\033[0;37m", flush=True)
 if setSystemdServiceState(
 "restart", f"goimapnotify@{accountToFoldername(account)}.service"
):
 print("\033[1;34m restarted")

def setSystemdServiceState(state, service):
 try:
 enabler = subprocess.run(
 ["systemctl", "--user", state, service, "--now"],
 check=True,
 stderr=subprocess.DEVNULL,
 timeout=5.0,
)
 return True
 except subprocess.CalledProcessError as e:
 print(
 f" \033[1;31mfailed\033[0;31m to {state}, `{' '.join(e.cmd)}'"
 + f"returned code {e.returncode}\033[0;37m"
)
 except subprocess.TimeoutExpired as e:
 print(f" \033[1;31mtimed out after {e.timeout:.2f} seconds\033[0;37m")
 return False

def getAccountServiceState(account):
 return {
 state: bool(
 1
 - subprocess.run(
 [
 "systemctl",
 "--user",
 f"is-{state}",
 "--quiet",
 f"goimapnotify@{accountToFoldername(account)}.service",
],
 stderr=subprocess.DEVNULL,
).returncode
)
 for state in ("enabled", "active", "failing")
 }

def getAccountServiceStates(accounts):
 for account in accounts:
 enabled, active, failing = getAccountServiceState(account).values()
 print(f" - \033[1;37m{account:<18}\033[0;37m ", end="", flush=True)
 if not enabled:
 print("\033[1;33mdisabled\033[0;37m")
 elif active:
 print("\033[1;32mactive\033[0;37m")
 elif failing:
 print("\033[1;31mfailing\033[0;37m")
 else:
 print("\033[1;35min an unrecognised state\033[0;37m")

if len(sys.argv) > 1:
 if sys.argv[1] in ["-e", "--enable"]:
 enableAccountSystemdServices(oldAccounts)
 exit()
 elif sys.argv[1] in ["-d", "--disable"]:
 disableAccountSystemdServices(oldAccounts)
 exit()
 elif sys.argv[1] in ["-r", "--restart"]:
 restartAccountSystemdServices(oldAccounts)
 exit()
 elif sys.argv[1] in ["-s", "--status"]:
 getAccountServiceStates(oldAccounts)
 exit()
 elif sys.argv[1] in ["-h", "--help"]:
 print("""\033[1;37mMbsync to IMAP Notify config generator.\033[0;37m

Usage: mbsync-imapnotify [options]

Options:
 -e, --enable enable all services
 -d, --disable disable all services
 -r, --restart restart all services
 -s, --status fetch the status for all services
 -h, --help show this help
""", end='')
 exit()
 else:
 print(f"\033[0;31mFlag {sys.argv[1]} not recognised, try --help\033[0;37m")
 exit()

mbsyncData = open(mbsyncFile, "r").read()

currentAccountNumber = 0

totalAccounts = len(re.findall(r"^IMAPAccount", mbsyncData, re.M))

def main():
 print("\033[1;34m:: MbSync to Go IMAP notify config file creator ::\033[0;37m")

 shutil.rmtree(imapnotifyConfigFolder)
 imapnotifyConfigFolder.mkdir(exist_ok=False)
 print("\033[1;30mImap Notify config dir purged\033[0;37m")

 print(f"Identified \033[1;32m{totalAccounts}\033[0;32m accounts.\033[0;37m")

 for line in mbsyncData.split("\n"):
 processLine(line)

 finaliseAccount()

 print(
 f"\nConfig files generated for \033[1;36m{len(successfulAdditions)}\033[0;36m"
 + f" out of \033[1;36m{totalAccounts}\033[0;37m accounts.\n"
)

 processSystemdServices()

if __name__ == "__main__":
 main()
#+end_src

**** Systemd

We then have a service file to run ~goimapnotify~ on all of these generated config files.
We'll use a template service file so we can enable a unit per-account.
#+begin_src systemd :tangle ~/.config/systemd/user/goimapnotify@.service
[Unit]
Description=IMAP notifier using IDLE, golang version.
ConditionPathExists=%h/.config/imapnotify/%I/notify.conf
After=network.target
Wants=gpg-agent.service

[Service]
ExecStart=%h/.local/bin/goimapnotify -conf %h/.config/imapnotify/%I/notify.conf
Restart=always
RestartSec=30

[Install]
WantedBy=default.target
#+end_src

Enabling the service is actually taken care of by that python script.

From one or two small tests, this can bring the delay down to as low as five
seconds, which I'm quite happy with.

This works well for fetching new mail, but we also want to propagate other
changes (e.g. marking mail as read), and make sure we're up to date at the
start, so for that I'll do the 'normal' thing and run ~mbsync -all~ every so often
--- let's say five minutes.

We can accomplish this via a systemd timer, and service file.
#+begin_src systemd :tangle (if (executable-find "mbsync") "~/.config/systemd/user/mbsync.timer" "no")
[Unit]
Description=call mbsync on all accounts every 5 minutes
ConditionPathExists=%h/.mbsyncrc

[Timer]
OnBootSec=5m
OnUnitInactiveSec=5m

[Install]
WantedBy=default.target
#+end_src

#+begin_src systemd :tangle (if (executable-find "mbsync") "~/.config/systemd/user/mbsync.service" "no")
[Unit]
Description=mbsync service, sync all mail
Documentation=man:mbsync(1)
ConditionPathExists=%h/.mbsyncrc
Wants=gpg-agent.service

[Service]
Type=oneshot
ExecStart=/usr/bin/mbsync -c %h/.mbsyncrc --all

[Install]
WantedBy=mail.target
#+end_src

Enabling (and starting) this is as simple as

#+begin_src shell :tangle (if (or (not (executable-find "mbsync")) (string= "enabled\n" (shell-command-to-string "systemctl --user is-enabled mbsync.timer"))) "no" "setup.sh")
systemctl --user enable mbsync.timer --now
#+end_src

We can also add a =doctor= check for the timer state.

#+begin_src emacs-lisp :noweb-ref doctor
(when (executable-find "mbsync")
 (unless (string= "enabled\n" (shell-command-to-string "systemctl --user is-enabled mbsync.timer"))
 (warn! "The mbsync timer is not enabled.")))
#+end_src

*** Indexing/Searching

This is performed by [[https://www.djcbsoftware.nl/code/mu/][Mu]]. This is a tool for finding emails stored in the [[http://en.wikipedia.org/wiki/Maildir][Maildir]] format.
According to the homepage, it's main features are
+ Fast indexing
+ Good searching
+ Support for encrypted and signed messages
+ Rich CLI tooling
+ accent/case normalisation
+ strong integration with email clients

Unfortunately ~mu~ is not currently packaged from me. Oh well, I guess I'm
building it from source then. I needed to install these packages
+ =gmime-devel=
+ =xapian-core-devel=

#+name: Install mu from source
#+begin_src shell :eval no :tangle (if (and (file-directory-p "~/.mail") (not (executable-find "mu"))) "setup.sh" "no")
cd ~/.local/lib/
git clone https://github.com/djcb/mu.git
cd ./mu
./autogen.sh
make
sudo make install
#+end_src

To check how my version compares to the latest published:

#+begin_src shell :tangle no
curl --silent "https://api.github.com/repos/djcb/mu/releases/latest" | grep '"tag_name":' | sed -E 's/.*"([^"]+)".*/\1/'
mu --version | head -n 1 | sed 's/.* version //'
#+end_src

#+results:
| 1.4.6 |
| 1.4.6 |

*** Sending

[[https://www.nongnu.org/smtpmail/][SmtpMail]] seems to be the 'default' starting point, but that's not packaged for
me. [[https://marlam.de/msmtp/][msmtp]] is however, so I'll give that a shot. Reading around a bit (googling
"msmtp vs sendmail" for example) almost every comparison mentioned seems to
suggest msmtp to be a better choice. I have seen the following points raised
+ ~sendmail~ has several vulnerabilities
+ ~sendmail~ is tedious to configure
+ ~ssmtp~ is no longer maintained
+ ~msmtp~ is a maintained alternative to ~ssmtp~
+ ~msmtp~ is easier to configure

The config file is [[file:~/.config/msmtp/config][~/.config/msmtp/config]].

**** System hackery

Unfortunately, I seem to have run into a [[https://bugs.archlinux.org/task/44994][bug]] present in my packaged version, so
we'll just install the latest from source.

For full use of the ~auth~ options, I need =GNU SASL=, which isn't packaged for me.
I don't think I want it, but in case I do, I'll need to do this.
#+name: Install gsasl from source
#+begin_src shell :eval no :tangle (if (and (executable-find "mu") (not (executable-find "msmtp"))) "setup.sh" "no")
export GSASL_VERSION=1.8.1
cd ~/.local/lib/
curl "ftp://ftp.gnu.org/gnu/gsasl/libgsasl-$GSASL_VERSION.tar.gz" | tar xz
curl "ftp://ftp.gnu.org/gnu/gsasl/gsasl-$GSASL_VERSION.tar.gz" | tar xz
cd "./libgsasl-$GSASL_VERSION"
./configure
make
sudo make install
cd ..
cd "./gsasl-$VERSION"
./configure
make
sudo make install
cd ..
#+end_src

Now actually compile ~msmtp~.
#+name: Install msmtp from source
#+begin_src shell :eval no :tangle (if (and (executable-find "mu") (not (executable-find "msmtp"))) "setup.sh" "no")
cd ~/.local/lib/
git clone https://github.com/marlam/msmtp-mirror.git ./msmtp
cd ./msmtp
libtoolize --force
aclocal
autoheader
automake --force-missing --add-missing
autoconf
if using GSASL
PKG_CONFIG_PATH=/usr/local/lib/pkgconfig ./configure --with-libgsasl
./configure
make
sudo make install
#+end_src

If using =GSASL= (from earlier) we need to make ensure that the dynamic library in
in the library path. We can do by adding an executable with the same name
earlier on in my ~$PATH~.
#+begin_src sh :tangle no :shebang "#!/bin/sh"
LD_LIBRARY_PATH=/usr/local/lib exec /usr/local/bin/msmtp "$@"
#+end_src

*** Mu4e

Webmail clients are nice and all, but I still don't believe that SPAs in my
browser can replaced desktop apps ... sorry Gmail. I'm also liking google less
and less.

Mailspring is a decent desktop client, quite lightweight for electron
(apparently the backend is in =C=, which probably helps), however I miss Emacs
stuff.

While =Notmuch= seems very promising, and I've heard good things about it, it
doesn't seem to make any changes to the emails themselves. All data is stored in
Notmuch's database. While this is a very interesting model, occasionally I need
to pull up an email on say my phone, and so not I want the tagging/folders etc.
to be applied to the mail itself --- not stored in a database.

On the other hand =Mu4e= is also talked about a lot in positive terms, and seems
to possess a similarly strong feature set --- and modifies the mail itself (I.e.
information is accessible without the database). =Mu4e= also seems to have a large
user base, which tends to correlate with better support and attention.

If I install mu4e from source, I need to add the =/usr/local/= loadpath so Mu4e
has a chance of loading. Alternatively, I may need to add the =/usr/share/= path.

#+name: add-mu4e-load-path
#+begin_src emacs-lisp :noweb-ref none
(cond
 ((cl-some (lambda (path) (string-match-p "mu4e" path)) load-path) nil)
 ((file-directory-p "/usr/local/share/emacs/site-lisp/mu4e")
 (quote (add-to-list 'load-path "/usr/local/share/emacs/site-lisp/mu4e")))
 ((file-directory-p "/usr/share/emacs/site-lisp/mu4e")
 (quote (add-to-list 'load-path "/usr/share/emacs/site-lisp/mu4e"))))
#+end_src

Let's also just shove all the Elisp code here in an src_elisp{(after! ...)} block.
#+begin_src emacs-lisp :noweb no-export :noweb-prefix no
<<mu4e-conf>>
#+end_src

**** Viewing Mail
:PROPERTIES:
:header-args:emacs-lisp: :noweb-ref mu4e-conf
:END:

There seem to be some advantages with using Gnus' article view (such as inline
images), and judging from [[https://github.com/djcb/mu/pull/1442#issuecomment-591695814][djcb/mu!1442 (comment)]] this seems to be the 'way of
the future' for mu4e.

There are some nerd-icons font related issues, so we need to redefine the
fancy chars, and make sure they get the correct width.

To account for the increase width of each flag character, and make perform a
few more visual tweaks, we'll tweak the headers a bit
#+begin_src emacs-lisp
(setq mu4e-headers-fields
 '((:flags . 6)
 (:account-stripe . 2)
 (:from-or-to . 25)
 (:folder . 10)
 (:recipnum . 2)
 (:subject . 80)
 (:human-date . 8))
 +mu4e-min-header-frame-width 142
 mu4e-headers-date-format "%d/%m/%y"
 mu4e-headers-time-format "⧖ %H:%M"
 mu4e-headers-results-limit 1000
 mu4e-index-cleanup t)

(add-to-list 'mu4e-bookmarks
 '(:name "Yesterday's messages" :query "date:2d..1d" :key ?y) t)

(defvar +mu4e-header--folder-colors nil)
(appendq! mu4e-header-info-custom
 '((:folder .
 (:name "Folder" :shortname "Folder" :help "Lowest level folder" :function
 (lambda (msg)
 (+mu4e-colorize-str
 (replace-regexp-in-string "\\`.*/" "" (mu4e-message-field msg :maildir))
 '+mu4e-header--folder-colors))))))
#+end_src

Among the flags mu4e displays is the "personal address" flag, for messages sent
/to/ me (as opposed to mailing-list-y emails where I am not an explicit
recipient). Unfortunately, this doesn't play well with my wildcard email
addresses, so let's fix this with advise.

 #+begin_src emacs-lisp
(defadvice! +mu4e-personal-address-p--*-a (orig-fn addr)
 :around #'mu4e-personal-address-p
 (or (and (stringp addr)
 (string-match-p "@\\([a-z]+\\.\\)?tecosaur\\.net$" addr))
 (funcall orig-fn addr)))
 #+end_src

We'll also use a nicer alert icon
#+begin_src emacs-lisp
(setq mu4e-alert-icon "/usr/share/icons/Papirus/64x64/apps/evolution.svg")
#+end_src

And save ourselves from the awful =mu4e-thread-fold-face=.

#+begin_src emacs-lisp
(custom-set-faces!
 '(mu4e-thread-fold-face :inherit default))
#+end_src

**** Sending Mail
:PROPERTIES:
:header-args:emacs-lisp: :noweb-ref mu4e-conf
:END:

Let's send emails too.
#+begin_src emacs-lisp
(setq sendmail-program "/usr/bin/msmtp"
 send-mail-function #'smtpmail-send-it
 message-sendmail-f-is-evil t
 message-sendmail-extra-arguments '("--read-envelope-from"); , "--read-recipients")
 message-send-mail-function #'message-send-mail-with-sendmail)
#+end_src

It's also nice to avoid accidentally sending emails with the wrong account. If
we can send from the address in the ~To~ field, let's do that. Opening a prompt
otherwise also seems sensible.

We can register Emacs as a potential email client with a desktop file. We could
put an =emacsclient ...= entry in the =Exec= field, but I've found this a bit dodgy.
Instead let's package the =emacslient= behaviour in a little executable
=~/.local/bin/emacsmail=.

#+begin_src shell :tangle ~/.local/bin/emacsmail :shebang "#!/usr/bin/env sh" :mkdirp yes :tangle-mode (identity #o755) :comments no
emacsclient -create-frame --alternate-editor='' --no-wait --eval \
"(progn (x-focus-frame nil) (mu4e-compose-from-mailto \"$1\" t))"
#+end_src

Now we can just call that in a desktop file.

#+begin_src conf :tangle ~/.local/share/applications/emacsmail.desktop :mkdirp yes
[Desktop Entry]
Name=Mu4e
GenericName=Compose a new message with Mu4e in Emacs
Comment=Open mu4e compose window
MimeType=x-scheme-handler/mailto;
Exec=emacsmail %u
Icon=emacs
Type=Application
Terminal=false
Categories=Network;Email;
StartupWMClass=Emacs
#+end_src

To register this, just call

#+begin_src shell :tangle (if (or (not (executable-find "mu")) (string= (shell-command-to-string "xdg-mime query default x-scheme-handler/mailto") "emacsmail.desktop\n")) "no" "setup.sh")
update-desktop-database ~/.local/share/applications
#+end_src

We can see if this is necessary with a =doctor= check.

#+begin_src emacs-lisp :noweb-ref doctor
(when (and (executable-find "mu")
 (not (string= (shell-command-to-string "xdg-mime query default x-scheme-handler/mailto")
 "emacsmail.desktop\n")))
 (warn! "Emacs is not registered as a mailto handler."))
#+end_src

We also want to define ~mu4e-compose-from-mailto~.

#+begin_src emacs-lisp
(defun mu4e-compose-from-mailto (mailto-string &optional quit-frame-after)
 (require 'mu4e)
 (unless mu4e--server-props (mu4e t) (sleep-for 0.1))
 (let* ((mailto (message-parse-mailto-url mailto-string))
 (to (cadr (assoc "to" mailto)))
 (subject (or (cadr (assoc "subject" mailto)) ""))
 (body (cadr (assoc "body" mailto)))
 (headers (-filter (lambda (spec) (not (-contains-p '("to" "subject" "body") (car spec)))) mailto)))
 (when-let ((mu4e-main (get-buffer mu4e-main-buffer-name)))
 (switch-to-buffer mu4e-main))
 (mu4e~compose-mail to subject headers)
 (when body
 (goto-char (point-min))
 (if (eq major-mode 'org-msg-edit-mode)
 (org-msg-goto-body)
 (mu4e-compose-goto-bottom))
 (insert body))
 (goto-char (point-min))
 (cond ((null to) (search-forward "To: "))
 ((string= "" subject) (search-forward "Subject: "))
 (t (if (eq major-mode 'org-msg-edit-mode)
 (org-msg-goto-body)
 (mu4e-compose-goto-bottom))))
 (font-lock-ensure)
 (when evil-normal-state-minor-mode
 (evil-append 1))
 (when quit-frame-after
 (add-hook 'kill-buffer-hook
 `(lambda ()
 (when (eq (selected-frame) ,(selected-frame))
 (delete-frame)))))))
#+end_src

It would also be nice to change the name pre-filled in =From:= when drafting.
#+begin_src emacs-lisp
(defvar mu4e-from-name "Timothy"
 "Name used in \"From:\" template.")
(defadvice! mu4e~draft-from-construct-renamed (orig-fn)
 "Wrap `mu4e~draft-from-construct-renamed' to change the name."
 :around #'mu4e~draft-from-construct
 (let ((user-full-name mu4e-from-name))
 (funcall orig-fn)))
#+end_src

We can also use this a signature,
#+begin_src emacs-lisp
(setq message-signature mu4e-from-name)
#+end_src

I've got a few extra addresses I'd like ~+mu4e-set-from-address-h~ to be aware of.

#+begin_src emacs-lisp
(defun +mu4e-update-personal-addresses ()
 (let ((primary-address
 (car (cl-remove-if-not
 (lambda (a) (eq (mod (apply #'* (cl-coerce a 'list)) 600) 0))
 (mu4e-personal-addresses)))))
 (setq +mu4e-personal-addresses
 (and primary-address
 (append (mu4e-personal-addresses)
 (mapcar
 (lambda (subalias)
 (concat subalias "@"
 (subst-char-in-string ?@ ?. primary-address)))
 '("orgmode"))
 (mapcar
 (lambda (alias)
 (replace-regexp-in-string
 "\\`\\(.*\\)@" alias primary-address t t 1))
 '("contact" "timothy")))))))

(add-transient-hook! 'mu4e-compose-pre-hook
 (+mu4e-update-personal-addresses))
#+end_src

We also want to use any =@tecosaur.net= address as an automatic from address.

#+begin_src emacs-lisp
(defadvice! +mu4e-set-from-adress-h-personal-a (orig-fn)
 :around #'+mu4e-set-from-address-h
 (let* ((msg-addrs
 (and mu4e-compose-parent-message
 (delq nil
 (mapcar
 (lambda (adr) (plist-get adr :email))
 (append (mu4e-message-field mu4e-compose-parent-message :to)
 (mu4e-message-field mu4e-compose-parent-message :cc)
 (mu4e-message-field mu4e-compose-parent-message :from))))))
 (personal-addrs
 (if (or mu4e-contexts +mu4e-personal-addresses)
 (and (> (length +mu4e-personal-addresses) 1)
 +mu4e-personal-addresses)
 (mu4e-personal-addresses)))
 (personal-domain-addr
 (cl-some
 (lambda (email)
 (and (string-match-p "@\\(?:tec\\.\\)?tecosaur\\.net>?$"
 email)
 email))
 msg-addrs)))
 (if (and personal-domain-addr
 (not (cl-intersection msg-addrs personal-addrs :test #'equal)))
 (setq user-mail-address personal-domain-addr)
 (funcall orig-fn))))
#+end_src

Speaking of, it would be good to put emails sent from =@tecosaur.net= in the
account-specific sent directory, not the catch-all.

#+begin_src emacs-lisp
(defun +mu4e-account-sent-folder (&optional msg)
 (let ((from (if msg
 (plist-get (car (plist-get msg :from)) :email)
 (save-restriction
 (mail-narrow-to-head)
 (mail-fetch-field "from")))))
 (if (and from (string-match-p "@tecosaur\\.net>?\\'" from))
 "/tecosaur-net/Sent"
 "/sent")))
(setq mu4e-sent-folder #'+mu4e-account-sent-folder)
#+end_src

When composing an email, I think it would make more sense to start off in =insert=
mode than =normal= mode, which can be accomplished via a compose hook.

#+begin_src emacs-lisp
(defun +mu4e-evil-enter-insert-mode ()
 (when (eq (bound-and-true-p evil-state) 'normal)
 (call-interactively #'evil-append)))

(add-hook 'mu4e-compose-mode-hook #'+mu4e-evil-enter-insert-mode 90)
#+end_src

**** Working with the Org mailing list
:PROPERTIES:
:header-args:emacs-lisp: :noweb-ref mu4e-conf
:END:
***** Adding =X-Woof= headers

I'm fairly active on the Org mailing list (ML). The Org ML has a linked
bug/patch tracker, https://updates.orgmode.org/ managed by [[https://github.com/bzg/woof][Woof]]. However, I feel
like I spend too much time looking up what the appropriate headers are for
updating the status of bugs and patches. What I need, is some sort of convenient
tool. Let's write one.

First, a function that asks what I want to do and returns the appropriate =X-Woof=
header.
#+begin_src emacs-lisp
(defun +mu4e-get-woof-header ()
 (pcase (read-char
 (format "\
%s
 %s Declare %s Applied %s Aborted
%s
 %s Confirm %s Fixed
%s
 %s Request %s Resolved

%s remove X-Woof header"
 (propertize "Patch" 'face 'outline-3)
 (propertize "p" 'face '(bold consult-key))
 (propertize "a" 'face '(bold consult-key))
 (propertize "c" 'face '(bold consult-key))
 (propertize "Bug" 'face 'outline-3)
 (propertize "b" 'face '(bold consult-key))
 (propertize "f" 'face '(bold consult-key))
 (propertize "Help" 'face 'outline-3)
 (propertize "h" 'face '(bold consult-key))
 (propertize "r" 'face '(bold consult-key))
 (propertize "x" 'face '(bold error))))
 (?p "X-Woof-Patch: confirmed")
 (?a "X-Woof-Patch: applied")
 (?c "X-Woof-Patch: cancelled")
 (?b "X-Woof-Bug: confirmed")
 (?f "X-Woof-Bug: fixed")
 (?h "X-Woof-Help: confirmed")
 (?r "X-Woof-Help: cancelled")
 (?x 'delete)))
#+end_src

Now we just need a function which will add such a header to a buffer
#+begin_src emacs-lisp
(defun +mu4e-insert-woof-header ()
 "Insert an X-Woof header into the current message."
 (interactive)
 (when-let ((header (+mu4e-get-woof-header)))
 (save-excursion
 (goto-char (point-min))
 (search-forward "--text follows this line--")
 (unless (eq header 'delete)
 (beginning-of-line)
 (insert header "\n")
 (forward-line -1))
 (when (re-search-backward "^X-Woof-" nil t)
 (kill-whole-line)))))

(map! :map mu4e-compose-mode-map
 :localleader
 :desc "Insert X-Woof Header" "w" #'+mu4e-insert-woof-header)

(map! :map org-msg-edit-mode-map
 :after org-msg
 :localleader
 :desc "Insert X-Woof Header" "w" #'+mu4e-insert-woof-header)
#+end_src

Lovely! That should make adding these headers a breeze.

***** Patch workflow

Testing patches from the ML is currently more hassle than it needs to be. Let's
change that.

#+begin_src emacs-lisp
(after! mu4e
 (defvar +org-ml-target-dir
 (expand-file-name "lisp/org/" doom-user-dir))
 (defvar +org-ml-max-age 600
 "Maximum permissible age in seconds.")
 (defvar +org-ml--cache-timestamp 0)
 (defvar +org-ml--cache nil)

 (define-minor-mode +org-ml-patchy-mood-mode
 "Apply patches to Org in bulk."
 :global t
 (let ((action (cons "apply patch to org" #'+org-ml-apply-patch)))
 (if +org-ml-patchy-mood-mode
 (add-to-list 'mu4e-view-actions action)
 (setq mu4e-view-actions (delete action mu4e-view-actions)))))

 (defun +org-ml-apply-patch (msg)
 "Apply the patch in the current message to Org."
 (interactive)
 (unless msg (setq msg (mu4e-message-at-point)))
 (with-current-buffer (get-buffer-create "*Shell: Org apply patches*")
 (erase-buffer)
 (let* ((default-directory +org-ml-target-dir)
 (exit-code (call-process "git" nil t nil "am" (mu4e-message-field msg :path))))
 (magit-refresh)
 (when (not (= 0 exit-code))
 (+popup/buffer)))))

 (defun +org-ml-current-patches ()
 "Get the currently open patches, as a list of alists.
Entries of the form (subject . id)."
 (delq nil
 (mapcar
 (lambda (entry)
 (unless (plist-get entry :fixed)
 (cons
 (format "%-8s %s"
 (propertize
 (replace-regexp-in-string "T.*" ""
 (plist-get entry :date))
 'face 'font-lock-doc-face)
 (propertize
 (replace-regexp-in-string "\\[PATCH\\] ?" ""
 (plist-get entry :summary))
 'face 'font-lock-keyword-face))
 (plist-get entry :id))))
 (with-current-buffer (url-retrieve-synchronously "https://updates.orgmode.org/data/patches")
 (goto-char url-http-end-of-headers)
 (json-parse-buffer :object-type 'plist)))))

 (defun +org-ml-select-patch-thread ()
 "Find and apply a proposed Org patch."
 (interactive)
 (let* ((current-workspace (+workspace-current))
 (patches (progn
 (when (or (not +org-ml--cache)
 (> (- (float-time) +org-ml--cache-timestamp)
 +org-ml-max-age))
 (setq +org-ml--cache (+org-ml-current-patches)
 +org-ml--cache-timestamp (float-time)))
 +org-ml--cache))
 (msg-id (cdr (assoc (completing-read
 "Thread: " (mapcar #'car patches))
 patches))))
 (+workspace-switch +mu4e-workspace-name)
 (mu4e-view-message-with-message-id msg-id)
 (unless +org-ml-patchy-mood-mode
 (add-to-list 'mu4e-view-actions
 (cons "apply patch to org" #'+org-ml-transient-mu4e-action)))))

 (defun +org-ml-transient-mu4e-action (msg)
 (setq mu4e-view-actions
 (delete (cons "apply patch to org" #'+org-ml-transient-mu4e-action)
 mu4e-view-actions))
 (+workspace/other)
 (magit-status +org-ml-target-dir)
 (+org-ml-apply-patch msg)))
#+end_src

***** Mail list archive links

The other thing which it's good to be easily able to do is grab a link to the
current message on https://list.orgmode.org.

#+begin_src emacs-lisp
(after! mu4e
 (defun +mu4e-ml-message-link (msg)
 "Copy the link to MSG on the mailing list archives."
 (let* ((list-addr (or (mu4e-message-field msg :list)
 (thread-last (append (mu4e-message-field-raw msg :list-post)
 (mu4e-message-field msg :to)
 (mu4e-message-field msg :cc))
 (mapcar (lambda (e) (plist-get e :email)))
 (mapcar (lambda (addr)
 (when (string-match-p "emacs.*@gnu\\.org$" addr)
 (replace-regexp-in-string "@" "." addr))))
 (delq nil)
 (car))))
 (msg-url
 (pcase list-addr
 ("emacs-orgmode.gnu.org"
 (format "https://list.orgmode.org/%s" (mu4e-message-field msg :message-id)))
 (_ (user-error "Mailing list %s not supported" list-addr)))))
 (gui-select-text msg-url)
 (message "Link %s copied to clipboard"
 (propertize msg-url 'face '((:weight normal :underline nil) link)))
 msg-url))

 (add-to-list 'mu4e-view-actions (cons "link to message ML" #'+mu4e-ml-message-link) t))
#+end_src

In a similar manner, when clicking on such a link (say when someone uses a link
to the archive to refer to an earlier email) I'd much rather look at it in mu4e.

#+begin_src emacs-lisp
(defun +browse-url-orgmode-ml (url &optional _)
 "Open an orgmode list url using notmuch."
 (let ((id (and (or (string-match "^https?://orgmode\\.org/list/\\([^/]+\\)" url)
 (string-match "^https?://list\\.orgmode\\.org/\\([^/]+\\)" url))
 (match-string 1 url))))
 (mu4e-view-message-with-message-id id)))

(add-to-list 'browse-url-handlers (cons "^https?://orgmode\\.org/list" #'+browse-url-orgmode-ml))
(add-to-list 'browse-url-handlers (cons "^https?://list\\.orgmode\\.org/" #'+browse-url-orgmode-ml))
#+end_src

***** Setup when composing a new email

Thanks to having a dedicated address for my interactions with the Org ML, and
Doom's ~+mu4e-set-from-address-h~, we can tell at the end of compose setup whether
I'm composing an email to the Org ML and then do a little setup for convenience,
namely:
+ Pre-fill the =To= address
+ Ensure that =org-msg= is set up to send plaintext only
+ Set ~default-directory~ to my local Org repository (where patch files are
 generated)
+ Move ~(point)~ to the =Subject:= line
+ Use a special Org-ML-specific signature

#+begin_src emacs-lisp
(defun +mu4e-compose-org-ml-setup ()
 (when (string-match-p "\\`orgmode@" user-mail-address)
 (goto-char (point-min))
 (save-restriction
 (mail-narrow-to-head)
 (when (string-empty-p (mail-fetch-field "to"))
 (re-search-forward "^To: .*$")
 (replace-match "To: emacs-orgmode@gnu.org")
 (advice-add 'message-goto-to :after #'+mu4e-goto-subject-not-to-once)))
 (when (and org-msg-mode
 (re-search-forward "^:alternatives: (\\(utf-8 html\\))" nil t))
 (replace-match "utf-8" t t nil 1))
 (if org-msg-mode
 (let ((final-elem (org-element-at-point (point-max))))
 (when (equal (org-element-property :type final-elem) "signature")
 (goto-char (org-element-property :contents-begin final-elem))
 (delete-region (org-element-property :contents-begin final-elem)
 (org-element-property :contents-end final-elem))
 (setq-local org-msg-signature
 (format "\n\n#+begin_signature\n%s\n#+end_signature"
 (cdr +mu4e-org-ml-signature)))
 (insert (cdr +mu4e-org-ml-signature) "\n")))
 (goto-char (point-max))
 (insert (car +mu4e-org-ml-signature)))
 (setq default-directory
 (file-name-concat doom-user-dir "lisp/org/"))))

(defun +mu4e-goto-subject-not-to-once ()
 (message-goto-subject)
 (advice-remove 'message-goto-to #'+mu4e-goto-subject-not-to-once))
#+end_src

Now let's set up that signature.

#+begin_src emacs-lisp
(defvar +mu4e-org-ml-signature
 (cons
 "All the best,
Timothy

-- \
Timothy (‘tecosaur’/‘TEC’), Org mode contributor.
Learn more about Org mode at <https://orgmode.org/>.
Support Org development at <https://liberapay.com/org-mode>,
or support my work at <https://liberapay.com/tec>.
"
 "All the best,\\\\
@@html:@@Timothy@@html:@@

-\u200b- \\\\
Timothy (‘tecosaur’/‘TEC’), Org mode contributor.\\\\
Learn more about Org mode at https://orgmode.org/.\\\\
Support Org development at https://liberapay.com/org-mode,\\\\
or support my work at https://liberapay.com/tec.")
 "Plain and Org version of the org-ml specific signature.")
#+end_src

Now to make this take effect, we can just add it a bit later on in
~mu4e-compose-mode-hook~ (after ~org-msg-post-setup~) by setting a hook depth of 1.

#+begin_src emacs-lisp
(add-hook 'mu4e-compose-mode-hook #'+mu4e-compose-org-ml-setup 1)
#+end_src

*** Org Msg

Doom does a fantastic stuff with the defaults with this, so we only make a few
minor tweaks. First, some stylistic things:

#+begin_src emacs-lisp
(setq org-msg-greeting-fmt "\nHi%s,\n\n"
 org-msg-signature "\n\n#+begin_signature\nAll the best,\\\\\n@@html:@@Timothy@@html:@@\n#+end_signature")
#+end_src

We also want to set the accent colour used in the Doom =mu4e= module's
construction of the default org-msg style.

Noweb ref set to enable use with confpkg pre.
#+begin_src emacs-lisp :noweb-ref org-msg-accent
(setq +org-msg-accent-color "#1a5fb4")
#+end_src

Now, it would be nice to easily jump to and between the ends of the message
body, so let's make a function for this.

#+begin_src emacs-lisp
(defun +org-msg-goto-body (&optional end)
 "Go to either the beginning or the end of the body.
END can be the symbol top, bottom, or nil to toggle."
 (interactive)
 (let ((initial-pos (point)))
 (org-msg-goto-body)
 (when (or (eq end 'top)
 (and (or (memq initial-pos ; Already at bottom
 (list (point) (1- (point))))
 (<= initial-pos ; Above message body
 (save-excursion
 (message-goto-body)
 (point))))
 (not (eq end 'bottom))))
 (message-goto-body)
 (re-search-forward
 (format (regexp-quote org-msg-greeting-fmt) ; %s is unaffected.
 (concat "\\(?: " (regexp-quote (org-msg-get-to-name)) "\\)?"))))))
#+end_src

We can replace the evil binding of =mu4e-compose-goto-bottom= with this function.

#+begin_src emacs-lisp
(map! :map org-msg-edit-mode-map
 :after org-msg
 :n "G" #'+org-msg-goto-body)
#+end_src

It would also be good to call this when replying to a message. This has to be
implemented as advice as the compose hooks are run before ~mu4e~compose-handler~
moves the point with ~message-goto-<location>~.

#+begin_src emacs-lisp
(defun +org-msg-goto-body-when-replying (compose-type &rest _)
 "Call `+org-msg-goto-body' when the current message is a reply."
 (when (and org-msg-edit-mode (eq compose-type 'reply))
 (+org-msg-goto-body)))

(advice-add 'mu4e~compose-handler :after #'+org-msg-goto-body-when-replying)
#+end_src

* Language configuration
** General
*** File Templates

#+call: confpkg()

For some file types, we overwrite defaults in the [[file:./snippets][snippets]] directory, others
need to have a template assigned.

#+begin_src emacs-lisp
(set-file-template! "\\.tex$" :trigger "__" :mode 'latex-mode)
(set-file-template! "\\.org$" :trigger "__" :mode 'org-mode)
(set-file-template! "/LICEN[CS]E$" :trigger '+file-templates/insert-license)
#+end_src

** Plaintext

#+call: confpkg()

*** Ansi colours

It's nice to see ANSI colour codes displayed, however we don't want to disrupt
ANSI codes in Org src blocks.

#+begin_src emacs-lisp
(after! text-mode
 (add-hook! 'text-mode-hook
 (unless (derived-mode-p 'org-mode)
 ;; Apply ANSI color codes
 (with-silent-modifications
 (ansi-color-apply-on-region (point-min) (point-max) t)))))
#+end_src

*** Margin without line numbers

Display-wise, somehow I don't mind code buffers without any margin on the left,
but it feels a bit off with text buffers once the padding provided by line
numbers is stripped away.

#+begin_src emacs-lisp
(defvar +text-mode-left-margin-width 1
 "The `left-margin-width' to be used in `text-mode' buffers.")

(defun +setup-text-mode-left-margin ()
 (when (and (derived-mode-p 'text-mode)
 (not (and (bound-and-true-p visual-fill-column-mode)
 visual-fill-column-center-text))
 (eq (current-buffer) ; Check current buffer is active.
 (window-buffer (frame-selected-window))))
 (setq left-margin-width (if display-line-numbers
 0 +text-mode-left-margin-width))
 (set-window-buffer (get-buffer-window (current-buffer))
 (current-buffer))))

#+end_src

Now we just need to hook this up to all the events which could either indicate a
change in the conditions or require the setup to be re-applied.

#+begin_src emacs-lisp
(add-hook 'window-configuration-change-hook #'+setup-text-mode-left-margin)
(add-hook 'display-line-numbers-mode-hook #'+setup-text-mode-left-margin)
(add-hook 'text-mode-hook #'+setup-text-mode-left-margin)
#+end_src

There's one little niggle with Doom, as ~doom/toggle-line-numbers~ doesn't run
~display-line-numbers-mode-hook~, so some advice is needed.

#+begin_src emacs-lisp
(defadvice! +doom/toggle-line-numbers--call-hook-a ()
 :after #'doom/toggle-line-numbers
 (run-hooks 'display-line-numbers-mode-hook))
#+end_src

Lastly, I think I actually like this enough that I'll go ahead and remove line
numbers in text mode.

#+begin_src emacs-lisp
(remove-hook 'text-mode-hook #'display-line-numbers-mode)
#+end_src

** Org
:PROPERTIES:
:CUSTOM_ID: org
:END:

:intro:
I really like org mode, I've given some thought to why, and below is the result.

#+attr_latex: :align *{8}{p{0.105\linewidth}} :font \small
#+plot: transpose:yes type:radar min:0 max:4 file:"misc/document-format-comparison.svg"
| Format | Fine-grained control | Initial ease of use | Syntax simplicity | Editor Support | Integrations | Ease-of-referencing | Versatility |
|-------------------+----------------------+---------------------+-------------------+----------------+--------------+---------------------+-------------|
Word	2	4	4	2	3	2	2
LaTeX	4	1	1	3	2	4	3
Org Mode	4	2	3.5	1	4	4	4
Markdown	1	3	3	4	3	3	1
Markdown + Pandoc	2.5	2.5	2.5	3	3	3	2

#+attr_html: :class invertible :alt Radar chart comparing my opinions of document formats.
#+attr_latex: :options inkscapelatex=false
[[file:misc/document-format-comparison.svg]]

Beyond the elegance in the markup language, tremendously rich integrations with
Emacs allow for some fantastic [[https://orgmode.org/features.html][features]], such as what seems to be the best
support for [[https://en.wikipedia.org/wiki/Literate_programming][literate programming]] of any currently available technology.

#+name: Literate programming workflow
#+attr_html: :style line-height:1.13;
#+begin_example
 ╭─╴Code╶─╮ ╭─╴Raw Code╶─▶ Computer
Ideas╺┥ ┝━▶ Org Mode╺┥
 ╰─╴Text╶─╯ ╰─╴Document╶─▶ People
#+end_example

An =.org= file can contain blocks of code (with [[https://en.wikipedia.org/wiki/Noweb][noweb]] templating support), which
can be [[https://orgmode.org/manual/Extracting-Source-Code.html][tangled]] to dedicated source code files, and [[https://orgmode.org/manual/Extracting-Source-Code.html][woven]] into a document
(report, documentation, presentation, etc.) through various (/extensible/) methods.
These source blocks may even create images or other content to be included in
the document, or generate source code.

#+name: Example Org Flowchart
#+attr_html: :style line-height:1.13;
#+begin_example
 ╭───────────────────────────────────▶ .pdf ⎫
 pdfLaTeX ▶╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╮ ⎪
 ╿ ╿ ┊ ⎪
 │ ┊ ┊ ⎪
 .tex ┊ ┊ ⎪
 ╿ ┊ ┊ ⎪
 ╭──┴╌╌╮ ┊ ┊ style.scss ⎬ Weaving
graphc.png ─╮ │ embedded TeX ┊ ╽ ⎪ (Documents)
image.jpeg ─┤ filters ╿ ┊ .css ⎪
 ╎ ╿ ┊ ┊ ▾╎ ⎪
figure.png╶─╧─▶ PROJECT.ORG ▶───╴filters╶───╧──────╪──▶ .html ⎪
 ╿ ╿┊ ║ │ ╰╌╌╌▷╌╌ embedded html ▶╌╌╌╌╯ ⎪
 ├╌╌╌╌╌╌╌▷╌╌╌╯┊ ║ │ ⎪
 result╶╌╌╌╌╌╮ ┊ ║ ├──────╴filters╶────────────────▶ .txt ⎪
 ┊▴ ┊ ┊ ║ │ ⎪
 execution ┊ ┊ ║ ╰──────╴filters╶────────────────▶ .md ⎭
 ┊▴ ┊ ┊ ║
 code blocks◀╯ ┊ ╟─────────────────────────────────▶ .c ⎫
 ╰╌╌╌╌◁╌╌╌╌╌╌╌╯ ╟─────────────────────────────────▶ .sh ⎬ Tangling
 ╟─────────────────────────────────▶ .hs ⎪ (Code)
 ╙─────────────────────────────────▶ .el ⎭
#+end_example
:end:

*** System config
**** Mime types

Org mode isn't recognised as it's own mime type by default, but that can easily
be changed with the following file. For system-wide changes try
~/usr/share/mime/packages/org.xml~.
#+begin_src xml :tangle ~/.local/share/mime/packages/org.xml :mkdirp yes :comments no
<mime-info xmlns='http://www.freedesktop.org/standards/shared-mime-info'>
 <mime-type type="text/org">
 <comment>Emacs Org-mode File</comment>
 <glob pattern="*.org"/>
 <alias type="text/org"/>
 </mime-type>
</mime-info>
#+end_src
What's nice is that Papirus [[https://github.com/PapirusDevelopmentTeam/papirus-icon-theme/commit/a10fb7f2423d5e30b9c4477416ccdc93c4f3849d][now]] has an icon for =text/org=.
One simply needs to refresh their mime database
#+begin_src shell :tangle (if (string= (shell-command-to-string "xdg-mime query default text/org") "") "setup.sh" "no")
update-mime-database ~/.local/share/mime
#+end_src
Then set Emacs as the default editor
#+begin_src shell :tangle (if (string= (shell-command-to-string "xdg-mime query default text/org") "emacs-client.desktop\n") "no" "setup.sh")
xdg-mime default emacs.desktop text/org
#+end_src

Once again, we will add =doctor= checks around this.

#+begin_src emacs-lisp :noweb-ref doctor
(if (string= (shell-command-to-string "xdg-mime query default text/org") "")
 (warn! "text/org is not a registered mime type.")
 (unless (string= (shell-command-to-string "xdg-mime query default text/org") "emacs-client.desktop\n")
 (warn! "Emacs(client) is not set up as the text/org handler.")))
#+end_src

**** Git diffs

Protesilaos wrote a [[https://protesilaos.com/codelog/2021-01-26-git-diff-hunk-elisp-org/][very helpful article]] in which he explains how to change the
git diff chunk heading to something more useful than just the immediate line
above the hunk --- like the parent heading.

This can be achieved by first adding a new diff mode to git in =~/.config/git/attributes=
#+begin_src gitattributes
,*.org diff=org
#+end_src

Then adding a regex for it to =~/.config/git/config=
#+begin_src gitconfig
[diff "org"]
 xfuncname = "^(*+ +.*)$"
#+end_src

*** Packages
**** Org itself

There are actually three possible package statements I may want to use for Org.

If I'm on a machine where I can push changes, I want to be able to develop Org.
I can check this by checking the content of the SSH key =~/.ssh/id_ed25519.pub=.
1. If this key exists and there isn't a repo at
 =$doom-user-dir/lisp/org= with the right remote, we should
 install it as such.
2. If the key exists and repo are both set up, the package should just be ignored.
3. If the key does not exist, the Org's ~HEAD~ should just be used

To account for this situation properly, we need a short script to determine the
correct package statement needed.

#+name: org-pkg-statement
#+begin_src emacs-lisp :noweb-ref none
(or (require 'doom (expand-file-name "lisp/doom.el"
 (or (bound-and-true-p doom-emacs-dir)
 user-emacs-directory)))
 (setq doom-local-dir
 (expand-file-name ".local/" (or (bound-and-true-p doom-emacs-dir)
 user-emacs-directory))))
(let ((dev-key-p (and (file-exists-p "~/.ssh/id_ed25519.pub")
 (= 0 (shell-command "cat ~/.ssh/id_ed25519.pub | grep -q AAAAC3NzaC1lZDI1NTE5AAAAIOZZqcJOLdN+QFHKyW8ST2zz750+8TdvO9IT5geXpQVt"))))
 (recipe-common '(:files (:defaults "etc")
 :build t
 :pre-build
 (with-temp-file "lisp/org-version.el"
 (require 'lisp-mnt)
 (let ((version ;; (lm-version "lisp/org.el")
 (with-temp-buffer
 (insert-file-contents "lisp/org.el")
 (lm-header "version")))
 (git-version (string-trim
 (with-temp-buffer
 (call-process "git" nil t nil
 "rev-parse" "--short" "HEAD")
 (buffer-string)))))
 (insert (format "(defun org-release () \"The release version of Org.\" %S)\n"
 version)
 (format "(defun org-git-version () \"The truncate git commit hash of Org mode.\" %S)\n"
 git-version)
 "(provide 'org-version)\n"))))))
 (with-temp-buffer
 (insert
 (pp `(package! org
 :recipe (,@(if dev-key-p
 (list :host nil :repo "tec@git.savannah.gnu.org:/srv/git/emacs/org-mode.git" :local-repo "lisp/org"
 :fork (list :host nil :repo "git@ssh.tecosaur.net:tec/org-mode.git" :branch "dev" :remote "tecosaur"))
 (list :host nil :repo "https://code.tecosaur.net/mirrors/org-mode.git" :remote "mirror"
 :fork (list :host nil :repo "https://code.tecosaur.net/tec/org-mode.git" :branch "dev" :remote "tecosaur")))
 ,@recipe-common)
 :pin nil)))
 (untabify (point-min) (point-max))
 (buffer-string)))
#+end_src

#+begin_src emacs-lisp :tangle packages.el :noweb no-export
<<org-pkg-statement()>>
(unpin! org) ; there be bugs
(package! org-contrib
 ;; The `sr.ht' repo has been a bit flaky as of late.
 :recipe (:host github :repo "emacsmirror/org-contrib"
 :files ("lisp/*.el"))
 :pin "8d14a600a2069ffc494edfc9a12b8e5fc8840bf1")
#+end_src

**** Visuals
***** Org Modern

#+call: confpkg("!Pkg org-modern")

Fontifying =org-mode= buffers to be as pretty as possible is of paramount importance,
and Minad's lovely =org-modern= goes a long way in this regard.

#+begin_src emacs-lisp :tangle packages.el
(package! org-modern :pin "a58534475b4312b0920aa9d3824272470c8e3500")
#+end_src

...with a touch of configuration...

#+begin_src emacs-lisp
(use-package! org-modern
 :hook (org-mode . org-modern-mode)
 :config
 (setq org-modern-star '("◉" "○" "✸" "✿" "✤" "✜" "◆" "▶")
 org-modern-table-vertical 1
 org-modern-table-horizontal 0.2
 org-modern-list '((43 . "➤")
 (45 . "–")
 (42 . "•"))
 org-modern-todo-faces
 '(("TODO" :inverse-video t :inherit org-todo)
 ("PROJ" :inverse-video t :inherit +org-todo-project)
 ("STRT" :inverse-video t :inherit +org-todo-active)
 ("[-]" :inverse-video t :inherit +org-todo-active)
 ("HOLD" :inverse-video t :inherit +org-todo-onhold)
 ("WAIT" :inverse-video t :inherit +org-todo-onhold)
 ("[?]" :inverse-video t :inherit +org-todo-onhold)
 ("KILL" :inverse-video t :inherit +org-todo-cancel)
 ("NO" :inverse-video t :inherit +org-todo-cancel))
 org-modern-footnote
 (cons nil (cadr org-script-display))
 org-modern-block-fringe nil
 org-modern-block-name
 '((t . t)
 ("src" "»" "«")
 ("example" "»–" "–«")
 ("quote" "❝" "❞")
 ("export" "⏩" "⏪"))
 org-modern-progress nil
 org-modern-priority nil
 org-modern-horizontal-rule (make-string 36 ?─)
 org-modern-keyword
 '((t . t)
 ("title" . "𝙏")
 ("subtitle" . "𝙩")
 ("author" . "𝘼")
 ("email" . "")
 ("date" . "𝘿")
 ("property" . "󰠳")
 ("options" . #("󰘵" 0 1 (display (height 0.75))))
 ("startup" . "⏻")
 ("macro" . "𝓜")
 ("bind" . "󰌷")
 ("bibliography" . "")
 ("print_bibliography" . "󰌱")
 ("cite_export" . "⮭")
 ("print_glossary" . "󰌱ᴬᶻ")
 ("glossary_sources" . "󰒻")
 ("include" . "⇤")
 ("setupfile" . "⇚")
 ("html_head" . "🅷")
 ("html" . "🅗")
 ("latex_class" . "🄻")
 ("latex_class_options" . "🄻󰒓")
 ("latex_header" . "🅻")
 ("latex_header_extra" . "🅻⁺")
 ("latex" . "🅛")
 ("beamer_theme" . "🄱")
 ("beamer_color_theme" . "🄱󰏘")
 ("beamer_font_theme" . "🄱𝐀")
 ("beamer_header" . "🅱")
 ("beamer" . "🅑")
 ("attr_latex" . "🄛")
 ("attr_html" . "🄗")
 ("attr_org" . "⒪")
 ("call" . "󰜎")
 ("name" . "⁍")
 ("header" . "›")
 ("caption" . "☰")
 ("results" . "🠶")))
 (custom-set-faces! '(org-modern-statistics :inherit org-checkbox-statistics-todo)))
#+end_src

Since =org-modern='s tag face supplants Org's tag face, we need to adjust the
spell-check face ignore list

#+begin_src emacs-lisp
(after! spell-fu
 (cl-pushnew 'org-modern-tag (alist-get 'org-mode +spell-excluded-faces-alist)))
#+end_src

***** Emphasis markers

#+call: confpkg("!Pkg org-appear")

While ~org-hide-emphasis-markers~ is very nice, it can sometimes make edits which
occur at the border a bit more fiddley. We can improve this situation without
sacrificing visual amenities with the =org-appear= package.
#+begin_src emacs-lisp :tangle packages.el
(package! org-appear :recipe (:host github :repo "awth13/org-appear")
 :pin "32ee50f8fdfa449bbc235617549c1bccb503cb09")
#+end_src

#+begin_src emacs-lisp
(use-package! org-appear
 :hook (org-mode . org-appear-mode)
 :config
 (setq org-appear-autoemphasis t
 org-appear-autosubmarkers t
 org-appear-autolinks nil)
 ;; for proper first-time setup, `org-appear--set-elements'
 ;; needs to be run after other hooks have acted.
 (run-at-time nil nil #'org-appear--set-elements))
#+end_src

***** Heading structure

#+call: confpkg("!Pkg org-ol-tree")

Speaking of headlines, a nice package for viewing and managing the heading
structure has come to my attention.
#+begin_src emacs-lisp :tangle packages.el
(package! org-ol-tree :recipe (:host github :repo "Townk/org-ol-tree")
 :pin "207c748aa5fea8626be619e8c55bdb1c16118c25")
#+end_src

We'll bind this to =O= on the org-mode localleader, and manually apply a [[https://github.com/Townk/org-ol-tree/pull/13][PR
recognising the pgtk window system]].

#+begin_src emacs-lisp
(use-package! org-ol-tree
 :commands org-ol-tree
 :config
 (setq org-ol-tree-ui-icon-set
 (if (and (display-graphic-p)
 (fboundp 'all-the-icons-material))
 'all-the-icons
 'unicode))
 (org-ol-tree-ui--update-icon-set))

(map! :map org-mode-map
 :after org
 :localleader
 :desc "Outline" "O" #'org-ol-tree)
#+end_src

**** Extra functionality
***** Julia support

#+call: confpkg("!Pkg ob-julia")

=ob-julia= is currently a bit borked, but there's an effort to improve this.
#+begin_src emacs-lisp :tangle packages.el
(package! ob-julia :recipe (:local-repo "lisp/ob-julia" :files ("*.el" "julia")))
#+end_src

#+begin_src emacs-lisp
(use-package! ob-julia
 :commands org-babel-execute:julia
 :config
 (setq org-babel-julia-command-arguments
 `("--sysimage"
 ,(when-let ((img "~/.local/lib/julia.so")
 (exists? (file-exists-p img)))
 (expand-file-name img))
 "--threads"
 ,(number-to-string (- (doom-system-cpus) 2))
 "--banner=no")))
#+end_src

***** HTTP requests

#+call: confpkg("!Pkg ob-http")

I like the idea of being able to make HTTP requests with Babel.
#+begin_src emacs-lisp :tangle packages.el
(package! ob-http :pin "b1428ea2a63bcb510e7382a1bf5fe82b19c104a7")
#+end_src

#+begin_src emacs-lisp
(use-package! ob-http
 :commands org-babel-execute:http)
#+end_src

***** RSS feeds

I need this for blog publishing. It used to be bundled with Org, but now it's
pretty much abandoned.

#+begin_src emacs-lisp :tangle packages.el
(package! ox-rss :pin "d2964eca3614f84db85b498d065862a1e341868d")
#+end_src

***** Transclusion

#+call: confpkg("!Pkg org-transclusion")

There's a really cool package in development to /transclude/ Org document content.
#+begin_src emacs-lisp :tangle packages.el
(package! org-transclusion :recipe (:host github :repo "nobiot/org-transclusion")
 :pin "e9728b0b14b5c2e5d3b68af98f772ed99e136b48")
#+end_src

#+begin_src emacs-lisp
(use-package! org-transclusion
 :commands org-transclusion-mode
 :init
 (map! :after org :map org-mode-map
 "<f12>" #'org-transclusion-mode))
#+end_src

***** Heading graph

#+call: confpkg("!Pkg org-graph-view")

Came across this and ... it's cool
#+begin_src emacs-lisp :tangle packages.el
(package! org-graph-view :recipe (:host github :repo "alphapapa/org-graph-view")
 :pin "172157aee1131ea59f0bd724a10abfdbccbd860e")
#+end_src

***** Cooking recipes

#+call: confpkg("!Pkg org-chef")

I *need* this in my life. It take a URL to a recipe from a common site, and
inserts an org-ified version at point. Isn't that just great.
#+begin_src emacs-lisp :tangle packages.el
(package! org-chef :pin "1710b54441ed744dcdfb125d08fb88cfaf452f10")
#+end_src

Loading after org seems a bit premature. Let's just load it when we try to use
it, either by command or in a capture template.
#+begin_src emacs-lisp
(use-package! org-chef
 :commands (org-chef-insert-recipe org-chef-get-recipe-from-url))
#+end_src

***** Importing with Pandoc

#+call: confpkg("!Pkg org-pandoc-import")

Sometimes I'm given non-org files, that's very sad. Luckily Pandoc offers a way
to make that right again, and this package makes that even easier to do.
#+begin_src emacs-lisp :tangle packages.el
(package! org-pandoc-import :recipe
 (:local-repo "lisp/org-pandoc-import" :files ("*.el" "filters" "preprocessors")))
#+end_src

#+begin_src emacs-lisp
(use-package! org-pandoc-import
 :after org)
#+end_src

***** Glossaries and more

#+call: confpkg("!Pkg org-glossary")

For glossary-type entries, there's a nice package for this I'm developing.

#+begin_src emacs-lisp :tangle packages.el
(package! org-glossary :recipe (:local-repo "lisp/org-glossary"))
#+end_src

Other than hooking this to =org-mode=, we also want to set a collection root and
improve the LaTeX usage references with =cleveref='s ~\labelcpageref~ command.

#+begin_src emacs-lisp
(use-package! org-glossary
 :hook (org-mode . org-glossary-mode)
 :config
 (setq org-glossary-collection-root "~/.config/doom/misc/glossaries/")
 (defun +org-glossary--latex-cdef (backend info term-entry form &optional ref-index plural-p capitalized-p extra-parameters)
 (org-glossary--export-template
 (if (plist-get term-entry :uses)
 "*%d*\\emsp{}%v\\ensp{}@@latex:\\labelcpageref{@@%b@@latex:}@@\n"
 "*%d*\\emsp{}%v\n")
 backend info term-entry ref-index
 plural-p capitalized-p extra-parameters))
 (org-glossary-set-export-spec
 'latex t
 :backref "gls-%K-use-%r"
 :backref-seperator ","
 :definition-structure #'+org-glossary--latex-cdef))
#+end_src

***** Document comparison

#+call: confpkg("!Pkg orgdiff")

It's quite nice to compare Org files, and the richest way to compare content is
probably =latexdiff=. There are a few annoying steps involved here, and so I've
written a package to streamline the process.

#+begin_src emacs-lisp :tangle packages.el
(package! orgdiff :recipe (:local-repo "lisp/orgdiff"))
#+end_src

The only little annoyance is the fact that =latexdiff= uses ~#FF0000~ and ~#0000FF~ as
the red/blue change indication colours. We can make this a bit nicer by
post-processing the =latexdiff= result.

#+begin_src emacs-lisp
(use-package! orgdiff
 :defer t
 :config
 (defun +orgdiff-nicer-change-colours ()
 (goto-char (point-min))
 ;; Set red/blue based on whether chameleon is being used
 (if (search-forward "%% make document follow Emacs theme" nil t)
 (setq red (substring (doom-blend 'red 'fg 0.8) 1)
 blue (substring (doom-blend 'blue 'teal 0.6) 1))
 (setq red "c82829"
 blue "00618a"))
 (when (and (search-forward "%DIF PREAMBLE EXTENSION ADDED BY LATEXDIFF" nil t)
 (search-forward "\\RequirePackage{color}" nil t))
 (when (re-search-forward "definecolor{red}{rgb}{1,0,0}" (cdr (bounds-of-thing-at-point 'line)) t)
 (replace-match (format "definecolor{red}{HTML}{%s}" red)))
 (when (re-search-forward "definecolor{blue}{rgb}{0,0,1}" (cdr (bounds-of-thing-at-point 'line)) t)
 (replace-match (format "definecolor{blue}{HTML}{%s}" blue)))))
 (setq orgdiff-latexdiff-args '("--append-safecmd=acr,acrs"))
 (add-to-list 'orgdiff-latexdiff-postprocess-hooks #'+orgdiff-nicer-change-colours))
#+end_src

***** Org music

#+call: confpkg("!Pkg org-music")

It's nice to be able to link to music
#+begin_src emacs-lisp :tangle packages.el
(package! org-music :recipe (:local-repo "lisp/org-music"))
#+end_src

#+begin_src emacs-lisp
(use-package! org-music
 :after org
 :config
 (setq org-music-mpris-player "Lollypop"
 org-music-track-search-method 'beets
 org-music-beets-db "~/Music/library.db"))
#+end_src

*** Behaviour

#+call: confpkg("Org Behaviour", after="org")

[[xkcd:1319]]

**** Tweaking defaults

#+begin_src emacs-lisp
(setq org-directory (expand-file-name "org" (xdg-data-home)) ; Let's put files here.
 org-agenda-files (list org-directory) ; Seems like the obvious place.
 org-use-property-inheritance t ; It's convenient to have properties inherited.
 org-log-done 'time ; Having the time a item is done sounds convenient.
 org-list-allow-alphabetical t ; Have a. A. a) A) list bullets.
 org-catch-invisible-edits 'smart ; Try not to accidently do weird stuff in invisible regions.
 org-export-with-sub-superscripts '{} ; Don't treat lone _ / ^ as sub/superscripts, require _{} / ^{}.
 org-export-allow-bind-keywords t ; Bind keywords can be handy
 org-image-actual-width '(0.9)) ; Make the in-buffer display closer to the exported result..
#+end_src
I also like the src_elisp{:comments} header-argument, so let's make that a
default.
#+begin_src emacs-lisp
(setq org-babel-default-header-args
 '((:session . "none")
 (:results . "replace")
 (:exports . "code")
 (:cache . "no")
 (:noweb . "no")
 (:hlines . "no")
 (:tangle . "no")
 (:comments . "link")))
#+end_src

By default, ~visual-line-mode~ is turned =on=, and ~auto-fill-mode~ =off= by a hook.
However this messes with tables in Org-mode, and other plaintext files (e.g.
markdown, \LaTeX) so I'll turn it off for this, and manually enable it for more
specific modes as desired.
#+begin_src emacs-lisp
(remove-hook 'text-mode-hook #'visual-line-mode)
(add-hook 'text-mode-hook #'auto-fill-mode)
#+end_src

There also seem to be a few keybindings which use =hjkl=, but miss arrow key equivalents.
#+begin_src emacs-lisp
(map! :map evil-org-mode-map
 :after evil-org
 :n "g <up>" #'org-backward-heading-same-level
 :n "g <down>" #'org-forward-heading-same-level
 :n "g <left>" #'org-up-element
 :n "g <right>" #'org-down-element)
#+end_src

**** Extra functionality

***** The utility of zero-width spaces

Occasionally in Org you run into annoyances where you want to have two seperate
blocks right together without a space. For example, to *emp​h*​asise part of a word,
or put a currency symbol immediately before an inline source block.
There is a solution to this, it just sounds slightly hacky --- zero width spaces.
Because this is Emacs, we can make this feel much less hacky by making a minor
addition to the Org key map 🙂.

#+begin_src emacs-lisp
(map! :map org-mode-map
 :nie "M-SPC M-SPC" (cmd! (insert "\u200B")))
#+end_src

We then want to stop the space from being included in exports, which is done [[*Strip zero width spaces][here]].

***** List bullet sequence

I think it makes sense to have list bullets change with depth
#+begin_src emacs-lisp
(setq org-list-demote-modify-bullet '(("+" . "-") ("-" . "+") ("*" . "+") ("1." . "a.")))
#+end_src

***** Easier file links

While ~org-insert-link~ is all very well and good, a large portion of the time I
want to insert a file, and so it would be good to have a way to skip straight to
that and avoid the description prompt. Looking at ~org-link-parameters~, we can
see that the ="file"= link type uses the completion function
~org-link-complete-file~, so let's use that to make a little file-link inserting
function.

#+begin_src emacs-lisp
(defun +org-insert-file-link ()
 "Insert a file link. At the prompt, enter the filename."
 (interactive)
 (org-insert-link nil (org-link-complete-file)))
#+end_src

Now we'll just add that under the Org mode link localleader for convenience.

#+begin_src emacs-lisp
(map! :after org
 :map org-mode-map
 :localleader
 "l f" #'+org-insert-file-link)
#+end_src

***** Citation

#+call: confpkg("Org Citation")

#+begin_quote
Extending the =:tools biblio= module.
#+end_quote

References in Org are fairly easy now, thanks to =org-cite=. The =:tools biblio=
module gives a fairly decent basic setup, but it would be nice to take it a bit
further. This mostly consists of tweaking settings, but there is one extra
package I'll grab for prettier in-buffer citations.

#+begin_src emacs-lisp :tangle packages.el
(package! org-cite-csl-activate :recipe (:host github :repo "andras-simonyi/org-cite-csl-activate") :pin "ccadbdcdfd1b4cb0cea132324cc1912e0f1900b6")
#+end_src

In particular, by setting ~org-cite-csl-activate-use-document-style~, we can have
the in-buffer displayed citations be the same as the exported form. Isn't that lovely!

Unfortunately, there's currently a potential for undesirable buffer
modifications, so we'll put all the activation code behind a function we can
call when we want it.

#+begin_src emacs-lisp
(use-package! oc-csl-activate
 :after oc
 :config
 (setq org-cite-csl-activate-use-document-style t)
 (defun +org-cite-csl-activate/enable ()
 (interactive)
 (setq org-cite-activate-processor 'csl-activate)
 (add-hook! 'org-mode-hook '((lambda () (cursor-sensor-mode 1)) org-cite-csl-activate-render-all))
 (defadvice! +org-cite-csl-activate-render-all-silent (orig-fn)
 :around #'org-cite-csl-activate-render-all
 (with-silent-modifications (funcall orig-fn)))
 (when (eq major-mode 'org-mode)
 (with-silent-modifications
 (save-excursion
 (goto-char (point-min))
 (org-cite-activate (point-max)))
 (org-cite-csl-activate-render-all)))
 (fmakunbound #'+org-cite-csl-activate/enable)))
#+end_src

Now that =oc-csl-activate= is set up, let's go ahead and customise some of the
packages already loaded. For starters, we can make use of the my Zotero files
with =citar=, and make the symbols a bit prettier.

#+begin_src emacs-lisp
(after! citar
 (setq org-cite-global-bibliography
 (let ((libfile-search-names '("library.json" "Library.json" "library.bib" "Library.bib"))
 (libfile-dir "~/Zotero")
 paths)
 (dolist (libfile libfile-search-names)
 (when (and (not paths)
 (file-exists-p (expand-file-name libfile libfile-dir)))
 (setq paths (list (expand-file-name libfile libfile-dir)))))
 paths)
 citar-bibliography org-cite-global-bibliography
 citar-symbols
 `((file ,(nerd-icons-faicon "nf-fa-file_o" :face 'nerd-icons-green :v-adjust -0.1) . " ")
 (note ,(nerd-icons-octicon "nf-oct-note" :face 'nerd-icons-blue :v-adjust -0.3) . " ")
 (link ,(nerd-icons-octicon "nf-oct-link" :face 'nerd-icons-orange :v-adjust 0.01) . " "))))
#+end_src

We can also make the Zotero CSL styles available to use.

#+begin_src emacs-lisp
(after! oc-csl
 (setq org-cite-csl-styles-dir "~/Zotero/styles"))
#+end_src

Since CSL works so nicely everywhere, we might as well use it as the default
citation export processor for everything.

#+begin_src emacs-lisp
(after! oc
 (setq org-cite-export-processors '((t csl))))
#+end_src

Then, for convenience we'll cap things off by putting the citation command under
Org's localleader.

#+begin_src emacs-lisp
(map! :after org
 :map org-mode-map
 :localleader
 :desc "Insert citation" "@" #'org-cite-insert)
#+end_src

Lastly, just in case I come across any old citations of mine, I think it would
be nice to have a function to convert =org-ref= citations to =org-cite= forms.

#+begin_src emacs-lisp
(after! oc
 (defun org-ref-to-org-cite ()
 "Attempt to convert org-ref citations to org-cite syntax."
 (interactive)
 (let* ((cite-conversions '(("cite" . "//b") ("Cite" . "//bc")
 ("nocite" . "/n")
 ("citep" . "") ("citep*" . "//f")
 ("parencite" . "") ("Parencite" . "//c")
 ("citeauthor" . "/a/f") ("citeauthor*" . "/a")
 ("citeyear" . "/na/b")
 ("Citep" . "//c") ("Citealp" . "//bc")
 ("Citeauthor" . "/a/cf") ("Citeauthor*" . "/a/c")
 ("autocite" . "") ("Autocite" . "//c")
 ("notecite" . "/l/b") ("Notecite" . "/l/bc")
 ("pnotecite" . "/l") ("Pnotecite" . "/l/bc")))
 (cite-regexp (rx (regexp (regexp-opt (mapcar #'car cite-conversions) t))
 ":" (group (+ (not (any "\n 	,.)]}")))))))
 (save-excursion
 (goto-char (point-min))
 (while (re-search-forward cite-regexp nil t)
 (message (format "[cite%s:@%s]"
 (cdr (assoc (match-string 1) cite-conversions))
 (match-string 2)))
 (replace-match (format "[cite%s:@%s]"
 (cdr (assoc (match-string 1) cite-conversions))
 (match-string 2))))))))
#+end_src

***** cdlatex environments

I prefer =auto-activating-snippets= to =cdlatex=, but do like
~org-cdlatex-environment-indent~ (bound to =C-c }=). I almost always want to edit
them afterwards though, so let's make that happen by default.

#+begin_src emacs-lisp
(defadvice! +org-edit-latex-env-after-insert-a (&rest _)
 :after #'org-cdlatex-environment-indent
 (org-edit-latex-environment))
#+end_src

At some point in the future it could be good to investigate [[https://scripter.co/splitting-an-org-block-into-two/][splitting org blocks]].
Likewise [[https://archive.casouri.cat/note/2020/insert-math-symbol-in-emacs/][this]] looks good for symbols.

***** LSP support in ~src~ blocks

Now, by default, LSPs don't really function at all in ~src~ blocks.
#+begin_src emacs-lisp
(cl-defmacro lsp-org-babel-enable (lang)
 "Support LANG in org source code block."
 (setq centaur-lsp 'lsp-mode)
 (cl-check-type lang string)
 (let* ((edit-pre (intern (format "org-babel-edit-prep:%s" lang)))
 (intern-pre (intern (format "lsp--%s" (symbol-name edit-pre)))))
 `(progn
 (defun ,intern-pre (info)
 (let ((file-name (->> info caddr (alist-get :file))))
 (unless file-name
 (setq file-name (make-temp-file "babel-lsp-")))
 (setq buffer-file-name file-name)
 (lsp-deferred)))
 (put ',intern-pre 'function-documentation
 (format "Enable lsp-mode in the buffer of org source block (%s)."
 (upcase ,lang)))
 (if (fboundp ',edit-pre)
 (advice-add ',edit-pre :after ',intern-pre)
 (progn
 (defun ,edit-pre (info)
 (,intern-pre info))
 (put ',edit-pre 'function-documentation
 (format "Prepare local buffer environment for org source block (%s)."
 (upcase ,lang))))))))
(defvar org-babel-lang-list
 '("go" "python" "ipython" "bash" "sh"))
(dolist (lang org-babel-lang-list)
 (eval `(lsp-org-babel-enable ,lang)))
#+end_src

***** View exported file

='localeader v= has no pre-existing binding, so I may as well use it with the same
functionality as in LaTeX. Let's try viewing possible output files with this.
#+begin_src emacs-lisp
(map! :map org-mode-map
 :localleader
 :desc "View exported file" "v" #'org-view-output-file)

(defun org-view-output-file (&optional org-file-path)
 "Visit buffer open on the first output file (if any) found, using `org-view-output-file-extensions'"
 (interactive)
 (let* ((org-file-path (or org-file-path (buffer-file-name) ""))
 (dir (file-name-directory org-file-path))
 (basename (file-name-base org-file-path))
 (output-file nil))
 (dolist (ext org-view-output-file-extensions)
 (unless output-file
 (when (file-exists-p
 (concat dir basename "." ext))
 (setq output-file (concat dir basename "." ext)))))
 (if output-file
 (if (member (file-name-extension output-file) org-view-external-file-extensions)
 (browse-url-xdg-open output-file)
 (pop-to-buffer (or (find-buffer-visiting output-file)
 (find-file-noselect output-file))))
 (message "No exported file found"))))

(defvar org-view-output-file-extensions '("pdf" "md" "rst" "txt" "tex" "html")
 "Search for output files with these extensions, in order, viewing the first that matches")
(defvar org-view-external-file-extensions '("html")
 "File formats that should be opened externally.")
#+end_src

**** Super agenda

#+call: confpkg("!Pkg Org Super Agenda")

The agenda is nice, but a souped up version is nicer.
#+begin_src emacs-lisp :tangle packages.el
(package! org-super-agenda :pin "fb20ad9c8a9705aa05d40751682beae2d094e0fe")
#+end_src

#+begin_src emacs-lisp
(use-package! org-super-agenda
 :commands org-super-agenda-mode)
#+end_src

#+begin_src emacs-lisp
(after! org-agenda
 (let ((inhibit-message t))
 (org-super-agenda-mode)))

(setq org-agenda-skip-scheduled-if-done t
 org-agenda-skip-deadline-if-done t
 org-agenda-include-deadlines t
 org-agenda-block-separator nil
 org-agenda-tags-column 100 ;; from testing this seems to be a good value
 org-agenda-compact-blocks t)

(setq org-agenda-custom-commands
 '(("o" "Overview"
 ((agenda "" ((org-agenda-span 'day)
 (org-super-agenda-groups
 '((:name "Today"
 :time-grid t
 :date today
 :todo "TODAY"
 :scheduled today
 :order 1)))))
 (alltodo "" ((org-agenda-overriding-header "")
 (org-super-agenda-groups
 '((:name "Next to do"
 :todo "NEXT"
 :order 1)
 (:name "Important"
 :tag "Important"
 :priority "A"
 :order 6)
 (:name "Due Today"
 :deadline today
 :order 2)
 (:name "Due Soon"
 :deadline future
 :order 8)
 (:name "Overdue"
 :deadline past
 :face error
 :order 7)
 (:name "Assignments"
 :tag "Assignment"
 :order 10)
 (:name "Issues"
 :tag "Issue"
 :order 12)
 (:name "Emacs"
 :tag "Emacs"
 :order 13)
 (:name "Projects"
 :tag "Project"
 :order 14)
 (:name "Research"
 :tag "Research"
 :order 15)
 (:name "To read"
 :tag "Read"
 :order 30)
 (:name "Waiting"
 :todo "WAITING"
 :order 20)
 (:name "University"
 :tag "uni"
 :order 32)
 (:name "Trivial"
 :priority<= "E"
 :tag ("Trivial" "Unimportant")
 :todo ("SOMEDAY")
 :order 90)
 (:discard (:tag ("Chore" "Routine" "Daily")))))))))))
#+end_src

**** Capture

Let's setup some org-capture templates, and make them visually nice to access.

#+attr_html: :class invertible :alt My org-capture dialouge.
[[https://code.tecosaur.net/tec/emacs-config/media/branch/master/misc/screenshots/org-capture.png]]

~doct~ (Declarative Org Capture Templates) seems to be a nicer way to
set up org-capture.
#+begin_src emacs-lisp :noweb-ref none :tangle packages.el
(package! doct
 :recipe (:host github :repo "progfolio/doct")
 :pin "5cab660dab653ad88c07b0493360252f6ed1d898")
#+end_src

#+begin_src emacs-lisp
(use-package! doct
 :commands doct)
#+end_src

#+begin_src emacs-lisp :noweb no-export
(after! org-capture
 <<prettify-capture>>

 (defun +doct-icon-declaration-to-icon (declaration)
 "Convert :icon declaration to icon"
 (let ((name (pop declaration))
 (set (intern (concat "nerd-icons-" (plist-get declaration :set))))
 (face (intern (concat "nerd-icons-" (plist-get declaration :color))))
 (v-adjust (or (plist-get declaration :v-adjust) 0.01)))
 (apply set `(,name :face ,face :v-adjust ,v-adjust))))

 (defun +doct-iconify-capture-templates (groups)
 "Add declaration's :icon to each template group in GROUPS."
 (let ((templates (doct-flatten-lists-in groups)))
 (setq doct-templates (mapcar (lambda (template)
 (when-let* ((props (nthcdr (if (= (length template) 4) 2 5) template))
 (spec (plist-get (plist-get props :doct) :icon)))
 (setf (nth 1 template) (concat (+doct-icon-declaration-to-icon spec)
 "\t"
 (nth 1 template))))
 template)
 templates))))

 (setq doct-after-conversion-functions '(+doct-iconify-capture-templates))

 (defvar +org-capture-recipies "~/Desktop/TEC/Organisation/recipies.org")

 (defun set-org-capture-templates ()
 (setq org-capture-templates
 (doct `(("Personal todo" :keys "t"
 :icon ("nf-oct-checklist" :set "octicon" :color "green")
 :file +org-capture-todo-file
 :prepend t
 :headline "Inbox"
 :type entry
 :template ("* TODO %?"
 "%i %a"))
 ("Personal note" :keys "n"
 :icon ("nf-fa-sticky_note_o" :set "faicon" :color "green")
 :file +org-capture-todo-file
 :prepend t
 :headline "Inbox"
 :type entry
 :template ("* %?"
 "%i %a"))
 ("Email" :keys "e"
 :icon ("nf-fa-envelope" :set "faicon" :color "blue")
 :file +org-capture-todo-file
 :prepend t
 :headline "Inbox"
 :type entry
 :template ("* TODO %^{type|reply to|contact} %\\3 %? :email:"
 "Send an email %^{urgancy|soon|ASAP|anon|at some point|eventually} to %^{recipiant}"
 "about %^{topic}"
 "%U %i %a"))
 ("Interesting" :keys "i"
 :icon ("nf-fa-eye" :set "faicon" :color "lcyan")
 :file +org-capture-todo-file
 :prepend t
 :headline "Interesting"
 :type entry
 :template ("* [] %{desc}%? :%{i-type}:"
 "%i %a")
 :children (("Webpage" :keys "w"
 :icon ("nf-fa-globe" :set "faicon" :color "green")
 :desc "%(org-cliplink-capture) "
 :i-type "read:web")
 ("Article" :keys "a"
 :icon ("nf-fa-file_text_o" :set "faicon" :color "yellow")
 :desc ""
 :i-type "read:reaserch")
 ("\tRecipie" :keys "r"
 :icon ("nf-fa-spoon" :set "faicon" :color "dorange")
 :file +org-capture-recipies
 :headline "Unsorted"
 :template "%(org-chef-get-recipe-from-url)")
 ("Information" :keys "i"
 :icon ("nf-fa-info_circle" :set "faicon" :color "blue")
 :desc ""
 :i-type "read:info")
 ("Idea" :keys "I"
 :icon ("nf-md-chart_bubble" :set "mdicon" :color "silver")
 :desc ""
 :i-type "idea")))
 ("Tasks" :keys "k"
 :icon ("nf-oct-inbox" :set "octicon" :color "yellow")
 :file +org-capture-todo-file
 :prepend t
 :headline "Tasks"
 :type entry
 :template ("* TODO %? %^G%{extra}"
 "%i %a")
 :children (("General Task" :keys "k"
 :icon ("nf-oct-inbox" :set "octicon" :color "yellow")
 :extra "")
 ("Task with deadline" :keys "d"
 :icon ("nf-md-timer" :set "mdicon" :color "orange" :v-adjust -0.1)
 :extra "\nDEADLINE: %^{Deadline:}t")
 ("Scheduled Task" :keys "s"
 :icon ("nf-oct-calendar" :set "octicon" :color "orange")
 :extra "\nSCHEDULED: %^{Start time:}t")))
 ("Project" :keys "p"
 :icon ("nf-oct-repo" :set "octicon" :color "silver")
 :prepend t
 :type entry
 :headline "Inbox"
 :template ("* %{time-or-todo} %?"
 "%i"
 "%a")
 :file ""
 :custom (:time-or-todo "")
 :children (("Project-local todo" :keys "t"
 :icon ("nf-oct-checklist" :set "octicon" :color "green")
 :time-or-todo "TODO"
 :file +org-capture-project-todo-file)
 ("Project-local note" :keys "n"
 :icon ("nf-fa-sticky_note" :set "faicon" :color "yellow")
 :time-or-todo "%U"
 :file +org-capture-project-notes-file)
 ("Project-local changelog" :keys "c"
 :icon ("nf-fa-list" :set "faicon" :color "blue")
 :time-or-todo "%U"
 :heading "Unreleased"
 :file +org-capture-project-changelog-file)))
 ("\tCentralised project templates"
 :keys "o"
 :type entry
 :prepend t
 :template ("* %{time-or-todo} %?"
 "%i"
 "%a")
 :children (("Project todo"
 :keys "t"
 :prepend nil
 :time-or-todo "TODO"
 :heading "Tasks"
 :file +org-capture-central-project-todo-file)
 ("Project note"
 :keys "n"
 :time-or-todo "%U"
 :heading "Notes"
 :file +org-capture-central-project-notes-file)
 ("Project changelog"
 :keys "c"
 :time-or-todo "%U"
 :heading "Unreleased"
 :file +org-capture-central-project-changelog-file)))))))

 (set-org-capture-templates)
 (unless (display-graphic-p)
 (add-hook 'server-after-make-frame-hook
 (defun org-capture-reinitialise-hook ()
 (when (display-graphic-p)
 (set-org-capture-templates)
 (remove-hook 'server-after-make-frame-hook
 #'org-capture-reinitialise-hook))))))
#+end_src
It would also be nice to improve how the capture dialogue looks
#+name: prettify-capture
#+begin_src emacs-lisp :noweb-ref none
(defun org-capture-select-template-prettier (&optional keys)
 "Select a capture template, in a prettier way than default
Lisp programs can force the template by setting KEYS to a string."
 (let ((org-capture-templates
 (or (org-contextualize-keys
 (org-capture-upgrade-templates org-capture-templates)
 org-capture-templates-contexts)
 '(("t" "Task" entry (file+headline "" "Tasks")
 "* TODO %?\n %u\n %a")))))
 (if keys
 (or (assoc keys org-capture-templates)
 (error "No capture template referred to by \"%s\" keys" keys))
 (org-mks org-capture-templates
 "Select a capture template\n━━━━━━━━━━━━━━━━━━━━━━━━━"
 "Template key: "
 `(("q" ,(concat (nerd-icons-octicon "nf-oct-stop" :face 'nerd-icons-red :v-adjust 0.01) "\tAbort")))))))
(advice-add 'org-capture-select-template :override #'org-capture-select-template-prettier)

(defun org-mks-pretty (table title &optional prompt specials)
 "Select a member of an alist with multiple keys. Prettified.

TABLE is the alist which should contain entries where the car is a string.
There should be two types of entries.

1. prefix descriptions like (\"a\" \"Description\")
 This indicates that `a' is a prefix key for multi-letter selection, and
 that there are entries following with keys like \"ab\", \"ax\"…

2. Select-able members must have more than two elements, with the first
 being the string of keys that lead to selecting it, and the second a
 short description string of the item.

The command will then make a temporary buffer listing all entries
that can be selected with a single key, and all the single key
prefixes. When you press the key for a single-letter entry, it is selected.
When you press a prefix key, the commands (and maybe further prefixes)
under this key will be shown and offered for selection.

TITLE will be placed over the selection in the temporary buffer,
PROMPT will be used when prompting for a key. SPECIALS is an
alist with (\"key\" \"description\") entries. When one of these
is selected, only the bare key is returned."
 (save-window-excursion
 (let ((inhibit-quit t)
 (buffer (org-switch-to-buffer-other-window "*Org Select*"))
 (prompt (or prompt "Select: "))
 case-fold-search
 current)
 (unwind-protect
 (catch 'exit
 (while t
 (setq-local evil-normal-state-cursor (list nil))
 (erase-buffer)
 (insert title "\n\n")
 (let ((des-keys nil)
 (allowed-keys '("\C-g"))
 (tab-alternatives '("\s" "\t" "\r"))
 (cursor-type nil))
 ;; Populate allowed keys and descriptions keys
 ;; available with CURRENT selector.
 (let ((re (format "\\`%s\\(.\\)\\'"
 (if current (regexp-quote current) "")))
 (prefix (if current (concat current " ") "")))
 (dolist (entry table)
 (pcase entry
 ;; Description.
 (`(,(and key (pred (string-match re))) ,desc)
 (let ((k (match-string 1 key)))
 (push k des-keys)
 ;; Keys ending in tab, space or RET are equivalent.
 (if (member k tab-alternatives)
 (push "\t" allowed-keys)
 (push k allowed-keys))
 (insert (propertize prefix 'face 'font-lock-comment-face) (propertize k 'face 'bold) (propertize "›" 'face 'font-lock-comment-face) " " desc "…" "\n")))
 ;; Usable entry.
 (`(,(and key (pred (string-match re))) ,desc . ,_)
 (let ((k (match-string 1 key)))
 (insert (propertize prefix 'face 'font-lock-comment-face) (propertize k 'face 'bold) " " desc "\n")
 (push k allowed-keys)))
 (_ nil))))
 ;; Insert special entries, if any.
 (when specials
 (insert "─────────────────────────\n")
 (pcase-dolist (`(,key ,description) specials)
 (insert (format "%s %s\n" (propertize key 'face '(bold nerd-icons-red)) description))
 (push key allowed-keys)))
 ;; Display UI and let user select an entry or
 ;; a sub-level prefix.
 (goto-char (point-min))
 (unless (pos-visible-in-window-p (point-max))
 (org-fit-window-to-buffer))
 (let ((pressed (org--mks-read-key allowed-keys
 prompt
 (not (pos-visible-in-window-p (1- (point-max)))))))
 (setq current (concat current pressed))
 (cond
 ((equal pressed "\C-g") (user-error "Abort"))
 ;; Selection is a prefix: open a new menu.
 ((member pressed des-keys))
 ;; Selection matches an association: return it.
 ((let ((entry (assoc current table)))
 (and entry (throw 'exit entry))))
 ;; Selection matches a special entry: return the
 ;; selection prefix.
 ((assoc current specials) (throw 'exit current))
 (t (error "No entry available")))))))
 (when buffer (kill-buffer buffer))))))
(advice-add 'org-mks :override #'org-mks-pretty)
#+end_src
The [[file:~/.config/emacs/bin/org-capture][org-capture bin]] is rather nice, but I'd be nicer with a smaller frame, and
no modeline.
#+begin_src emacs-lisp
(setf (alist-get 'height +org-capture-frame-parameters) 15)
;; (alist-get 'name +org-capture-frame-parameters) "❖ Capture") ;; ATM hardcoded in other places, so changing breaks stuff
(setq +org-capture-fn
 (lambda ()
 (interactive)
 (set-window-parameter nil 'mode-line-format 'none)
 (org-capture)))
#+end_src

**** Roam

#+call: confpkg("!Pkg org-roam", after="org-roam")

***** Basic settings

I'll just set this to be within =Organisation= folder for now, in the future it
could be worth seeing if I could hook this up to a [[https://nextcloud.com/][Nextcloud]] instance.

#+begin_src emacs-lisp
(setq org-roam-directory "~/Desktop/TEC/Organisation/Roam/")
#+end_src

That said, if the directory doesn't exist we likely don't want to be using roam.
Since we don't want to trigger errors (which will happen as soon as roam tries
to initialise), let's not load roam.

#+begin_src emacs-lisp :noweb-ref none :tangle (if (file-exists-p "~/Desktop/TEC/Organisation/Roam/") "no" "packages.el")
(package! org-roam :disable t)
#+end_src

***** Modeline file name

All those numbers! It's messy. Let's adjust this in a similar way that I have in
the [[*Window title][Window title]].

#+begin_src emacs-lisp
(defadvice! doom-modeline--buffer-file-name-roam-aware-a (orig-fun)
 :around #'doom-modeline-buffer-file-name ; takes no args
 (if (string-match-p (regexp-quote org-roam-directory) (or buffer-file-name ""))
 (replace-regexp-in-string
 "\\(?:^\\|.*/\\)\\([0-9]\\{4\\}\\)\\([0-9]\\{2\\}\\)\\([0-9]\\{2\\}\\)[0-9]*-"
 "🢔(\\1-\\2-\\3) "
 (subst-char-in-string ?_ ? buffer-file-name))
 (funcall orig-fun)))
#+end_src

***** Graph view

#+call: confpkg("!Pkg org-roam-ui")

Org-roam is nice by itself, but there are so /extra/ nice packages which integrate
with it.

#+begin_src emacs-lisp :noweb-ref none :tangle packages.el
(package! org-roam-ui :recipe (:host github :repo "org-roam/org-roam-ui" :files ("*.el" "out")) :pin "5ac74960231db0bf7783c2ba7a19a60f582e91ab")
(package! websocket :pin "40c208eaab99999d7c1e4bea883648da24c03be3") ; dependency of `org-roam-ui'
#+end_src

#+begin_src emacs-lisp
(use-package! websocket
 :after org-roam)

(use-package! org-roam-ui
 :after org-roam
 :commands org-roam-ui-open
 :hook (org-roam . org-roam-ui-mode)
 :config
 (require 'org-roam) ; in case autoloaded
 (defun org-roam-ui-open ()
 "Ensure the server is active, then open the roam graph."
 (interactive)
 (unless org-roam-ui-mode (org-roam-ui-mode 1))
 (browse-url-xdg-open (format "http://localhost:%d" org-roam-ui-port))))
#+end_src

**** Nicer ~org-return~

Once again, from [[https://github.com/alphapapa/unpackaged.el#org-return-dwim][unpackaged.el]]
#+begin_src emacs-lisp
(defun unpackaged/org-element-descendant-of (type element)
 "Return non-nil if ELEMENT is a descendant of TYPE.
TYPE should be an element type, like `item' or `paragraph'.
ELEMENT should be a list like that returned by `org-element-context'."
 ;; MAYBE: Use `org-element-lineage'.
 (when-let* ((parent (org-element-property :parent element)))
 (or (eq type (car parent))
 (unpackaged/org-element-descendant-of type parent))))

;;;###autoload
(defun unpackaged/org-return-dwim (&optional default)
 "A helpful replacement for `org-return-indent'. With prefix, call `org-return-indent'.

On headings, move point to position after entry content. In
lists, insert a new item or end the list, with checkbox if
appropriate. In tables, insert a new row or end the table."
 ;; Inspired by John Kitchin: http://kitchingroup.cheme.cmu.edu/blog/2017/04/09/A-better-return-in-org-mode/
 (interactive "P")
 (if default
 (org-return t)
 (cond
 ;; Act depending on context around point.

 ;; NOTE: I prefer RET to not follow links, but by uncommenting this block, links will be
 ;; followed.

 ;; ((eq 'link (car (org-element-context)))
 ;; ;; Link: Open it.
 ;; (org-open-at-point-global))

 ((org-at-heading-p)
 ;; Heading: Move to position after entry content.
 ;; NOTE: This is probably the most interesting feature of this function.
 (let ((heading-start (org-entry-beginning-position)))
 (goto-char (org-entry-end-position))
 (cond ((and (org-at-heading-p)
 (= heading-start (org-entry-beginning-position)))
 ;; Entry ends on its heading; add newline after
 (end-of-line)
 (insert "\n\n"))
 (t
 ;; Entry ends after its heading; back up
 (forward-line -1)
 (end-of-line)
 (when (org-at-heading-p)
 ;; At the same heading
 (forward-line)
 (insert "\n")
 (forward-line -1))
 (while (not (looking-back "\\(?:[[:blank:]]?\n\\)\\{3\\}" nil))
 (insert "\n"))
 (forward-line -1)))))

 ((org-at-item-checkbox-p)
 ;; Checkbox: Insert new item with checkbox.
 (org-insert-todo-heading nil))

 ((org-in-item-p)
 ;; Plain list. Yes, this gets a little complicated...
 (let ((context (org-element-context)))
 (if (or (eq 'plain-list (car context)) ; First item in list
 (and (eq 'item (car context))
 (not (eq (org-element-property :contents-begin context)
 (org-element-property :contents-end context))))
 (unpackaged/org-element-descendant-of 'item context)) ; Element in list item, e.g. a link
 ;; Non-empty item: Add new item.
 (org-insert-item)
 ;; Empty item: Close the list.
 ;; TODO: Do this with org functions rather than operating on the text. Can't seem to find the right function.
 (delete-region (line-beginning-position) (line-end-position))
 (insert "\n"))))

 ((when (fboundp 'org-inlinetask-in-task-p)
 (org-inlinetask-in-task-p))
 ;; Inline task: Don't insert a new heading.
 (org-return t))

 ((org-at-table-p)
 (cond ((save-excursion
 (beginning-of-line)
 ;; See `org-table-next-field'.
 (cl-loop with end = (line-end-position)
 for cell = (org-element-table-cell-parser)
 always (equal (org-element-property :contents-begin cell)
 (org-element-property :contents-end cell))
 while (re-search-forward "|" end t)))
 ;; Empty row: end the table.
 (delete-region (line-beginning-position) (line-end-position))
 (org-return t))
 (t
 ;; Non-empty row: call `org-return-indent'.
 (org-return t))))
 (t
 ;; All other cases: call `org-return-indent'.
 (org-return t)))))

(map!
 :after evil-org
 :map evil-org-mode-map
 :i [return] #'unpackaged/org-return-dwim)
#+end_src

**** Snippet Helpers

I often want to set =src-block= headers, and it's a pain to
+ type them out
+ remember what the accepted values are
+ oh, and specifying the same language again and again

We can solve this in three steps
+ having one-letter snippets, conditioned on ~(point)~ being within a src header
+ creating a nice prompt showing accepted values and the current default
+ pre-filling the =src-block= language with the last language used

For header args, the keys I'll use are
+ =r= for =:results=
+ =e= for =:exports=
+ =v= for =:eval=
+ =s= for =:session=
+ =d= for =:dir=

#+begin_src emacs-lisp
(defun +yas/org-src-header-p ()
 "Determine whether `point' is within a src-block header or header-args."
 (pcase (org-element-type (org-element-context))
 ('src-block (< (point) ; before code part of the src-block
 (save-excursion (goto-char (org-element-property :begin (org-element-context)))
 (forward-line 1)
 (point))))
 ('inline-src-block (< (point) ; before code part of the inline-src-block
 (save-excursion (goto-char (org-element-property :begin (org-element-context)))
 (search-forward "]{")
 (point))))
 ('keyword (string-match-p "^header-args" (org-element-property :value (org-element-context))))))
#+end_src

Now let's write a function we can reference in yasnippets to produce a nice
interactive way to specify header args.

#+begin_src emacs-lisp
(defun +yas/org-prompt-header-arg (arg question values)
 "Prompt the user to set ARG header property to one of VALUES with QUESTION.
The default value is identified and indicated. If either default is selected,
or no selection is made: nil is returned."
 (let* ((src-block-p (not (looking-back "^#\\+property:[\t]+header-args:.*" (line-beginning-position))))
 (default
 (or
 (cdr (assoc arg
 (if src-block-p
 (nth 2 (org-babel-get-src-block-info t))
 (org-babel-merge-params
 org-babel-default-header-args
 (let ((lang-headers
 (intern (concat "org-babel-default-header-args:"
 (+yas/org-src-lang)))))
 (when (boundp lang-headers) (eval lang-headers t)))))))
 ""))
 default-value)
 (setq values (mapcar
 (lambda (value)
 (if (string-match-p (regexp-quote value) default)
 (setq default-value
 (concat value " "
 (propertize "(default)" 'face 'font-lock-doc-face)))
 value))
 values))
 (let ((selection (consult--read values :prompt question :default default-value)))
 (unless (or (string-match-p "(default)$" selection)
 (string= "" selection))
 selection))))
#+end_src

Finally, we fetch the language information for new source blocks.

Since we're getting this info, we might as well go a step further and also
provide the ability to determine the most popular language in the buffer that
doesn't have any =header-args= set for it (with =#+properties=).

#+begin_src emacs-lisp
(defun +yas/org-src-lang ()
 "Try to find the current language of the src/header at `point'.
Return nil otherwise."
 (let ((context (org-element-context)))
 (pcase (org-element-type context)
 ('src-block (org-element-property :language context))
 ('inline-src-block (org-element-property :language context))
 ('keyword (when (string-match "^header-args:\\([^]+\\)" (org-element-property :value context))
 (match-string 1 (org-element-property :value context)))))))

(defun +yas/org-last-src-lang ()
 "Return the language of the last src-block, if it exists."
 (save-excursion
 (beginning-of-line)
 (when (re-search-backward "^[\t]*#\\+begin_src" nil t)
 (org-element-property :language (org-element-context)))))

(defun +yas/org-most-common-no-property-lang ()
 "Find the lang with the most source blocks that has no global header-args, else nil."
 (let (src-langs header-langs)
 (save-excursion
 (goto-char (point-min))
 (while (re-search-forward "^[\t]*#\\+begin_src" nil t)
 (push (+yas/org-src-lang) src-langs))
 (goto-char (point-min))
 (while (re-search-forward "^[\t]*#\\+property: +header-args" nil t)
 (push (+yas/org-src-lang) header-langs)))

 (setq src-langs
 (mapcar #'car
 ;; sort alist by frequency (desc.)
 (sort
 ;; generate alist with form (value . frequency)
 (cl-loop for (n . m) in (seq-group-by #'identity src-langs)
 collect (cons n (length m)))
 (lambda (a b) (> (cdr a) (cdr b))))))

 (car (cl-set-difference src-langs header-langs :test #'string=))))
#+end_src

**** Translate capital keywords (old) to lower case (new)

Everyone used to use ~#+CAPITAL~ keywords. Then people realised that ~#+lowercase~
is actually both marginally easier and visually nicer, so now the capital
version is just used in the manual.
#+begin_quote
Org is standardized on lower case. Uppercase is used in the manual as a poor
man's bold, and supported for historical reasons. --- [[https://orgmode.org/list/87tuuw3n15.fsf@nicolasgoaziou.fr][Nicolas Goaziou on the Org ML]]
#+end_quote

To avoid sometimes having to choose between the hassle out of updating old
documents and using mixed syntax, I'll whip up a basic transcode-y function.
It likely misses some edge cases, but should mostly work.

#+begin_src emacs-lisp
(defun org-syntax-convert-keyword-case-to-lower ()
 "Convert all #+KEYWORDS to #+keywords."
 (interactive)
 (save-excursion
 (goto-char (point-min))
 (let ((count 0)
 (case-fold-search nil))
 (while (re-search-forward "^[\t]*#\\+[A-Z_]+" nil t)
 (unless (string-match-p "RESULTS" (match-string 0))
 (replace-match (downcase (match-string 0)) t)
 (setq count (1+ count))))
 (message "Replaced %d occurances" count))))
#+end_src

**** Extra links
***** xkcd

Because xkcd is cool, let's make it as easy and fun as possible to insert them.
Saving seconds adds up after all! (but only so much)

[[xkcd:1205]]

#+begin_src emacs-lisp
(org-link-set-parameters "xkcd"
 :image-data-fun #'+org-xkcd-image-fn
 :follow #'+org-xkcd-open-fn
 :export #'+org-xkcd-export
 :complete #'+org-xkcd-complete)

(defun +org-xkcd-open-fn (link)
 (+org-xkcd-image-fn nil link nil))

(defun +org-xkcd-image-fn (protocol link description)
 "Get image data for xkcd num LINK"
 (let* ((xkcd-info (+xkcd-fetch-info (string-to-number link)))
 (img (plist-get xkcd-info :img))
 (alt (plist-get xkcd-info :alt)))
 (message alt)
 (+org-image-file-data-fn protocol (xkcd-download img (string-to-number link)) description)))

(defun +org-xkcd-export (num desc backend _com)
 "Convert xkcd to html/LaTeX form"
 (let* ((xkcd-info (+xkcd-fetch-info (string-to-number num)))
 (img (plist-get xkcd-info :img))
 (alt (plist-get xkcd-info :alt))
 (title (plist-get xkcd-info :title))
 (file (xkcd-download img (string-to-number num))))
 (cond ((org-export-derived-backend-p backend 'html)
 (format "" img (subst-char-in-string ?\" ?“ alt) title))
 ((org-export-derived-backend-p backend 'latex)
 (format "\\begin{figure}[!htb]
 \\centering
 \\includegraphics[scale=0.4]{%s}%s
\\end{figure}" file (if (equal desc (format "xkcd:%s" num)) ""
 (format "\n \\caption*{\\label{xkcd:%s} %s}"
 num
 (or desc
 (format "\\textbf{%s} %s" title alt))))))
 (t (format "https://xkcd.com/%s" num)))))

(defun +org-xkcd-complete (&optional arg)
 "Complete xkcd using `+xkcd-stored-info'"
 (format "xkcd:%d" (+xkcd-select)))
#+end_src

***** YouTube

The ~[[yt:...]]~ links preview nicely, but don't export nicely. Thankfully, we can
fix that.
#+begin_src emacs-lisp
(org-link-set-parameters "yt" :export #'+org-export-yt)
(defun +org-export-yt (path desc backend _com)
 (cond ((org-export-derived-backend-p backend 'html)
 (format "<iframe width='440' \
height='335' \
src='https://www.youtube.com/embed/%s' \
frameborder='0' \
allowfullscreen>%s</iframe>" path (or "" desc)))
 ((org-export-derived-backend-p backend 'latex)
 (format "\\href{https://youtu.be/%s}{%s}" path (or desc "youtube")))
 (t (format "https://youtu.be/%s" path))))
#+end_src

**** Fix problematic hooks

When one of the src_elisp{org-mode-hook} functions errors, it halts the hook
execution. This is problematic, and there are two hooks in particular which
cause issues. Let's make their failure less eventful.

#+begin_src emacs-lisp
(defadvice! shut-up-org-problematic-hooks (orig-fn &rest args)
 :around #'org-fancy-priorities-mode
 (ignore-errors (apply orig-fn args)))
#+end_src

**** Flycheck with org-lint

#+call: confpkg("Flycheck org-lint", after=["org" "flycheck"])

Org may be simple, but that doesn't mean there's no such thing as malformed Org.
Thankfully, malformed Org is a much less annoying affair than malformed zipped
XML (looks at DOCX/ODT...), particularly because there's a rather helpful little
tool called ~org-lint~ bundled with Org that can tell you about your mistakes.

[[xkcd:2109]]

Flycheck doesn't currently support Org, and there's aren't any packages to do so
☹. However, in an issue on ~org-lint~ there is [[https://github.com/flycheck/flycheck/issues/1757#issuecomment-759546940][some code]] which apparently works.
Surely this is what the clipboard was invented for? With that said, let's
regurgitate the code, cross our fingers, and hope it works.

#+begin_src emacs-lisp :noweb no-export :noweb-prefix no
(defconst flycheck-org-lint-form
 (flycheck-prepare-emacs-lisp-form
 (require 'org)
 (require 'org-lint)
 (require 'org-attach)
 (let ((source (car command-line-args-left))
 (process-default-directory default-directory))
 (with-temp-buffer
 (insert-file-contents source 'visit)
 (setq buffer-file-name source)
 (setq default-directory process-default-directory)
 (delay-mode-hooks (org-mode))
 (setq delayed-mode-hooks nil)
 (dolist (err (org-lint))
 (let ((inf (cl-second err)))
 (princ (elt inf 0))
 (princ ": ")
 (princ (elt inf 2))
 (terpri)))))))

(defconst flycheck-org-lint-variables
 '(org-directory
 org-id-locations
 org-id-locations-file
 org-attach-id-dir
 org-attach-use-inheritance
 org-attach-id-to-path-function-list
 org-link-parameters)
 "Variables inherited by the org-lint subprocess.")

(defconst flycheck-org-lint-babel-langs
 '<<org-babel-list-langs()>>
 "Languages that org-babel should know of.")

(defun flycheck-org-lint-variables-form ()
 (require 'org-attach) ; Needed to make variables available
 `(progn
 ,@(seq-map (lambda (opt) `(setq-default ,opt ',(symbol-value opt)))
 (seq-filter #'boundp flycheck-org-lint-variables))))

(defun flycheck-org-lint-babel-langs-form ()
 `(progn
 ,@(mapcar
 (lambda (lang)
 `(defun ,(intern (format "org-babel-execute:%s" lang)) (_body _params)
 "Stub for org-lint."))
 flycheck-org-lint-babel-langs)))

(eval ; To preveant eager macro expansion form loading flycheck early.
 '(flycheck-define-checker org-lint
 "Org buffer checker using `org-lint'."
 :command ("emacs" (eval flycheck-emacs-args)
 "--eval" (eval (concat "(add-to-list 'load-path \""
 (file-name-directory (locate-library "org"))
 "\")"))
 "--eval" (eval (flycheck-sexp-to-string
 (flycheck-org-lint-variables-form)))
 "--eval" (eval (flycheck-sexp-to-string
 (flycheck-org-lint-customisations-form)))
 "--eval" (eval (flycheck-sexp-to-string
 (flycheck-org-lint-babel-langs-form)))
 "--eval" (eval flycheck-org-lint-form)
 "--" source)
 :error-patterns
 ((error line-start line ": " (message) line-end))
 :modes org-mode))
#+end_src

Turns out it almost works. Running =M-x flycheck-verify-setup= after running that
snippet produces the following:
#+begin_example
The following syntax checkers are not registered:
 - org-lint
Try adding these syntax checkers to `flycheck-checkers'.
#+end_example

Well that's very nice and helpful. We'll just do that 🙂.
#+begin_src emacs-lisp
(add-to-list 'flycheck-checkers 'org-lint)
#+end_src

It was missing custom link types, but that's easily fixed just by adding
~org-link-parameters~ to ~flycheck-org-lint-variables~.

One remaining little annoyance is that it reports extra =#+options= that I've
added to Org as errors. So we need to tell ~org-lint~ about them without having it
load my whole config. Code duplication isn't great, but at least this isn't
much.

#+begin_src emacs-lisp
(defun flycheck-org-lint-customisations-form ()
 `(progn
 (require 'ox)
 (cl-pushnew '(:latex-cover-page nil "coverpage" nil)
 (org-export-backend-options (org-export-get-backend 'latex)))
 (cl-pushnew '(:latex-font-set nil "fontset" nil)
 (org-export-backend-options (org-export-get-backend 'latex)))))
#+end_src

A larger annoyance is that org-lint doesn't actually know what languages
org-babel should recognise, with Doom's lazy loading system. Since the list of
languages should really only change when packages are added/removed, we might as
well statically determine a list of all org-babel languages at configuration
generation time.

#+name: org-babel-list-langs
#+begin_src emacs-lisp :noweb-ref none
(let (langs)
 (dolist (dir load-path)
 (when (file-directory-p dir)
 (dolist (file (directory-files dir t "\\.elc?$"))
 (let ((basename (file-name-base file)))
 (when (string-prefix-p "ob-" basename)
 (ignore-errors
 (require (intern basename) file t)))))))
 (mapatoms
 (lambda (symb)
 (when (functionp symb)
 (let ((name (symbol-name symb)))
 (let ((fn (symbol-function symb)))
 (when (symbolp fn)
 (setq symb (symbol-function symb)
 fn (symbol-function symb)))
 (when (and (string-suffix-p "-mode" name)
 (autoloadp fn))
 (ignore-errors (autoload-do-load fn))))
 (cond
 ((string-prefix-p "org-babel-execute:" name)
 (push (replace-regexp-in-string "^org-babel-execute:" "" name)
 langs))
 ((and (string-suffix-p "-mode" name)
 (provided-mode-derived-p
 symb 'prog-mode 'text-mode 'conf-mode))
 (push (replace-regexp-in-string "-mode$" "" name)
 langs))))))
 obarray)
 (dolist (mode-mapping org-src-lang-modes)
 (push (car mode-mapping) langs))
 (mapcar #'intern
 (sort (delete-dups langs) #'string<)))
#+end_src

This increases the tangle time by about 10--20%, but I think it's worth it to be
extra thorough. If this really becomes a pain, we can always think about doing
some sort of cache file based on the load-path/packages installed.

*** Visuals

#+call: confpkg("Org Visuals", after="org")

Here I try to do two things: improve the styling of the various documents, via
font changes etc, and also propagate colours from the current theme.

[[xkcd:1882]]

**** Font Display

Mixed pitch is great. As is ~+org-pretty-mode~, let's use them.
#+begin_src emacs-lisp
(add-hook 'org-mode-hook #'+org-pretty-mode)
#+end_src

Let's make headings a bit bigger
#+begin_src emacs-lisp
(custom-set-faces!
 '(outline-1 :weight extra-bold :height 1.25)
 '(outline-2 :weight bold :height 1.15)
 '(outline-3 :weight bold :height 1.12)
 '(outline-4 :weight semi-bold :height 1.09)
 '(outline-5 :weight semi-bold :height 1.06)
 '(outline-6 :weight semi-bold :height 1.03)
 '(outline-8 :weight semi-bold)
 '(outline-9 :weight semi-bold))
#+end_src

And the same with the title.
#+begin_src emacs-lisp
(custom-set-faces!
 '(org-document-title :height 1.2))
#+end_src

It seems reasonable to have deadlines in the error face when they're passed.
#+begin_src emacs-lisp
(setq org-agenda-deadline-faces
 '((1.001 . error)
 (1.0 . org-warning)
 (0.5 . org-upcoming-deadline)
 (0.0 . org-upcoming-distant-deadline)))
#+end_src

We can then have quote blocks stand out a bit more by making them /italic/.
#+begin_src emacs-lisp
(setq org-fontify-quote-and-verse-blocks t)
#+end_src

Org files can be rather nice to look at, particularly with some of the
customisations here. This comes at a cost however, expensive font-lock.
Feeling like you're typing through molasses in large files is no fun, but there
is a way I can defer font-locking when typing to make the experience more
responsive.
#+begin_src emacs-lisp
(defun locally-defer-font-lock ()
 "Set jit-lock defer and stealth, when buffer is over a certain size."
 (when (> (buffer-size) 50000)
 (setq-local jit-lock-defer-time 0.05
 jit-lock-stealth-time 1)))

(add-hook 'org-mode-hook #'locally-defer-font-lock)
#+end_src
Apparently this causes issues with some people, but I haven't noticed anything
problematic beyond the expected slight delay in some fontification, so until I
do I'll use the above.

**** Reduced text indent

Thanks to the various bits and bobs of setup we have here, the non-heading lines
tend to appear over-indented in ~org-indent-mode~. We can adjust this by modifying
the generated text prefixes.

There's another issue we can have when using mixed-pitch mode, where the line
height is set by the indent prefix displayed with the fixed-pitch font. This
means that on 0-indent lines the line spacing can be different, which doesn't
look very good. We can also solve this problem by modifying the generated text
prefixes to but a fixed-pitch zero width space at the start of 0-indent lines
instead of nothing.

#+begin_src emacs-lisp
(defadvice! +org-indent--reduced-text-prefixes ()
 :after #'org-indent--compute-prefixes
 (setq org-indent--text-line-prefixes
 (make-vector org-indent--deepest-level nil))
 (when (> org-indent-indentation-per-level 0)
 (dotimes (n org-indent--deepest-level)
 (aset org-indent--text-line-prefixes
 n
 (org-add-props
 (concat (make-string (* n (1- org-indent-indentation-per-level))
 ?\s)
 (if (> n 0)
 (char-to-string org-indent-boundary-char)
 "\u200b"))
 nil 'face 'org-indent)))))
#+end_src

**** Fontifying inline src blocks

Org does lovely things with =#+begin_src= blocks, like using font-lock for
language's major-mode behind the scenes and pulling out the lovely colourful
results. By contrast, inline =src_= blocks are somewhat neglected.

I am not the first person to feel this way, thankfully others have [[https://stackoverflow.com/questions/20309842/how-to-syntax-highlight-for-org-mode-inline-source-code-src-lang/28059832][taken to
stackexchange]] to voice their desire for inline src fontification. I was going to
steal their work, but unfortunately they didn't perform /true/ source code
fontification, but simply applied the =org-code= face to the content.

We can do better than that, and we shall! Using ~org-src-font-lock-fontify-block~
we can apply language-appropriate syntax highlighting. Then, continuing on to
={{{results(...)}}}= , it can have the =org-block= face applied to match, and then
the value-surrounding constructs hidden by mimicking the behaviour of
~prettify-symbols-mode~.

#+begin_warning
This currently only highlights a single inline src block per line.
I have no idea why it stops, but I'd rather it didn't.
If you have any idea what's going on or how to fix this /please/ get in touch.
#+end_warning

#+begin_src emacs-lisp
(setq org-inline-src-prettify-results '("⟨" . "⟩"))
#+end_src

Doom theme's extra fontification is more problematic than helpful.
#+begin_src emacs-lisp
(setq doom-themes-org-fontify-special-tags nil)
#+end_src

**** Symbols

It's also nice to change the character used for collapsed items (by default ~…~),
I think ~▾~ is better for indicating 'collapsed section'.
and add an extra ~org-bullet~ to the default list of four.

#+begin_src emacs-lisp
(setq org-ellipsis " ▾ "
 org-hide-leading-stars t
 org-priority-highest ?A
 org-priority-lowest ?E
 org-priority-faces
 '((?A . 'nerd-icons-red)
 (?B . 'nerd-icons-orange)
 (?C . 'nerd-icons-yellow)
 (?D . 'nerd-icons-green)
 (?E . 'nerd-icons-blue)))
#+end_src

It's also nice to make use of the =prettify-symbols-mode= for a few Org syntactic
tokens which we'd like to prettify that aren't covered by =org-modern= or any
other settings.

#+begin_src emacs-lisp
(appendq! +ligatures-extra-symbols
 (list :list_property "∷"
 :em_dash "—"
 :ellipses "…"
 :arrow_right "→"
 :arrow_left "←"
 :arrow_lr "↔"
 :properties "⚙"
 :end "∎"
 :priority_a #("⚑" 0 1 (face nerd-icons-red))
 :priority_b #("⬆" 0 1 (face nerd-icons-orange))
 :priority_c #("■" 0 1 (face nerd-icons-yellow))
 :priority_d #("⬇" 0 1 (face nerd-icons-green))
 :priority_e #("❓" 0 1 (face nerd-icons-blue))))

(defadvice! +org-init-appearance-h--no-ligatures-a ()
 :after #'+org-init-appearance-h
 (set-ligatures! 'org-mode nil)
 (set-ligatures! 'org-mode
 :list_property "::"
 :em_dash "---"
 :ellipsis "..."
 :arrow_right "->"
 :arrow_left "<-"
 :arrow_lr "<->"
 :properties ":PROPERTIES:"
 :end ":END:"
 :priority_a "[#A]"
 :priority_b "[#B]"
 :priority_c "[#C]"
 :priority_d "[#D]"
 :priority_e "[#E]"))
#+end_src

While we're at it we may as well make tags prettier as well 🙂
#+begin_src emacs-lisp :tangle packages.el
;; (package! org-pretty-tags :pin "5c7521651b35ae9a7d3add4a66ae8cc176ae1c76")
#+end_src

#+begin_src emacs-lisp
;; (use-package org-pretty-tags
;; :config
;; (setq org-pretty-tags-surrogate-strings
;; `(("uni" . ,(all-the-icons-faicon "graduation-cap" :face 'all-the-icons-purple :v-adjust 0.01))
;; ("ucc" . ,(all-the-icons-material "computer" :face 'all-the-icons-silver :v-adjust 0.01))
;; ("assignment" . ,(all-the-icons-material "library_books" :face 'all-the-icons-orange :v-adjust 0.01))
;; ("test" . ,(all-the-icons-material "timer" :face 'all-the-icons-red :v-adjust 0.01))
;; ("lecture" . ,(all-the-icons-fileicon "keynote" :face 'all-the-icons-orange :v-adjust 0.01))
;; ("email" . ,(all-the-icons-faicon "envelope" :face 'all-the-icons-blue :v-adjust 0.01))
;; ("read" . ,(all-the-icons-octicon "book" :face 'all-the-icons-lblue :v-adjust 0.01))
;; ("article" . ,(all-the-icons-octicon "file-text" :face 'all-the-icons-yellow :v-adjust 0.01))
;; ("web" . ,(all-the-icons-faicon "globe" :face 'all-the-icons-green :v-adjust 0.01))
;; ("info" . ,(all-the-icons-faicon "info-circle" :face 'all-the-icons-blue :v-adjust 0.01))
;; ("issue" . ,(all-the-icons-faicon "bug" :face 'all-the-icons-red :v-adjust 0.01))
;; ("someday" . ,(all-the-icons-faicon "calendar-o" :face 'all-the-icons-cyan :v-adjust 0.01))
;; ("idea" . ,(all-the-icons-octicon "light-bulb" :face 'all-the-icons-yellow :v-adjust 0.01))
;; ("emacs" . ,(all-the-icons-fileicon "emacs" :face 'all-the-icons-lpurple :v-adjust 0.01))))
;; (org-pretty-tags-global-mode))
#+end_src

**** LaTeX Fragments
***** Prettier highlighting

First off, we want those fragments to look good.
#+begin_src emacs-lisp
(setq org-highlight-latex-and-related '(latex script entities))
#+end_src

However, by using =native= highlighting the =org-block= face is added, and that
doesn't look too great --- particularly when the fragments are previewed.

Ideally ~org-src-font-lock-fontify-block~ wouldn't add the =org-block= face, but we
can avoid advising that entire function by just adding another face with
=:inherit default= which will override the background colour.

Inspecting ~org-do-latex-and-related~ shows that ="latex"= is the language argument
passed, and so we can override the background as discussed above.
#+begin_src emacs-lisp
(require 'org-src)
(add-to-list 'org-src-block-faces '("latex" (:inherit default :extend t)))
#+end_src

***** Automatic previewing

It would be nice if fragments could automatically be previewed after being
typed, and the overlays automatically showed and hidden when moving the point in
and out of the LaTeX fragments.

Thankfully, all we need to do to make this happen is use ~org-latex-preview-auto-mode~.

#+begin_src emacs-lisp
(add-hook 'org-mode-hook #'org-latex-preview-auto-mode)
#+end_src

***** Prettier rendering

It's nice to customise the look of LaTeX fragments so they fit better in the
text --- like this \(\sqrt{\beta^2+3}-\sum_{\phi=1}^\infty \frac{x^\phi-1}{\Gamma(a)}\).

The default snippet preamble basically just sets the margins and text size, with
templates to be filled in by ~org-latex-default-packages-alist~ and
=#+latex_header:= entries (but not =#+latex_header_extra:=).

#+name: latex-default-snippet-preamble
#+begin_src LaTeX
\documentclass{article}
[DEFAULT-PACKAGES]
[PACKAGES]
\usepackage{xcolor}
#+end_src

To this, we make two additions:
+ Selection of a maths font that fits better with displayed text.
+ My collection [[*Maths notation conveniences][mathematical notation conveniences]].

#+begin_src emacs-lisp :noweb no-export :noweb-prefix no
(setq org-latex-preview-preamble
 (concat
 <<grab("latex-default-snippet-preamble")>>
 "\n% Custom font\n\\usepackage{arev}\n\n"
 <<grab("latex-maths-conveniences")>>))
#+end_src

Since we can, instead of making the background colour match the =default= face,
let's make it transparent.

#+begin_src emacs-lisp
;; Calibrated based on the TeX font and org-buffer font.
(plist-put org-format-latex-options :zoom 0.93)
#+end_src

***** Rendering speed tests

We can either render from a ~dvi~ or ~pdf~ file, so let's benchmark ~latex~ and
~pdflatex~.
| ~latex~ time | ~pdflatex~ time |
|------------+---------------|
| 135 \pm 2 ms | 215 \pm 3 ms |

On the rendering side, there are two ~.dvi~-to-image converters which I am
interested in: ~dvipng~ and ~dvisvgm~.

Using the above latex expression and benchmarking lead to the following results:
| ~dvipng~ time | ~dvisvgm~ time | ~pdf2svg~ time |
|-------------+--------------+--------------|
| 89 \pm 2 ms | 178 \pm 2 ms | 12 \pm 2 ms |

Now let's combine this to see what's best
| Tool chain | Total time | Resulting file size |
|--------------------+------------+---------------------|
~latex~ + ~dvipng~	226 \pm 2 ms	7 KiB
~latex~ + ~dvisvgm~	392 \pm 4 ms	8 KiB
~pdflatex~ + ~pdf2svg~	230 \pm 2 ms	16 KiB

So, let's use ~dvipng~ for previewing LaTeX fragments in-Emacs, but ~dvisvgm~ for [[LaTeX Rendering]].

#+begin_warning
Unfortunately, it seems that SVG sizing is annoying ATM, so let's actually not do this right now.
#+end_warning

**** Org Plot

We can use some of the variables in =org-plot= to use the current doom theme
colours.
#+begin_src emacs-lisp
(defvar +org-plot-term-size '(1050 . 650)
 "The size of the GNUPlot terminal, in the form (WIDTH . HEIGHT).")

(after! org-plot
 (defun +org-plot-generate-theme (_type)
 "Use the current Doom theme colours to generate a GnuPlot preamble."
 (format "
fgt = \"textcolor rgb '%s'\" # foreground text
fgat = \"textcolor rgb '%s'\" # foreground alt text
fgl = \"linecolor rgb '%s'\" # foreground line
fgal = \"linecolor rgb '%s'\" # foreground alt line

foreground colors
set border lc rgb '%s'
change text colors of tics
set xtics @fgt
set ytics @fgt
change text colors of labels
set title @fgt
set xlabel @fgt
set ylabel @fgt
change a text color of key
set key @fgt

line styles
set linetype 1 lw 2 lc rgb '%s' # red
set linetype 2 lw 2 lc rgb '%s' # blue
set linetype 3 lw 2 lc rgb '%s' # green
set linetype 4 lw 2 lc rgb '%s' # magenta
set linetype 5 lw 2 lc rgb '%s' # orange
set linetype 6 lw 2 lc rgb '%s' # yellow
set linetype 7 lw 2 lc rgb '%s' # teal
set linetype 8 lw 2 lc rgb '%s' # violet

border styles
set tics out nomirror
set border 3

palette
set palette maxcolors 8
set palette defined (0 '%s',\
1 '%s',\
2 '%s',\
3 '%s',\
4 '%s',\
5 '%s',\
6 '%s',\
7 '%s')
"
 (doom-color 'fg)
 (doom-color 'fg-alt)
 (doom-color 'fg)
 (doom-color 'fg-alt)
 (doom-color 'fg)
 ;; colours
 (doom-color 'red)
 (doom-color 'blue)
 (doom-color 'green)
 (doom-color 'magenta)
 (doom-color 'orange)
 (doom-color 'yellow)
 (doom-color 'teal)
 (doom-color 'violet)
 ;; duplicated
 (doom-color 'red)
 (doom-color 'blue)
 (doom-color 'green)
 (doom-color 'magenta)
 (doom-color 'orange)
 (doom-color 'yellow)
 (doom-color 'teal)
 (doom-color 'violet)))

 (defun +org-plot-gnuplot-term-properties (_type)
 (format "background rgb '%s' size %s,%s"
 (doom-color 'bg) (car +org-plot-term-size) (cdr +org-plot-term-size)))

 (setq org-plot/gnuplot-script-preamble #'+org-plot-generate-theme)
 (setq org-plot/gnuplot-term-extra #'+org-plot-gnuplot-term-properties))
#+end_src

*** Exporting

#+call: confpkg("Org exports", after="ox")

**** General settings

By default Org only exports the first three levels of headings as ... headings.
This is rather unfortunate as my documents frequently stray far beyond three
levels of depth. The two main formats I care about exporting to are LaTeX and
HTML. When using an =article= class, LaTeX headlines go from =\section=,
=\subsection=, =\subsubsection=, and =\paragraph= to =\subgraph= --- /five/ levels.
HTML5 has six levels of headings (=<h1>= to =<h6>=), but first level Org headings
get exported as =<h2>= elements --- leaving /five/ usable levels.

As such, it would seem to make sense to recognise the first /five/ levels of Org
headings when exporting.

#+begin_src emacs-lisp
(setq org-export-headline-levels 5) ; I like nesting
#+end_src

I'm also going to make use of an item in =ox-extra= so that I can add an =:ignore:=
tag to headings for the content to be kept, but the heading itself ignored
(unlike =:noexport:= which ignored both heading and content). This is useful when
I want to use headings to provide a structure for writing that doesn't appear in
the final documents.
#+begin_src emacs-lisp
(require 'ox-extra)
(ox-extras-activate '(ignore-headlines))
#+end_src

Since I (roughly) track Org ~HEAD~, it makes sense to include the git version in
the creator string.
#+begin_src emacs-lisp
(setq org-export-creator-string
 (format "Emacs %s (Org mode %s–%s)" emacs-version (org-release) (org-git-version)))
#+end_src

**** Acronym formatting

I like automatically using spaced small caps for acronyms. For strings I want to
be unaffected let's use ~;~ as a prefix to prevent the transformation --- i.e.
~;JFK~ (as one would want for two-letter geographic locations and names).

This has to be implemented on a per-format basis, currently HTML and LaTeX
exports are supported.

#+begin_src emacs-lisp
(defun org-export-filter-text-acronym (text backend _info)
 "Wrap suspected acronyms in acronyms-specific formatting.
Treat sequences of 2+ capital letters (optionally succeeded by \"s\") as an acronym.
Ignore if preceeded by \";\" (for manual prevention) or \"\\\" (for LaTeX commands).

TODO abstract backend implementations."
 (let ((base-backend
 (cond
 ((org-export-derived-backend-p backend 'latex) 'latex)
 ;; Markdown is derived from HTML, but we don't want to format it
 ((org-export-derived-backend-p backend 'md) nil)
 ((org-export-derived-backend-p backend 'html) 'html)))
 (case-fold-search nil))
 (when base-backend
 (replace-regexp-in-string
 "[;\\\\]?\\b[A-Z][A-Z]+s?\\(?:[^A-Za-z]\\|\\b\\)"
 (lambda (all-caps-str)
 (cond ((equal (aref all-caps-str 0) ?\\) all-caps-str) ; don't format LaTeX commands
 ((equal (aref all-caps-str 0) ?\;) (substring all-caps-str 1)) ; just remove not-acronym indicator char ";"
 (t (let* ((final-char (if (string-match-p "[^A-Za-z]" (substring all-caps-str -1 (length all-caps-str)))
 (substring all-caps-str -1 (length all-caps-str))
 nil)) ; needed to re-insert the [^A-Za-z] at the end
 (trailing-s (equal (aref all-caps-str (- (length all-caps-str) (if final-char 2 1))) ?s))
 (acr (if final-char
 (substring all-caps-str 0 (if trailing-s -2 -1))
 (substring all-caps-str 0 (+ (if trailing-s -1 (length all-caps-str)))))))
 (pcase base-backend
 ('latex (concat "\\acr{" (downcase acr) "}" (when trailing-s "\\acrs{}") final-char))
 ('html (concat "" acr "" (when trailing-s "<small>s</small>") final-char)))))))
 text t t))))

(add-to-list 'org-export-filter-plain-text-functions
 #'org-export-filter-text-acronym)

;; We won't use `org-export-filter-headline-functions' because it
;; passes (and formats) the entire section contents. That's no good.

(defun org-html-format-headline-acronymised (todo todo-type priority text tags info)
 "Like `org-html-format-headline-default-function', but with acronym formatting."
 (org-html-format-headline-default-function
 todo todo-type priority (org-export-filter-text-acronym text 'html info) tags info))
(setq org-html-format-headline-function #'org-html-format-headline-acronymised)

(defun org-latex-format-headline-acronymised (todo todo-type priority text tags info)
 "Like `org-latex-format-headline-default-function', but with acronym formatting."
 (org-latex-format-headline-default-function
 todo todo-type priority (org-export-filter-text-acronym text 'latex info) tags info))
(setq org-latex-format-headline-function #'org-latex-format-headline-acronymised)
#+end_src

**** Nicer generated heading IDs

Thanks to alphapapa's [[https://github.com/alphapapa/unpackaged.el#export-to-html-with-useful-anchors][unpackaged.el]].

By default, Org generated heading IDs like =#org80fc2a5= which ... works, but has
two issues
+ It's completely uninformative, I have no idea what's being referenced
+ If I export the same file, everything will change.
 Now, while without hardcoded values it's impossible to set references in
 stone, it would be nice for there to be a decent chance of staying the same.

Both of these issues can be addressed by generating IDs like
=#language-configuration=, which is what I'll do here.

It's worth noting that alphapapa's use of ~url-hexify-string~ seemed to cause me
some issues. Replacing that in ~a53899~ resolved this for me. To go one step
further, I create a function for producing nice short links, like an inferior
version of ~reftex-label~.

#+begin_src emacs-lisp
(defvar org-reference-contraction-max-words 3
 "Maximum number of words in a reference reference.")
(defvar org-reference-contraction-max-length 35
 "Maximum length of resulting reference reference, including joining characters.")
(defvar org-reference-contraction-stripped-words
 '("the" "on" "in" "off" "a" "for" "by" "of" "and" "is" "to" "as")
 "Superfluous words to be removed from a reference.")
(defvar org-reference-contraction-joining-char "-"
 "Character used to join words in the reference reference.")

(defun org-reference-contraction-truncate-words (words)
 "Using `org-reference-contraction-max-length' as the total character 'budget' for the WORDS
and truncate individual words to conform to this budget.

To arrive at a budget that accounts for words undershooting their requisite average length,
the number of characters in the budget freed by short words is distributed among the words
exceeding the average length. This adjusts the per-word budget to be the maximum feasable for
this particular situation, rather than the universal maximum average.

This budget-adjusted per-word maximum length is given by the mathematical expression below:

max length = \\floor{ \\frac{total length - chars for seperators - \\sum_{word \\leq average length} length(word) }{num(words) > average length} }"
 ;; trucate each word to a max word length determined by
 ;;
 (let* ((total-length-budget (- org-reference-contraction-max-length ; how many non-separator chars we can use
 (1- (length words))))
 (word-length-budget (/ total-length-budget ; max length of each word to keep within budget
 org-reference-contraction-max-words))
 (num-overlong (-count (lambda (word) ; how many words exceed that budget
 (> (length word) word-length-budget))
 words))
 (total-short-length (-sum (mapcar (lambda (word) ; total length of words under that budget
 (if (<= (length word) word-length-budget)
 (length word) 0))
 words)))
 (max-length (/ (- total-length-budget total-short-length) ; max(max-length) that we can have to fit within the budget
 num-overlong)))
 (mapcar (lambda (word)
 (if (<= (length word) max-length)
 word
 (substring word 0 max-length)))
 words)))

(defun org-reference-contraction (reference-string)
 "Give a contracted form of REFERENCE-STRING that is only contains alphanumeric characters.
Strips 'joining' words present in `org-reference-contraction-stripped-words',
and then limits the result to the first `org-reference-contraction-max-words' words.
If the total length is > `org-reference-contraction-max-length' then individual words are
truncated to fit within the limit using `org-reference-contraction-truncate-words'."
 (let ((reference-words
 (cl-remove-if-not
 (lambda (word)
 (not (member word org-reference-contraction-stripped-words)))
 (let ((str reference-string))
 (setq str (downcase str))
 (setq str (replace-regexp-in-string "\\[\\[[^]]+\\]\\[\\([^]]+\\)\\]\\]" "\\1" str)) ; get description from org-link
 (setq str (replace-regexp-in-string "[-/]+" " " str)) ; replace seperator-type chars with space
 (setq str (puny-encode-string str))
 (setq str (replace-regexp-in-string "^xn--\\(.*?\\) ?-?\\([a-z0-9]+\\)$" "\\2 \\1" str)) ; rearrange punycode
 (setq str (replace-regexp-in-string "[^A-Za-z0-9]" "" str)) ; strip chars which need %-encoding in a uri
 (split-string str " +")))))
 (when (> (length reference-words)
 org-reference-contraction-max-words)
 (setq reference-words
 (cl-subseq reference-words 0 org-reference-contraction-max-words)))

 (when (> (apply #'+ (1- (length reference-words))
 (mapcar #'length reference-words))
 org-reference-contraction-max-length)
 (setq reference-words (org-reference-contraction-truncate-words reference-words)))

 (string-join reference-words org-reference-contraction-joining-char)))
#+end_src

Now here's alphapapa's subtly tweaked mode.
#+begin_src emacs-lisp
(define-minor-mode unpackaged/org-export-html-with-useful-ids-mode
 "Attempt to export Org as HTML with useful link IDs.
Instead of random IDs like \"#orga1b2c3\", use heading titles,
made unique when necessary."
 :global t
 (if unpackaged/org-export-html-with-useful-ids-mode
 (advice-add #'org-export-get-reference :override #'unpackaged/org-export-get-reference)
 (advice-remove #'org-export-get-reference #'unpackaged/org-export-get-reference)))
(unpackaged/org-export-html-with-useful-ids-mode 1) ; ensure enabled, and advice run

(defun unpackaged/org-export-get-reference (datum info)
 "Like `org-export-get-reference', except uses heading titles instead of random numbers."
 (let ((cache (plist-get info :internal-references)))
 (or (car (rassq datum cache))
 (let* ((crossrefs (plist-get info :crossrefs))
 (cells (org-export-search-cells datum))
 ;; Preserve any pre-existing association between
 ;; a search cell and a reference, i.e., when some
 ;; previously published document referenced a location
 ;; within current file (see
 ;; `org-publish-resolve-external-link').
 ;;
 ;; However, there is no guarantee that search cells are
 ;; unique, e.g., there might be duplicate custom ID or
 ;; two headings with the same title in the file.
 ;;
 ;; As a consequence, before re-using any reference to
 ;; an element or object, we check that it doesn't refer
 ;; to a previous element or object.
 (new (or (cl-some
 (lambda (cell)
 (let ((stored (cdr (assoc cell crossrefs))))
 (when stored
 (let ((old (org-export-format-reference stored)))
 (and (not (assoc old cache)) stored)))))
 cells)
 (when (org-element-property :raw-value datum)
 ;; Heading with a title
 (unpackaged/org-export-new-named-reference datum cache))
 (when (member (car datum) '(src-block table example fixed-width property-drawer))
 ;; Nameable elements
 (unpackaged/org-export-new-named-reference datum cache))
 ;; NOTE: This probably breaks some Org Export
 ;; feature, but if it does what I need, fine.
 (org-export-format-reference
 (org-export-new-reference cache))))
 (reference-string new))
 ;; Cache contains both data already associated to
 ;; a reference and in-use internal references, so as to make
 ;; unique references.
 (dolist (cell cells) (push (cons cell new) cache))
 ;; Retain a direct association between reference string and
 ;; DATUM since (1) not every object or element can be given
 ;; a search cell (2) it permits quick lookup.
 (push (cons reference-string datum) cache)
 (plist-put info :internal-references cache)
 reference-string))))

(defun unpackaged/org-export-new-named-reference (datum cache)
 "Return new reference for DATUM that is unique in CACHE."
 (cl-macrolet ((inc-suffixf (place)
 `(progn
 (string-match (rx bos
 (minimal-match (group (1+ anything)))
 (optional "--" (group (1+ digit)))
 eos)
 ,place)
 ;; HACK: `s1' instead of a gensym.
 (let* ((s1 (match-string 1 ,place))
 (suffix-1 (match-string 2 ,place))
 (suffix (if suffix-1 (string-to-number suffix-1) 0)))
 (setf ,place (format "%s--%s" s1 (1+ suffix)))))))
 (let* ((headline-p (eq (car datum) 'headline))
 (title (if headline-p
 (org-element-property :raw-value datum)
 (or (org-element-property :name datum)
 (concat (org-element-property :raw-value
 (org-element-property :parent
 (org-element-property :parent datum)))))))
 ;; get ascii-only form of title without needing percent-encoding
 (ref (concat (org-reference-contraction (substring-no-properties title))
 (unless (or headline-p (org-element-property :name datum))
 (concat ","
 (pcase (car datum)
 ('src-block "code")
 ('example "example")
 ('fixed-width "mono")
 ('property-drawer "properties")
 (_ (symbol-name (car datum))))
 "--1"))))
 (parent (when headline-p (org-element-property :parent datum))))
 (while (member ref (mapcar #'car cache))
 ;; Title not unique: make it so.
 (if parent
 ;; Append ancestor title.
 (setf title (concat (org-element-property :raw-value parent)
 "--" title)
 ;; get ascii-only form of title without needing percent-encoding
 ref (org-reference-contraction (substring-no-properties title))
 parent (when headline-p (org-element-property :parent parent)))
 ;; No more ancestors: add and increment a number.
 (inc-suffixf ref)))
 ref)))

(add-hook 'org-load-hook #'unpackaged/org-export-html-with-useful-ids-mode)
#+end_src
We also need to redefine src_elisp{(org-export-format-reference)} as it now may
be passed a string as well as a number.
#+begin_src emacs-lisp
(defadvice! org-export-format-reference-a (reference)
 "Format REFERENCE into a string.

REFERENCE is a either a number or a string representing a reference,
as returned by `org-export-new-reference'."
 :override #'org-export-format-reference
 (if (stringp reference) reference (format "org%07x" reference)))
#+end_src

**** Strip zero width spaces

Zero width spaces are handy as a semantic separator, but not something we want
passed through to the exports.

#+begin_src emacs-lisp
(defun +org-export-remove-zero-width-space (text _backend _info)
 "Remove zero width spaces from TEXT."
 (unless (org-export-derived-backend-p 'org)
 (replace-regexp-in-string "\u200B" "" text)))

(add-to-list 'org-export-filter-final-output-functions #'+org-export-remove-zero-width-space t)
#+end_src

**** Exporting Org code

With all our Org config and hooks, exporting an Org code block when using
a font-lock based method can produce undesirable results. To address this, we
can tweak ~+org-babel-mode-alist~ when exporting.

#+begin_src emacs-lisp
(defun +org-mode--fontlock-only-mode ()
 "Just apply org-mode's font-lock once."
 (let (org-mode-hook
 org-hide-leading-stars
 org-hide-emphasis-markers)
 (org-set-font-lock-defaults)
 (font-lock-ensure))
 (setq-local major-mode #'fundamental-mode))

(defun +org-export-babel-mask-org-config (_backend)
 "Use `+org-mode--fontlock-only-mode' instead of `org-mode'."
 (setq-local org-src-lang-modes
 (append org-src-lang-modes
 (list (cons "org" #'+org-mode--fontlock-only)))))

(add-hook 'org-export-before-processing-hook #'+org-export-babel-mask-org-config)
#+end_src

*** HTML Export

#+call: confpkg("ox-html", after="ox-html")

I want to tweak a whole bunch of things. While I'll want my tweaks almost all
the time, occasionally I may want to test how something turns out using a more
default config. With that in mind, a global minor mode seems like the most
appropriate architecture to use.

#+begin_src emacs-lisp
(define-minor-mode org-fancy-html-export-mode
 "Toggle my fabulous org export tweaks. While this mode itself does a little bit,
the vast majority of the change in behaviour comes from switch statements in:
 - `org-html-template-fancier'
 - `org-html--build-meta-info-extended'
 - `org-html-src-block-collapsable'
 - `org-html-block-collapsable'
 - `org-html-table-wrapped'
 - `org-html--format-toc-headline-colapseable'
 - `org-html--toc-text-stripped-leaves'
 - `org-export-html-headline-anchor'"
 :global t
 :init-value t
 (if org-fancy-html-export-mode
 (setq org-html-style-default org-html-style-fancy
 org-html-meta-tags #'org-html-meta-tags-fancy
 org-html-checkbox-type 'html-span)
 (setq org-html-style-default org-html-style-plain
 org-html-meta-tags #'org-html-meta-tags-default
 org-html-checkbox-type 'html)))
#+end_src

**** Extra header content

We want to tack on a few more bits to the start of the body. Unfortunately, there
doesn't seem to be any nice variable or hook, so we'll just override the
relevant function.

This is done to allow me to add the date and author to the page header,
implement a CSS-only light/dark theme toggle, and a sprinkle of [[https://ogp.me/][Open Graph]]
metadata.
#+begin_src emacs-lisp
(defadvice! org-html-template-fancier (orig-fn contents info)
 "Return complete document string after HTML conversion.
CONTENTS is the transcoded contents string. INFO is a plist
holding export options. Adds a few extra things to the body
compared to the default implementation."
 :around #'org-html-template
 (if (or (not org-fancy-html-export-mode) (bound-and-true-p org-msg-export-in-progress))
 (funcall orig-fn contents info)
 (concat
 (when (and (not (org-html-html5-p info)) (org-html-xhtml-p info))
 (let* ((xml-declaration (plist-get info :html-xml-declaration))
 (decl (or (and (stringp xml-declaration) xml-declaration)
 (cdr (assoc (plist-get info :html-extension)
 xml-declaration))
 (cdr (assoc "html" xml-declaration))
 "")))
 (when (not (or (not decl) (string= "" decl)))
 (format "%s\n"
 (format decl
 (or (and org-html-coding-system
 (fboundp 'coding-system-get)
 (coding-system-get org-html-coding-system 'mime-charset))
 "iso-8859-1"))))))
 (org-html-doctype info)
 "\n"
 (concat "<html"
 (cond ((org-html-xhtml-p info)
 (format
 " xmlns=\"http://www.w3.org/1999/xhtml\" lang=\"%s\" xml:lang=\"%s\""
 (plist-get info :language) (plist-get info :language)))
 ((org-html-html5-p info)
 (format " lang=\"%s\"" (plist-get info :language))))
 ">\n")
 "<head>\n"
 (org-html--build-meta-info info)
 (org-html--build-head info)
 (org-html--build-mathjax-config info)
 "</head>\n"
 "<body>\n<input type='checkbox' id='theme-switch'><div id='page'><label id='switch-label' for='theme-switch'></label>"
 (let ((link-up (org-trim (plist-get info :html-link-up)))
 (link-home (org-trim (plist-get info :html-link-home))))
 (unless (and (string= link-up "") (string= link-home ""))
 (format (plist-get info :html-home/up-format)
 (or link-up link-home)
 (or link-home link-up))))
 ;; Preamble.
 (org-html--build-pre/postamble 'preamble info)
 ;; Document contents.
 (let ((div (assq 'content (plist-get info :html-divs))))
 (format "<%s id=\"%s\">\n" (nth 1 div) (nth 2 div)))
 ;; Document title.
 (when (plist-get info :with-title)
 (let ((title (and (plist-get info :with-title)
 (plist-get info :title)))
 (subtitle (plist-get info :subtitle))
 (html5-fancy (org-html--html5-fancy-p info)))
 (when title
 (format
 (if html5-fancy
 "<header class=\"page-header\">%s\n<h1 class=\"title\">%s</h1>\n%s</header>"
 "<h1 class=\"title\">%s%s</h1>\n")
 (if (or (plist-get info :with-date)
 (plist-get info :with-author))
 (concat "<div class=\"page-meta\">"
 (when (plist-get info :with-date)
 (org-export-data (plist-get info :date) info))
 (when (and (plist-get info :with-date) (plist-get info :with-author)) ", ")
 (when (plist-get info :with-author)
 (org-export-data (plist-get info :author) info))
 "</div>\n")
 "")
 (org-export-data title info)
 (if subtitle
 (format
 (if html5-fancy
 "<p class=\"subtitle\" role=\"doc-subtitle\">%s</p>\n"
 (concat "\n" (org-html-close-tag "br" nil info) "\n"
 "%s\n"))
 (org-export-data subtitle info))
 "")))))
 contents
 (format "</%s>\n" (nth 1 (assq 'content (plist-get info :html-divs))))
 ;; Postamble.
 (org-html--build-pre/postamble 'postamble info)
 ;; Possibly use the Klipse library live code blocks.
 (when (plist-get info :html-klipsify-src)
 (concat "<script>" (plist-get info :html-klipse-selection-script)
 "</script><script src=\""
 org-html-klipse-js
 "\"></script><link rel=\"stylesheet\" type=\"text/css\" href=\""
 org-html-klipse-css "\"/>"))
 ;; Closing document.
 "</div>\n</body>\n</html>")))
#+end_src

I think it would be nice if "Table of Contents" brought you back to the top of
the page. Well, since we've done this much advising already...
#+begin_src emacs-lisp
(defadvice! org-html-toc-linked (depth info &optional scope)
 "Build a table of contents.

Just like `org-html-toc', except the header is a link to \"#\".

DEPTH is an integer specifying the depth of the table. INFO is
a plist used as a communication channel. Optional argument SCOPE
is an element defining the scope of the table. Return the table
of contents as a string, or nil if it is empty."
 :override #'org-html-toc
 (let ((toc-entries
 (mapcar (lambda (headline)
 (cons (org-html--format-toc-headline headline info)
 (org-export-get-relative-level headline info)))
 (org-export-collect-headlines info depth scope))))
 (when toc-entries
 (let ((toc (concat "<div id=\"text-table-of-contents\">"
 (org-html--toc-text toc-entries)
 "</div>\n")))
 (if scope toc
 (let ((outer-tag (if (org-html--html5-fancy-p info)
 "nav"
 "div")))
 (concat (format "<%s id=\"table-of-contents\">\n" outer-tag)
 (let ((top-level (plist-get info :html-toplevel-hlevel)))
 (format "<h%d>%s</h%d>\n"
 top-level
 (org-html--translate "Table of Contents" info)
 top-level))
 toc
 (format "</%s>\n" outer-tag))))))))
#+end_src

Lastly, let's pile on some metadata. This gives my pages nice embeds.
#+begin_src emacs-lisp
(defvar org-html-meta-tags-opengraph-image
 '(:image "https://tecosaur.com/resources/org/nib.png"
 :type "image/png"
 :width "200"
 :height "200"
 :alt "Green fountain pen nib")
 "Plist of og:image:PROP properties and their value, for use in `org-html-meta-tags-fancy'.")

(defun org-html-meta-tags-fancy (info)
 "Use the INFO plist to construct the meta tags, as described in `org-html-meta-tags'."
 (let* ((title (org-html-plain-text
 (org-element-interpret-data (plist-get info :title)) info))
 (author (and (plist-get info :with-author)
 (let ((auth (plist-get info :author)))
 ;; Return raw Org syntax.
 (and auth (org-html-plain-text
 (org-element-interpret-data auth) info)))))
 (author-first-last
 (and (not (org-string-nw-p author))
 (save-match-data
 (if (string-match "\\`\\(.+?\\) +\\(.+?\\)\\'" author)
 (cons (match-string 1 author)
 (match-string 2 author))
 (cons author nil))))))
 (append
 (list
 (when (org-string-nw-p author)
 (list "name" "author" author))
 (when (org-string-nw-p (plist-get info :description))
 (list "name" "description"
 (plist-get info :description)))
 '("name" "generator" "org mode")
 '("name" "theme-color" "#77aa99")
 '("property" "og:type" "article")
 (list "property" "og:title" title)
 (let ((subtitle (org-export-data (plist-get info :subtitle) info)))
 (when (org-string-nw-p subtitle)
 (list "property" "og:description" subtitle))))
 (when org-html-meta-tags-opengraph-image
 (list (list "property" "og:image" (plist-get org-html-meta-tags-opengraph-image :image))
 (list "property" "og:image:type" (plist-get org-html-meta-tags-opengraph-image :type))
 (list "property" "og:image:width" (plist-get org-html-meta-tags-opengraph-image :width))
 (list "property" "og:image:height" (plist-get org-html-meta-tags-opengraph-image :height))
 (list "property" "og:image:alt" (plist-get org-html-meta-tags-opengraph-image :alt))))
 (list
 (when (car author-first-last)
 (list "property" "og:article:author:first_name" (car author-first-last)))
 (when (cdr author-first-last)
 (list "property" "og:article:author:last_name" (cdr author-first-last)))
 (list "property" "og:article:published_time"
 (format-time-string
 "%FT%T%z"
 (or
 (when-let ((date-str (cadar (org-collect-keywords '("DATE")))))
 (unless (string= date-str (format-time-string "%F"))
 (ignore-errors (encode-time (org-parse-time-string date-str)))))
 (if buffer-file-name
 (file-attribute-modification-time (file-attributes buffer-file-name))
 (current-time)))))
 (when buffer-file-name
 (list "property" "og:article:modified_time"
 (format-time-string "%FT%T%z" (file-attribute-modification-time (file-attributes buffer-file-name)))))))))

(unless (functionp #'org-html-meta-tags-default)
 (defalias 'org-html-meta-tags-default #'ignore))
(setq org-html-meta-tags #'org-html-meta-tags-fancy)
#+end_src

**** Custom CSS/JS

The default org HTML export is ... alright, but we can really jazz it up.
[[https://lepisma.xyz][lepisma.xyz]] has a really nice style, and from and org export too!
Suffice to say I've snatched it, with a few of my own tweaks applied.

#+begin_src html :tangle misc/org-export-header.html :comments no
<link rel="icon" href="https://tecosaur.com/resources/org/nib.ico" type="image/ico" />

<link rel="preload" as="font" crossorigin="anonymous" type="font/woff2" href="https://tecosaur.com/resources/org/etbookot-roman-webfont.woff2">
<link rel="preload" as="font" crossorigin="anonymous" type="font/woff2" href="https://tecosaur.com/resources/org/etbookot-italic-webfont.woff2">
<link rel="preload" as="font" crossorigin="anonymous" type="font/woff2" href="https://tecosaur.com/resources/org/Merriweather-TextRegular.woff2">
<link rel="preload" as="font" crossorigin="anonymous" type="font/woff2" href="https://tecosaur.com/resources/org/Merriweather-TextItalic.woff2">
<link rel="preload" as="font" crossorigin="anonymous" type="font/woff2" href="https://tecosaur.com/resources/org/Merriweather-TextBold.woff2">
#+end_src

#+begin_src emacs-lisp
(setq org-html-style-plain org-html-style-default
 org-html-htmlize-output-type 'css
 org-html-doctype "html5"
 org-html-html5-fancy t)

(defun org-html-reload-fancy-style ()
 (interactive)
 (setq org-html-style-fancy
 (with-temp-buffer
 (insert-file-contents (expand-file-name "misc/org-export-header.html" doom-user-dir))
 (goto-char (point-max))
 (insert "<script>\n")
 (insert-file-contents (expand-file-name "misc/org-css/main.js" doom-user-dir))
 (goto-char (point-max))
 (insert "</script>\n<style>\n")
 (insert-file-contents (expand-file-name "misc/org-css/main.min.css" doom-user-dir))
 (goto-char (point-max))
 (insert "</style>")
 (buffer-string)))
 (when org-fancy-html-export-mode
 (setq org-html-style-default org-html-style-fancy)))
(org-html-reload-fancy-style)
#+end_src

**** Collapsable src and example blocks

By wrapping the ~<pre>~ element in a ~<details>~ block, we can obtain collapsable
blocks with no CSS, though we will toss a little in anyway to have this looking
somewhat spiffy.

Since this collapsability seems useful to have on by default for certain chunks
of code, it would be nice if you could set it with =#+attr_html: :collapsed t=.

It would be nice to also have a corresponding global / session-local way of
setting this, but I haven't quite been able to get that working (yet).

#+begin_src emacs-lisp
(defvar org-html-export-collapsed nil)
(eval '(cl-pushnew '(:collapsed "COLLAPSED" "collapsed" org-html-export-collapsed t)
 (org-export-backend-options (org-export-get-backend 'html))))
(add-to-list 'org-default-properties "EXPORT_COLLAPSED")
#+end_src

We can take our src block modification a step further, and add a gutter on the
side of the src block containing both an anchor referencing the current block,
and a button to copy the content of the block.

#+name: Src blocks
#+begin_src emacs-lisp
(defadvice! org-html-src-block-collapsable (orig-fn src-block contents info)
 "Wrap the usual <pre> block in a <details>"
 :around #'org-html-src-block
 (if (or (not org-fancy-html-export-mode) (bound-and-true-p org-msg-export-in-progress))
 (funcall orig-fn src-block contents info)
 (let* ((properties (cadr src-block))
 (lang (mode-name-to-lang-name
 (plist-get properties :language)))
 (name (plist-get properties :name))
 (ref (org-export-get-reference src-block info))
 (collapsed-p (member (or (org-export-read-attribute :attr_html src-block :collapsed)
 (plist-get info :collapsed))
 '("y" "yes" "t" t "true" "all"))))
 (format
 "<details id='%s' class='code'%s><summary%s>%s</summary>
<div class='gutter'>
#
<button title='Copy to clipboard' onclick='copyPreToClipbord(this)'>⎘</button>\
</div>
%s
</details>"
 ref
 (if collapsed-p "" " open")
 (if name " class='named'" "")
 (concat
 (when name (concat "" name ""))
 "" lang "")
 ref
 (if name
 (replace-regexp-in-string (format "<pre\\(class=\"[^\"]+\"\\)? id=\"%s\">" ref) "<pre\\1>"
 (funcall orig-fn src-block contents info))
 (funcall orig-fn src-block contents info))))))

(defun mode-name-to-lang-name (mode)
 (or (cadr (assoc mode
 '(("asymptote" "Asymptote")
 ("awk" "Awk")
 ("C" "C")
 ("clojure" "Clojure")
 ("css" "CSS")
 ("D" "D")
 ("ditaa" "ditaa")
 ("dot" "Graphviz")
 ("calc" "Emacs Calc")
 ("emacs-lisp" "Emacs Lisp")
 ("fortran" "Fortran")
 ("gnuplot" "gnuplot")
 ("haskell" "Haskell")
 ("hledger" "hledger")
 ("java" "Java")
 ("js" "Javascript")
 ("latex" "LaTeX")
 ("ledger" "Ledger")
 ("lisp" "Lisp")
 ("lilypond" "Lilypond")
 ("lua" "Lua")
 ("matlab" "MATLAB")
 ("mscgen" "Mscgen")
 ("ocaml" "Objective Caml")
 ("octave" "Octave")
 ("org" "Org mode")
 ("oz" "OZ")
 ("plantuml" "Plantuml")
 ("processing" "Processing.js")
 ("python" "Python")
 ("R" "R")
 ("ruby" "Ruby")
 ("sass" "Sass")
 ("scheme" "Scheme")
 ("screen" "Gnu Screen")
 ("sed" "Sed")
 ("sh" "shell")
 ("sql" "SQL")
 ("sqlite" "SQLite")
 ("forth" "Forth")
 ("io" "IO")
 ("J" "J")
 ("makefile" "Makefile")
 ("maxima" "Maxima")
 ("perl" "Perl")
 ("picolisp" "Pico Lisp")
 ("scala" "Scala")
 ("shell" "Shell Script")
 ("ebnf2ps" "ebfn2ps")
 ("cpp" "C++")
 ("abc" "ABC")
 ("coq" "Coq")
 ("groovy" "Groovy")
 ("bash" "bash")
 ("csh" "csh")
 ("ash" "ash")
 ("dash" "dash")
 ("ksh" "ksh")
 ("mksh" "mksh")
 ("posh" "posh")
 ("ada" "Ada")
 ("asm" "Assembler")
 ("caml" "Caml")
 ("delphi" "Delphi")
 ("html" "HTML")
 ("idl" "IDL")
 ("mercury" "Mercury")
 ("metapost" "MetaPost")
 ("modula-2" "Modula-2")
 ("pascal" "Pascal")
 ("ps" "PostScript")
 ("prolog" "Prolog")
 ("simula" "Simula")
 ("tcl" "tcl")
 ("tex" "LaTeX")
 ("plain-tex" "TeX")
 ("verilog" "Verilog")
 ("vhdl" "VHDL")
 ("xml" "XML")
 ("nxml" "XML")
 ("conf" "Configuration File"))))
 mode))
#+end_src

#+name: Example, fixed width, and property blocks
#+begin_src emacs-lisp
(defun org-html-block-collapsable (orig-fn block contents info)
 "Wrap the usual block in a <details>"
 (if (or (not org-fancy-html-export-mode) (bound-and-true-p org-msg-export-in-progress))
 (funcall orig-fn block contents info)
 (let ((ref (org-export-get-reference block info))
 (type (pcase (car block)
 ('property-drawer "Properties")))
 (collapsed-default (pcase (car block)
 ('property-drawer t)
 (_ nil)))
 (collapsed-value (org-export-read-attribute :attr_html block :collapsed))
 (collapsed-p (or (member (org-export-read-attribute :attr_html block :collapsed)
 '("y" "yes" "t" t "true"))
 (member (plist-get info :collapsed) '("all")))))
 (format
 "<details id='%s' class='code'%s>
<summary%s>%s</summary>
<div class='gutter'>\
#
<button title='Copy to clipboard' onclick='copyPreToClipbord(this)'>⎘</button>\
</div>
%s\n
</details>"
 ref
 (if (or collapsed-p collapsed-default) "" " open")
 (if type " class='named'" "")
 (if type (format "%s" type) "")
 ref
 (funcall orig-fn block contents info)))))

(advice-add 'org-html-example-block :around #'org-html-block-collapsable)
(advice-add 'org-html-fixed-width :around #'org-html-block-collapsable)
(advice-add 'org-html-property-drawer :around #'org-html-block-collapsable)
#+end_src

**** Include extra font-locking in htmlize

Org uses [[https://github.com/hniksic/emacs-htmlize][htmlize.el]] to export buffers with syntax highlighting.

The works fantastically, for the most part. Minor modes that provide
font-locking are /not/ loaded, and so do not impact the result.

By enabling these modes in ~htmlize-before-hook~ we can correct this behaviour.

#+begin_src emacs-lisp
(autoload #'highlight-numbers--turn-on "highlight-numbers")
(add-hook 'htmlize-before-hook #'highlight-numbers--turn-on)
#+end_src

**** Handle table overflow

In order to accommodate wide tables ---particularly on mobile devices--- we want
to set a maximum width and scroll overflow. Unfortunately, this cannot be applied
directly to the ~table~ element, so we have to wrap it in a ~div~.

While we're at it, we can a link gutter, as we did with src blocks, and show the
~#+name~, if one is given.

#+begin_src emacs-lisp
(defadvice! org-html-table-wrapped (orig-fn table contents info)
 "Wrap the usual <table> in a <div>"
 :around #'org-html-table
 (if (or (not org-fancy-html-export-mode) (bound-and-true-p org-msg-export-in-progress))
 (funcall orig-fn table contents info)
 (let* ((name (plist-get (cadr table) :name))
 (ref (org-export-get-reference table info)))
 (format "<div id='%s' class='table'>
<div class='gutter'>#</div>
<div class='tabular'>
%s
</div>\
</div>"
 ref ref
 (if name
 (replace-regexp-in-string (format "<table id=\"%s\"" ref) "<table"
 (funcall orig-fn table contents info))
 (funcall orig-fn table contents info))))))
#+end_src

**** TOC as a collapsable tree

The TOC is much nicer to navigate as a collapsable tree. Unfortunately we cannot
achieve this with CSS alone. Thankfully we can avoid JS though, by adapting the
TOC generation code to use a ~label~ for each item, and a hidden ~checkbox~ to keep
track of state.

To add this, we need to change one line in [[file:lisp/org/lisp/ox-html.el::(format "%s"][org-html--format-toc-headline]].

Since we can actually accomplish the desired effect by adding advice /around/ the
function, without overriding it --- let's do that to reduce the bug surface of
this config a tad.
#+begin_src emacs-lisp
(defadvice! org-html--format-toc-headline-colapseable (orig-fn headline info)
 "Add a label and checkbox to `org-html--format-toc-headline's usual output,
to allow the TOC to be a collapseable tree."
 :around #'org-html--format-toc-headline
 (if (or (not org-fancy-html-export-mode) (bound-and-true-p org-msg-export-in-progress))
 (funcall orig-fn headline info)
 (let ((id (or (org-element-property :CUSTOM_ID headline)
 (org-export-get-reference headline info))))
 (format "<input type='checkbox' id='toc--%s'/><label for='toc--%s'>%s</label>"
 id id (funcall orig-fn headline info)))))
#+end_src

Now, leaves (headings with no children) shouldn't have the ~label~ item. The
obvious way to achieve this is by including some /if no children.../ logic in
~org-html--format-toc-headline-colapseable~. Unfortunately, I can't my elisp isn't
up to par to extract the number of child headings from the mountain of info that
org provides.
#+begin_src emacs-lisp
(defadvice! org-html--toc-text-stripped-leaves (orig-fn toc-entries)
 "Remove label"
 :around #'org-html--toc-text
 (if (or (not org-fancy-html-export-mode) (bound-and-true-p org-msg-export-in-progress))
 (funcall orig-fn toc-entries)
 (replace-regexp-in-string "<input [^>]+><label [^>]+>\\(.+?\\)</label>" "\\1"
 (funcall orig-fn toc-entries))))
#+end_src

**** Make verbatim different to code

Since we have =verbatim= and ~code~, let's make use of the difference.

We can use ~code~ exclusively for code snippets and commands like: "calling
src_elisp{(message "Hello")} in batch-mode Emacs prints to stdout like ~echo~".
Then we can use =verbatim= for miscellaneous 'other monospace' like keyboard
shortcuts: "either =C-c C-c= or =C-g= is likely the most useful keybinding in Emacs",
or file names: "I keep my configuration in =~/.config/doom/=", among other things.

Then, styling these two cases differently can help improve clarity in a document.

#+begin_src emacs-lisp
(setq org-html-text-markup-alist
 '((bold . "%s")
 (code . "<code>%s</code>")
 (italic . "<i>%s</i>")
 (strike-through . "%s")
 (underline . "%s")
 (verbatim . "<kbd>%s</kbd>")))
#+end_src

**** Change checkbox type

We also want to use HTML checkboxes, however we want to get a bit fancier than default
#+begin_src emacs-lisp
(appendq! org-html-checkbox-types
 '((html-span
 (on . "")
 (off . "")
 (trans . ""))))
(setq org-html-checkbox-type 'html-span)
#+end_src
- [] I'm yet to do this
- [-] Work in progress
- [X] This is done

**** Extra special strings

The ~org-html-special-string-regexps~ variable defines substitutions for:
+ =\-=, a shy hyphen
+ =---=, an em dash
+ =--=, an en dash
+ =...=, (horizontal) ellipses

However I think it would be nice if there was also a substitution for left/right
arrows (=->= and =<-=). This is a ~defconst~, but as you may tell from the amount of
advice in this config, I'm not above messing with things I'm not 'supposed' to.

The only minor complication is that =<= and =>= are converted to =<= and =>=
before this stage of output processing.

#+begin_src emacs-lisp
(pushnew! org-html-special-string-regexps
 '("->" . "→")
 '("<-" . "←"))
#+end_src

**** Header anchors

I want to add GitHub-style links on hover for headings.
#+begin_src emacs-lisp
(defun org-export-html-headline-anchor (text backend info)
 (when (and (org-export-derived-backend-p backend 'html)
 (not (org-export-derived-backend-p backend 're-reveal))
 org-fancy-html-export-mode)
 (unless (bound-and-true-p org-msg-export-in-progress)
 (replace-regexp-in-string
 "<h\\([0-9]\\) id=\"\\([a-z0-9-]+\\)\">\\(.*[^]\\)<\\/h[0-9]>" ; this is quite restrictive, but due to `org-reference-contraction' I can do this
 "<h\\1 id=\"\\2\">\\3<a aria-hidden=\"true\" href=\"#\\2\"># </h\\1>"
 text))))

(add-to-list 'org-export-filter-headline-functions
 'org-export-html-headline-anchor)
#+end_src

**** Link previews

Sometimes it's nice to make a link particularly prominent, an embed/preview like
Twitter does would be nice I think.

We can do this without too much trouble by adding a new link type ever so
slightly different from =https= --- =Https=.

#+begin_src emacs-lisp
(org-link-set-parameters "Https"
 :follow (lambda (url arg) (browse-url (concat "https:" url) arg))
 :export #'org-url-fancy-export)
#+end_src

Then, if we can fetch a plist of the form src_elisp{(:title "..." :description
"..." :image "...")} for such links via a function ~org-url-unfurl-metadata~, we
can make a fancy export.

#+begin_src emacs-lisp
(defun org-url-fancy-export (url _desc backend)
 (let ((metadata (org-url-unfurl-metadata (concat "https:" url))))
 (cond
 ((org-export-derived-backend-p backend 'html)
 (concat
 "<div class=\"link-preview\">"
 (format "" (concat "https:" url))
 (when (plist-get metadata :image)
 (format "" (plist-get metadata :image)))
 "<small>"
 (replace-regexp-in-string "//\\(?:www\\.\\)?\\([^/]+\\)/?.*" "\\1" url)
 "</small><p>"
 (when (plist-get metadata :title)
 (concat "" (org-html-encode-plain-text (plist-get metadata :title)) "</br>"))
 (when (plist-get metadata :description)
 (org-html-encode-plain-text (plist-get metadata :description)))
 "</p></div>"))
 (t url))))
#+end_src

Now we just need to actually implement that metadata extraction function.
#+begin_src emacs-lisp
(setq org-url-unfurl-metadata--cache nil)
(defun org-url-unfurl-metadata (url)
 (cdr (or (assoc url org-url-unfurl-metadata--cache)
 (car (push
 (cons
 url
 (let* ((head-data
 (cl-remove-if-not
 #'listp
 (cdaddr
 (with-current-buffer
 (progn (message "Fetching metadata from %s" url)
 (if (executable-find "curl")
 (with-current-buffer (generate-new-buffer " *curl*")
 (call-process "curl" nil t nil "--max-time" "5" "-sSL" url)
 (current-buffer))
 (url-retrieve-synchronously url t t 5)))
 (goto-char (point-min))
 (delete-region (point-min) (- (search-forward "<head") 6))
 (delete-region (search-forward "</head>") (point-max))
 (goto-char (point-min))
 (while (re-search-forward "<script[^\u2800]+?</script>" nil t)
 (replace-match ""))
 (goto-char (point-min))
 (while (re-search-forward "<style[^\u2800]+?</style>" nil t)
 (replace-match ""))
 (libxml-parse-html-region (point-min) (point-max))))))
 (meta (delq nil
 (mapcar
 (lambda (tag)
 (when (eq 'meta (car tag))
 (cons (or (cdr (assoc 'name (cadr tag)))
 (cdr (assoc 'property (cadr tag))))
 (cdr (assoc 'content (cadr tag))))))
 head-data))))
 (let ((title (or (cdr (assoc "og:title" meta))
 (cdr (assoc "twitter:title" meta))
 (nth 2 (assq 'title head-data))))
 (description (or (cdr (assoc "og:description" meta))
 (cdr (assoc "twitter:description" meta))
 (cdr (assoc "description" meta))))
 (image (or (cdr (assoc "og:image" meta))
 (cdr (assoc "twitter:image" meta)))))
 (when image
 (setq image (replace-regexp-in-string
 "^/" (concat "https://" (replace-regexp-in-string "//\\([^/]+\\)/?.*" "\\1" url) "/")
 (replace-regexp-in-string
 "^//" "https://"
 image))))
 (list :title title :description description :image image))))
 org-url-unfurl-metadata--cache)))))
#+end_src

**** LaTeX Rendering
***** Pre-rendered

I consider ~dvisvgm~ to be a rather compelling option. However this isn't scaled
very well at the moment.
#+begin_src emacs-lisp
;; (setq-default org-html-with-latex `dvisvgm)
#+end_src

***** MathJax

I want to use svg MathJax by default, and with a few of the custom commands that
are part of my LaTeX preamble.

#+begin_src emacs-lisp
(setcdr (assoc 'path org-html-mathjax-options)
 (list "https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-svg.js"))

(setq org-html-mathjax-template
 "<script>
 window.MathJax = {
 loader: {
 load: ['[tex]/mathtools'],
 },
 tex: {
 ams: {
 multlineWidth: '%MULTLINEWIDTH'
 },
 tags: '%TAGS',
 tagSide: '%TAGSIDE',
 tagIndent: '%TAGINDENT',
 packages: {'[+]': ['mathtools']},
 macros: {
 RR: ['\\\\ifstrempty{#1}{\\\\mathbb{R}}{\\\\mathbb{R}^{#1}}', 1, ''],
 NN: ['\\\\ifstrempty{#1}{\\\\mathbb{N}}{\\\\mathbb{N}^{#1}}', 1, ''],
 ZZ: ['\\\\ifstrempty{#1}{\\\\mathbb{Z}}{\\\\mathbb{Z}^{#1}}', 1, ''],
 QQ: ['\\\\ifstrempty{#1}{\\\\mathbb{Q}}{\\\\mathbb{Q}^{#1}}', 1, ''],
 CC: ['\\\\ifstrempty{#1}{\\\\mathbb{C}}{\\\\mathbb{C}^{#1}}', 1, ''],
 EE: '\\\\mathbb{E}',
 Lap: '\\\\operatorname{\\\\mathcal{L}}',
 Var: '\\\\operatorname{Var}',
 Cor: '\\\\operatorname{Cor}',
 E: '\\\\operatorname{E}',
 },
 mathtools: {
 pairedDelimiters: {
 abs: ['\\\\lvert', '\\\\rvert'],
 norm: ['\\\\lVert', '\\\\rVert'],
 ceil: ['\\\\lceil', '\\\\rceil'],
 floor: ['\\\\lfloor', '\\\\rfloor'],
 round: ['\\\\lfloor', '\\\\rceil'],
 }
 }
 },
 chtml: {
 scale: %SCALE,
 displayAlign: '%ALIGN',
 displayIndent: '%INDENT'
 },
 svg: {
 scale: %SCALE,
 displayAlign: '%ALIGN',
 displayIndent: '%INDENT'
 },
 output: {
 font: '%FONT',
 displayOverflow: '%OVERFLOW'
 }
 };
</script>

<script
 id=\"MathJax-script\"
 async
 src=\"%PATH\">
</script>")
#+end_src

*** LaTeX Export

#+call: confpkg("ox-latex", after="ox-latex")

**** Compiling

By default Org uses ~pdflatex~ \times 3 + ~bibtex~. This simply won't do in our
modern world. ~latexmk~ + ~biber~ (which is used automatically with ~latexmk~) is a
simply superior combination.

#+begin_src emacs-lisp
;; org-latex-compilers = ("pdflatex" "xelatex" "lualatex"), which are the possible values for %latex
(setq org-latex-pdf-process '("LC_ALL=en_US.UTF-8 latexmk -f -pdf -%latex -shell-escape -interaction=nonstopmode -output-directory=%o %f"))
#+end_src

While ~org-latex-pdf-process~ does support a function, and we could use that
instead, this would no longer use the log buffer --- it's a bit blind, you give
it the file name and expect it to do its thing.

The default values of ~org-latex-compilers~ is given in commented form to see how
~org-latex-pdf-process~ works with them.

While the ~-%latex~ above is slightly hacky (~-pdflatex~ expects to be given a
value) it allows us to leave ~org-latex-compilers~ unmodified.
This is nice in case I open an org file that uses =#+LATEX_COMPILER= for example,
it should still work.

**** Nicer checkboxes

We'll assume that thanks to the clever preamble the various custom =\checkbox...=
commands below are defined.

#+begin_src emacs-lisp
(defun +org-export-latex-fancy-item-checkboxes (text backend info)
 (when (org-export-derived-backend-p backend 'latex)
 (replace-regexp-in-string
 "\\\\item\\[{$\\\\\\(\\w+\\)$}\\]"
 (lambda (fullmatch)
 (concat "\\\\item[" (pcase (substring fullmatch 9 -3) ; content of capture group
 ("square" "\\\\checkboxUnchecked")
 ("boxminus" "\\\\checkboxTransitive")
 ("boxtimes" "\\\\checkboxChecked")
 (_ (substring fullmatch 9 -3))) "]"))
 text)))

(add-to-list 'org-export-filter-item-functions
 '+org-export-latex-fancy-item-checkboxes)
#+end_src

**** Class templates

I really like the KOMA bundle. It provides a set of mechanisms to tweak document
styling which is both easy to use, and quite comprehensive.
For example, I rather like section numbers in the margin, which can be
accomplished with
#+name: latex-hanging-secnum
#+begin_src LaTeX
\renewcommand\sectionformat{\llap{\thesection\autodot\enskip}}
\renewcommand\subsectionformat{\llap{\thesubsection\autodot\enskip}}
\renewcommand\subsubsectionformat{\llap{\thesubsubsection\autodot\enskip}}
#+end_src

It can also be nice to have big =\chapter=​s.
#+name: latex-big-chapter
#+begin_src LaTeX
\RedeclareSectionCommand[afterindent=false, beforeskip=0pt, afterskip=0pt, innerskip=0pt]{chapter}
\setkomafont{chapter}{\normalfont\Huge}
\renewcommand*{\chapterheadstartvskip}{\vspace*{0\baselineskip}}
\renewcommand*{\chapterheadendvskip}{\vspace*{0\baselineskip}}
\renewcommand*{\chapterformat}{%
 \fontsize{60}{30}\selectfont\rlap{\hspace{6pt}\thechapter}}
\renewcommand*\chapterlinesformat[3]{%
 \parbox[b]{\dimexpr\textwidth-0.5em\relax}{%
 \raggedleft{{\large\scshape\bfseries\chapapp}\vspace{-0.5ex}\par\Huge#3}}%
 \hfill\makebox[0pt][l]{#2}}
#+end_src

Now let's just sprinkle some KOMA all over the Org LaTeX classes.

#+begin_src emacs-lisp :noweb no-export :noweb-prefix no
(after! ox-latex
 (let* ((article-sections '(("\\section{%s}" . "\\section*{%s}")
 ("\\subsection{%s}" . "\\subsection*{%s}")
 ("\\subsubsection{%s}" . "\\subsubsection*{%s}")
 ("\\paragraph{%s}" . "\\paragraph*{%s}")
 ("\\subparagraph{%s}" . "\\subparagraph*{%s}")))
 (book-sections (append '(("\\chapter{%s}" . "\\chapter*{%s}"))
 article-sections))
 (hanging-secnum-preamble <<grab("latex-hanging-secnum")>>)
 (big-chap-preamble <<grab("latex-big-chapter")>>))
 (setcdr (assoc "article" org-latex-classes)
 `(,(concat "\\documentclass{scrartcl}" hanging-secnum-preamble)
 ,@article-sections))
 (add-to-list 'org-latex-classes
 `("report" ,(concat "\\documentclass{scrartcl}" hanging-secnum-preamble)
 ,@article-sections))
 (add-to-list 'org-latex-classes
 `("book" ,(concat "\\documentclass[twoside=false]{scrbook}"
 big-chap-preamble hanging-secnum-preamble)
 ,@book-sections))
 (add-to-list 'org-latex-classes
 `("blank" "[NO-DEFAULT-PACKAGES]\n[NO-PACKAGES]\n[EXTRA]"
 ,@article-sections))
 (add-to-list 'org-latex-classes
 `("bmc-article" "\\documentclass[article,code,maths]{bmc}\n[NO-DEFAULT-PACKAGES]\n[NO-PACKAGES]\n[EXTRA]"
 ,@article-sections))
 (add-to-list 'org-latex-classes
 `("bmc" "\\documentclass[code,maths]{bmc}\n[NO-DEFAULT-PACKAGES]\n[NO-PACKAGES]\n[EXTRA]"
 ,@book-sections))))

(setq org-latex-tables-booktabs t
 org-latex-hyperref-template
 <<grab("latex-fancy-hyperref")>>
 org-latex-reference-command "\\cref{%s}")
#+end_src

The =hyperref= setup needs to be handled separately however.
#+name: latex-fancy-hyperref
#+begin_src LaTeX
\providecolor{url}{HTML}{0077bb}
\providecolor{link}{HTML}{882255}
\providecolor{cite}{HTML}{999933}
\hypersetup{
 pdfauthor={%a},
 pdftitle={%t},
 pdfkeywords={%k},
 pdfsubject={%d},
 pdfcreator={%c},
 pdflang={%L},
 breaklinks=true,
 colorlinks=true,
 linkcolor=link,
 urlcolor=url,
 citecolor=cite
}
\urlstyle{same}
#+end_src

**** A cleverer preamble
***** Use case

We often want particular snippets of LaTeX in our documents preambles.
It's a pain to have to work out / remember them every time.

We could have every package we could possibly need in every one of
~org-latex-classes~, but that's /horribly/ inefficient and I don't want to think
about maintaining that.

Instead we can provide some granularity by splitting up the features we want,
and then take the experience to a whole new level by implementing a system to
automatically detect which features are desired and generating a preamble that
provides these features.

***** Conditional Content

Let's consider content we want in particular situations.

Captions could do with a bit of tweaking such that
+ You can easily have multiple captions
+ Links to figures take you to the /top/ of the figure (not the bottom)
+ Caption labels could do with being emphasised slightly more
+ Multiline captions should run ragged-right, but only when then span more than
 one line

#+name: org-latex-caption-preamble
#+begin_src LaTeX
\usepackage{subcaption}
\usepackage[hypcap=true]{caption}
\setkomafont{caption}{\sffamily\small}
\setkomafont{captionlabel}{\upshape\bfseries}
\captionsetup{justification=raggedright,singlelinecheck=true}
\usepackage{capt-of} % required by Org
#+end_src

The default checkboxes look rather ugly, so let's provide some prettier alternatives.

#+name: org-latex-checkbox-preamble
#+begin_src LaTeX
\newcommand{\checkboxUnchecked}{\square}
\newcommand{\checkboxTransitive}{\rlap{\raisebox{-0.1ex}{\hspace{0.35ex}\Large\textbf -}}\square}
\newcommand{\checkboxChecked}{\rlap{\raisebox{0.2ex}{\hspace{0.35ex}\scriptsize \ding{52}}}\square}
#+end_src

We set up a maths typesetting preamble [[*Maths notation conveniences][later on]], but it would be nice to save it
to a variable here:

#+begin_src emacs-lisp :noweb no-export :noweb-prefix no
(defvar org-latex-maths-preamble
 <<grab("latex-maths-conveniences")>>
 "Preamble that sets up a bunch of mathematical conveniences.")
#+end_src

It's nice to have "message blocks", things like info/warning/error/success.
A LaTeX macro should make them trivial to create.

#+name: org-latex-box-preamble
#+begin_src LaTeX
\ExplSyntaxOn
\NewCoffin\SBXBaseline
\NewCoffin\SBXHeader
\NewCoffin\SBXContent
\NewCoffin\SBXSideRule
\newbox\SBXSplitBox
\cs_new_protected:Nn \simplebox_start:nnn {
 % #1 ding, #3 name, #4 label
 \vcoffin_set:Nnn \SBXHeader { \linewidth - 1em } {
 \noindent\textcolor{#2}{#1}~\textcolor{#2}{\textbf{#3}}}
 \vcoffin_set:Nnw \SBXContent { \linewidth - 1.5em }
}
\cs_new_protected:Nn \simplebox_split_content:n {
 % #1 name
 \setbox\SBXSplitBox = \vbox:n { \vbox_unpack_drop:N \SBXContent }
 \dim_set:Nn \l_tmpa_dim { \dim_eval:n { \dim_min:nn { \pagegoal } { \textheight } - \pagetotal - 2\baselineskip } }
 \setbox0 = \vsplit\SBXSplitBox to \l_tmpa_dim
 \vcoffin_set:Nnn \SBXContent { \CoffinWidth \SBXContent } { \box0 %
 \vspace{-1.7\baselineskip}
 \noindent\textcolor{#1}{\textbf{\ldots }}
 \vspace*{-0.3\baselineskip}}
}
\cs_new_protected:Nn \simplebox_split_refill:nnnn {
 % #1 ding, #2 ding offset, #3 name, #4 label
 \simplebox_start:nnn {#1} {#3} {#4,\space{}\emph{continued}}
 \vspace*{-0.2\baselineskip}
 \vbox_unpack_drop:N \SBXSplitBox
 \vcoffin_set_end:
}
\cs_new_protected:Nn \simplebox_typeset:nn {
 % #1 name, #2 ding offset
 \vcoffin_set:Nnn \SBXBaseline {0pt} {\vbox{}}
 \SetHorizontalCoffin\SBXSideRule{\color{#1}\rule{1pt}{\dim_eval:n { \CoffinTotalHeight\SBXContent + \baselineskip }}}
 \JoinCoffins*\SBXContent[l,t]\SBXSideRule[l,t](\dim_eval:n {#2 - 1em}, \dim_eval:n{\baselineskip - 0.5em})
 \JoinCoffins*\SBXContent[l,t]\SBXHeader[l,B](-1em, 0.5\baselineskip)
 \JoinCoffins*\SBXBaseline[l,T]\SBXContent[l,T]
 \vspace{-0.5\baselineskip}
 \noindent\TypesetCoffin\SBXBaseline(\dim_eval:n { 1em - #2 + 1pt }, 0pt)
 \vspace*{\CoffinTotalHeight\SBXContent}
 \vspace{-0.08em} % Why on earth is this needed for baseline alignment!?
}
\cs_new_protected:Nn \simplebox_typeset_breakable:nnnn {
 % #1 ding, #2 ding offset, #3 name, #4 label
 \dim_set:Nn \l_tmpa_dim {\dim_eval:n { \CoffinTotalHeight\SBXContent + \baselineskip }}
 \dim_set:Nn \l_tmpb_dim { \dim_eval:n { \dim_min:nn { \pagegoal } { \textheight } - \pagetotal - \baselineskip } }
 \dim_compare:nNnTF {\l_tmpa_dim} > {\l_tmpb_dim} {
 \simplebox_split_content:n {#3}
 \simplebox_typeset:nn {#3} {#2}
 \newpage
 \simplebox_split_refill:nnnn {#1} {#2} {#3} {#4}
 \simplebox_typeset_breakable:nnnn {#1} {#2} {#3} {#4}
 }{
 \simplebox_typeset:nn {#3} {#2}
 }
}
\NewDocumentCommand{\defsimplebox}{O{\ding{117}} O{0.35em} O{#1} O{#2} m m m}{
 % #1 ding, #2 ding offset, #3 alt-ding, #4 alt-ding offset,
 % #5 name, #6 colour, #7 default label
 \definecolor{#5}{HTML}{#6}
 \NewDocumentEnvironment{#5}{ O{#7} }{
 \simplebox_start:nnn {#1} {#5} {##1}
 }{
 \vcoffin_set_end:
 \simplebox_typeset_breakable:nnnn {#3} {#4} {#5} {##1}
 }
}
\ExplSyntaxOff
#+end_src

Lastly, we will pass this content into some global variables we for ease of
access.

#+begin_src emacs-lisp :noweb no-export :noweb-prefix no
(defvar org-latex-embed-files-preamble
 <<grab("org-latex-embed-files-preamble")>>
 "Preamble that embeds files within the pdf.")

(defvar org-latex-caption-preamble
 <<grab("org-latex-caption-preamble")>>
 "Preamble that improves captions.")

(defvar org-latex-checkbox-preamble
 <<grab("org-latex-checkbox-preamble")>>
 "Preamble that improves checkboxes.")

(defvar org-latex-box-preamble
 <<grab("org-latex-box-preamble")>>
 "Preamble that provides a macro for custom boxes.")
#+end_src

In the "universal preamble", we already embed the source =.org= file, but it would
be nice to embed all the tangled files. This is fairly easy to accomplish by
mapping each tangled file to a form which embeds the file if it exists.
Considering we're going this far, why not add a dedicated =#+emded= keyword, so we
can embed whatever we want.

#+begin_src emacs-lisp
(defun org-latex-embed-extra-files ()
 "Return a string that uses embedfile to embed all tangled files."
 (mapconcat
 (lambda (file-desc)
 (format "\\IfFileExists{%1$s}{\\embedfile[desc=%2$s]{%1$s}}{}"
 (thread-last (car file-desc)
 (replace-regexp-in-string "\\\\" "\\\\\\\\")
 (replace-regexp-in-string "~" "\\\\string~"))
 (cdr file-desc)))
 (append
 (let (tangle-fspecs) ; All files being tangled to.
 (org-element-cache-map
 (lambda (src)
 (when (and (not (org-in-commented-heading-p nil src))
 (not (org-in-archived-heading-p nil src)))
 (when-let ((lang (org-element-property :language src))
 (params
 (apply
 #'org-babel-merge-params
 (append
 (org-with-point-at (org-element-property :begin src)
 (org-babel-params-from-properties lang t))
 (mapcar
 (lambda (h)
 (org-babel-parse-header-arguments h t))
 (cons (org-element-property :parameters src)
 (org-element-property :header src))))))
 (tangle-value
 (pcase (alist-get :tangle params)
 ((and (pred stringp) (pred (string-match-p "^(.*)$")) expr)
 (eval (read expr)))
 (val val)))
 (tangle-file
 (pcase tangle-value
 ((or "no" (guard (member (alist-get :export-embed params) '("no" "nil"))))
 nil)
 ("yes"
 (file-name-with-extension
 (file-name-nondirectory (buffer-file-name))
 (or (alist-get lang org-babel-tangle-lang-exts nil nil #'equal)
 lang)))
 (val val))))
 (unless (assoc tangle-file tangle-fspecs)
 (push
 (cons tangle-file (format "Tangled %s file" lang))
 tangle-fspecs)))))
 :granularity 'element
 :restrict-elements '(src-block))
 (nreverse tangle-fspecs))
 (let (extra-files)
 (save-excursion
 (goto-char (point-min))
 (while (re-search-forward "^[\t]*#\\+embed:" nil t)
 (let* ((file-desc (split-string (org-element-property :value (org-element-at-point)) " :desc\\(?:ription\\)? ")))
 (push (cons (car file-desc) (or (cdr file-desc) "Extra file")) extra-files))))
 (nreverse extra-files)))
 "\n"))
#+end_src

Now all tangled files will be embedded, and we can embed arbitrary files like
so:
#+begin_src org
,#+embed: some-file :description flavour text about the file
#+end_src

This currently won't complete or anything like that, as we haven't told Org that
it's a keyword yet. It's also LaTeX-specific, so maybe it should be changed to
=#+latex_embed= or something like that.

***** Content-feature-preamble association

Initially this idea was implemented with an alist that associated a construct
that would search the current Org file for an indication that some feature was
needed, with a LaTeX snippet to be inserted in the preamble which would provide
that feature.
This is all well and good when there is a bijection between detected features
and the LaTeX code needed to support those features, but in many cases this
relation is not injective.

To better model the reality of the situation, I add an extra layer to this
process where each detected feature gives a list of required "feature flags".
Simply be merging the lists of feature flags we no longer have to require
injectivity to avoid LaTeX duplication. Then the extra layer forms a bijection
between there feature flags and a specification which can be used to implement
the feature.

This model also provides a number of nice secondary benefits, such as a simple
implementation of feature dependency.

#+begin_src dot :file misc/org-latex-clever-preamble.svg :exports none
digraph {
 graph [bgcolor="transparent"];
 node [shape="underline" penwidth="2" width="1.3" style="rounded,filled" fillcolor="#efefef" color="#c9c9c9" fontcolor="#000000" fontname="overpass"];
 edge [color="#aaaaaa" penwidth="1.2"]
 rankdir=LR

 node[group=a,color="#2ec27e"]
 "file:*.svg"
 "file:*.jpeg"
 "file:*.png"
 "#+caption"
 "xkcd:*"
 node[group=b,color="#f5c211"]
 "svg"
 "image"
 "caption"
 node[group=c,color="#813d9c"]
 "(TeX) svg"
 "(TeX) graphicx"
 "(TeX) caption"

 "file:*.svg" -> "svg" -> "(TeX) svg"
 "file:*.jpeg" -> "image" -> "(TeX) graphicx"
 "file:*.png" -> "image"
 "(TeX) svg":s -> "(TeX) graphicx":n [constraint=false]
 "#+caption" -> "caption" -> "(TeX) caption"
 "xkcd:*" -> "image"
 "xkcd:*" -> "caption"
}
#+end_src

#+caption: Association between Org features, feature flags, and LaTeX snippets required.
#+attr_html: :class invertible :alt DAG showing how Org features flow through to LaTeX :style max-width:min(24em,100%)
#+attr_latex: :width 0.6\linewidth
[[file:misc/org-latex-clever-preamble.svg]]

First we will implement the feature detection component of this model. I'd like
this to be able to use as much state information as possible, so the feature
tests should be very versatile.

#+begin_src emacs-lisp
(defvar org-latex-embed-files t
 "Embed the source .org, .tex, and any tangled files.")
(defvar org-latex-use-microtype t
 "Use the microtype pakage.")
(defvar org-latex-italic-quotes t
 "Make \"quote\" environments italic.")
(defvar org-latex-par-sep t
 "Vertically seperate paragraphs, and remove indentation.")

(org-export-update-features 'latex
 ((image caption)
 :condition "\\[\\[xkcd:"))
#+end_src

Then we provide a way to generate the preamble that provides those features. In
addition to the features named in ~org-latex-conditional-features~ we'll also
create /meta-features/, which can be required by other features (with =:requires=).
For further control I some features may only be used when certain other features
are active (with =:when=), and masked by other features (with =:prevents=). I will
use the convention of starting meta-features with =.=, to make their nature more
readily apparent.

Another consideration in LaTeX is load order, which matters in some cases.
Beyond that, it's nice to have some sort of sensible ordering. For this I'll
introduce an =:order= keyword. Using this I'll arrange snippets as follows.

+ =0= Typography
 - =0= Fonts themselves
 - =0.1= Typographic tweaks (=microtype=)
 - =0.2= Maths setup
 - =0.3= Maths font
 - =0.4= Extra text shaping (~\acr~)
 - =0.5-0.9= Miscellaneous text modifications, trying to put shorter snippets first
+ =1= (/default/)
+ =2= Tables and figures
+ =3= Miscellaneous short content
+ =4= Fancy boxes
+ =70= setup for non-precompilable content
+ =80= non-precompileable content

#+begin_src emacs-lisp
(org-export-update-features 'latex
 (maths
 :snippet org-latex-maths-preamble
 :order 0.2)
 (cleveref
 :condition "cref:\\|\\cref{\\|\\[\\[[^\\]+\n?[^\\]\\]\\]"
 :snippet "\\usepackage[capitalize]{cleveref}
% Fix for cleveref in order to work with long range of pages
% See https://tex.stackexchange.com/a/620066
\\makeatletter
\\newcommand*{\\@setcpagerefrange}[3]{%
 \\@@setcpagerefrange{#1}{#2}{cref}{#3}}
\\newcommand*{\\@setCpagerefrange}[3]{%
 \\@@setcpagerefrange{#1}{#2}{Cref}{#3}}
\\newcommand*{\\@setlabelcpagerefrange}[3]{%
 \\@@setcpagerefrange{#1}{#2}{labelcref}{#3}}
\\makeatother"
 :order 1)
 (caption
 :snippet org-latex-caption-preamble
 :order 2.1)
 (microtype
 :condition org-latex-use-microtype
 :snippet "\\usepackage[activate={true,nocompatibility},final,tracking=true,kerning=true,spacing=true,factor=2000]{microtype}"
 :order 0.1)
 (embed-files
 :condition org-latex-embed-files
 :snippet "\\usepackage[include]{embedall}"
 :order 70)
 (embed-source
 :condition t
 :when embed-files
 :snippet "\\IfFileExists{./\\jobname.org}{\\embedfile[desc=Primary source file]{\\jobname.org}}{}
\\IfFileExists{./\\jobname.tex}{\\embedfile[desc=The (generated) LaTeX source file]{\\jobname.tex}}{}"
 :no-precompile t
 :after embed-files
 :order 80)
 (embed-tangled
 :condition (and org-latex-embed-files
 "^[\t]*#\\+embed\\|^[\t]*#\\+begin_src\\|^[\t]*#\\+BEGIN_SRC")
 :requires embed-files
 :snippet (org-latex-embed-extra-files)
 :no-precompile t
 :after (embed-source embed-files)
 :order 80)
 (acronym
 :condition "[;\\\\]?\\b[A-Z][A-Z]+s?[^A-Za-z]"
 :snippet "\\newcommand{\\acr}[1]{\\protect\\textls*[110]{\\scshape #1}}\n\\newcommand{\\acrs}{\\protect\\scalebox{.91}[.84]{\\hspace{0.15ex}s}}"
 :order 0.4)
 (box-drawing
 :condition "[\u2500-\u259F]"
 :snippet "\\usepackage{pmboxdraw}"
 :order 0.05)
 (italic-quotes
 :condition (and org-latex-italic-quotes "^[\t]*#\\+begin_quote\\|\\\\begin{quote}")
 :snippet "\\renewcommand{\\quote}{\\list{}{\\rightmargin\\leftmargin}\\item\\relax\\em}\n"
 :order 0.5)
 (par-sep
 :condition org-latex-par-sep
 :snippet "\\setlength{\\parskip}{\\baselineskip}\n\\setlength{\\parindent}{0pt}"
 :order 0.5)
 (.pifont
 :snippet "\\usepackage{pifont}")
 (.xcoffins
 :snippet "\\usepackage{xcoffins}")
 (checkbox
 :condition "^[\t]*\\(?:[-+*]\\|[0-9]+[.)]\\|[A-Za-z]+[.)]\\) \\[[-X]\\]"
 :requires .pifont
 :snippet (concat (unless (memq 'maths features)
 "\\usepackage{amssymb} % provides \\square")
 org-latex-checkbox-preamble)
 :after .pifont)
 (.fancy-box
 :requires (.pifont .xcoffins)
 :snippet org-latex-box-preamble
 :after (.pifont .xcoffins))
 (box-warning
 :condition "^[\t]*#\\+begin_warning\\|\\\\begin{warning}"
 :requires .fancy-box
 :snippet "\\defsimplebox{warning}{e66100}{Warning}"
 :after .fancy-box)
 (box-info
 :condition "^[\t]*#\\+begin_info\\|\\\\begin{info}"
 :requires .fancy-box
 :snippet "\\defsimplebox{info}{3584e4}{Information}"
 :after .fancy-box)
 (box-notes
 :condition "^[\t]*#\\+begin_notes\\|\\\\begin{notes}"
 :requires .fancy-box
 :snippet "\\defsimplebox{notes}{26a269}{Notes}"
 :after .fancy-box)
 (box-success
 :condition "^[\t]*#\\+begin_success\\|\\\\begin{success}"
 :requires .fancy-box
 :snippet "\\defsimplebox{success}{26a269}{\\vspace{-\\baselineskip}}"
 :after .fancy-box)
 (box-error
 :condition "^[\t]*#\\+begin_error\\|\\\\begin{error}"
 :requires .fancy-box
 :snippet "\\defsimplebox{error}{c01c28}{Important}"
 :after .fancy-box)
 (hanging-section-numbers
 :condition
 (let ((latex-class
 (assoc (plist-get info :latex-class) (plist-get info :latex-classes))))
 (and (cadr latex-class)
 (string-match-p "\\`\\\\documentclass\\(?:\\[.*\\]\\)?{scr" (cadr latex-class))
 (not (string-match-p "[[,]twocolumn[],]" (or (plist-get info :latex-class-options) "")))))
 :snippet
 "\\renewcommand\\sectionformat{\\llap{\\thesection\\autodot\\enskip}}
\\renewcommand\\subsectionformat{\\llap{\\thesubsection\\autodot\\enskip}}
\\renewcommand\\subsubsectionformat{\\llap{\\thesubsubsection\\autodot\\enskip}}")
 (toc-hidelinks
 :condition
 (or (plist-get info :with-toc)
 (save-excursion
 (goto-char (point-min))
 (re-search-forward "\\tableofcontents" nil t)))
 :snippet "%% hide links styles in toc
\\NewCommandCopy{\\oldtoc}{\\tableofcontents}
\\renewcommand{\\tableofcontents}{\\begingroup\\hypersetup{hidelinks}\\oldtoc\\endgroup}"))
#+end_src

***** Content-feature graph

#+name: generate-cfg
#+begin_src emacs-lisp :var backend="" :noweb-ref none
(with-temp-buffer
 (let ((lambda-count 0)
 (regexp-count 0)
 (string-count 0)
 (nil-count 0)
 cond-names feats impl-names)
 (dolist (cond-feats (org-export-get-all-feature-conditions (intern backend)))
 (dolist (feat (cdr cond-feats))
 (let ((cond-name
 (pcase (car cond-feats)
 ((and (pred symbolp) f)
 (symbol-name f))
 ((and (pred stringp) f)
 (format "Regexp #%d" (cl-incf regexp-count)))
 ((and (pred functionp) f)
 (format "λ #%d" (cl-incf lambda-count)))
 (_ "???"))))
 (push cond-name cond-names)
 (push feat feats)
 (insert (format "\"%s\" -> \"%s\"\n" cond-name feat)))))
 (dolist (feat-impl (org-export-get-all-feature-implementations (intern backend)))
 (let ((impl-name
 (pcase (plist-get (cdr feat-impl) :snippet)
 ((pred not)
 (format "nil #%d" (cl-incf nil-count)))
 ((and (pred symbolp) imp)
 (symbol-name imp))
 ((pred stringp)
 (format "String #%d" (cl-incf string-count)))
 ((pred functionp)
 (format "λ #%d" (cl-incf lambda-count))))))
 (push impl-name impl-names)
 (push (car feat-impl) feats)
 (insert (format "\"%s\" -> \"%s\"\n" (car feat-impl) impl-name))
 (dolist (req (ensure-list (plist-get (cdr feat-impl) :requires)))
 (insert (format "\"%s\" -> \"%s\" [color=\"#a991f1\" labelfontcolor=\"#a991f1\"]" impl-name req)))
 (dolist (prv (ensure-list (plist-get (cdr feat-impl) :prevents)))
 (insert (format "\"%s\" -> \"%s\" [color=\"#ff665c\" penwidth=\"0.9\" arrowhead=empty]" impl-name prv)))
 (dolist (whn (ensure-list (plist-get (cdr feat-impl) :when)))
 (insert (format "\"%s\" -> \"%s\" [style=\"dashed\" color=\"#4db5bd\" penwidth=\"0.9\" arrowhead=empty labelfontcolor=\"#4db5bd\" taillabel=\"%s\"]" whn impl-name impl-name)))
 (dolist (bfr (ensure-list (plist-get (cdr feat-impl) :before)))
 (insert (format "\"%s\" -> \"%s\" [style=\"dotted\" color=\"#fcce7b\" penwidth=\"1.4\" arrowhead=halfopen]" impl-name bfr)))
 (dolist (afr (ensure-list (plist-get (cdr feat-impl) :after)))
 (insert (format "\"%s\" -> \"%s\" [style=\"dotted\" color=\"#7bc275\" penwidth=\"1.4\" arrowhead=halfopen]" afr impl-name)))))
 (goto-char (point-min))
 (insert (concat "subgraph cluster_0 {\n peripheries=0\n \""
 (string-join (nreverse cond-names) "\" [color=\"#e69055\"]\n \"")
 "\" [color=\"#e69055\"]\n}\n")
 (concat "subgraph cluster_1 {\n peripheries=0\n \""
 (string-join (mapcar #'symbol-name (nreverse (delete-dups feats))) "\"\n \"")
 "\"\n}\n")
 (concat "subgraph cluster_2 {\n peripheries=0\n \""
 (string-join (nreverse impl-names) "\" [color=\"#4db5bd\"]\n \"")
 "\" [color=\"#4db5bd\"]\n}\n"))
)
 (buffer-string))
#+end_src

#+begin_src dot :cmd twopi :file misc/ox-latex-cfg.svg :results file graphics :noweb no-export
digraph {
 graph [bgcolor="transparent", ranksep="2.5"];
 node [shape="underline" penwidth="2" style="rounded,filled" fillcolor="#efefef" color="#c9c9c9" fontcolor="#000000" fontname="Alegreya Sans"];
 edge [color="#9ca0a4" penwidth="1.2" fontname="Alegreya Sans"]
 rankdir="LR"
 <<generate-cfg("beamer")>>
}
#+end_src

[[file:misc/ox-latex-cfg.svg]]

***** Adding xcolor as an unconditional package

=xcolor= is just convenient to have.

#+begin_src emacs-lisp
(setq org-latex-packages-alist
 '(("" "xcolor" t)))
#+end_src

**** Font collections

Using the lovely conditional preamble, I'll define a number of font collections
that can be used for LaTeX exports. Who knows, maybe I'll use it with other
export formats too at some point.

To start with I'll create a default state variable and register =fontset= as part
of =#+options=.

#+begin_src emacs-lisp
(defvar org-latex-default-fontset 'alegreya
 "Fontset from `org-latex-fontsets' to use by default.
As cm (computer modern) is TeX's default, that causes nothing
to be added to the document.

If \"nil\" no custom fonts will ever be used.")

(eval '(cl-pushnew '(:latex-font-set nil "fontset" org-latex-default-fontset)
 (org-export-backend-options (org-export-get-backend 'latex))))
#+end_src

Then a function is needed to generate a LaTeX snippet which applies the fontset. It
would be nice if this could be done for individual styles and use different
styles as the main document font. If the individual typefaces for a fontset are
defined individually as
src_elisp{:serif}, src_elisp{:sans}, src_elisp{:mono}, and src_elisp{:maths}.
I can use those to generate LaTeX for subsets of the full fontset. Then, if I
don't let any fontset names have =-= in them, I can use =-sans= and =-mono= as
suffixes that specify the document font to use.

#+begin_src emacs-lisp
(defun org-latex-fontset-entry ()
 "Get the fontset spec of the current file.
Has format \"name\" or \"name-style\" where 'name' is one of
the cars in `org-latex-fontsets'."
 (let ((fontset-spec
 (symbol-name
 (or (car (delq nil
 (mapcar
 (lambda (opt-line)
 (plist-get (org-export--parse-option-keyword opt-line 'latex)
 :latex-font-set))
 (cdar (org-collect-keywords '("OPTIONS"))))))
 org-latex-default-fontset))))
 (cons (intern (car (split-string fontset-spec "-")))
 (when (cadr (split-string fontset-spec "-"))
 (intern (concat ":" (cadr (split-string fontset-spec "-"))))))))

(defun org-latex-fontset (&rest desired-styles)
 "Generate a LaTeX preamble snippet which applies the current fontset for DESIRED-STYLES."
 (let* ((fontset-spec (org-latex-fontset-entry))
 (fontset (alist-get (car fontset-spec) org-latex-fontsets)))
 (if fontset
 (string-trim
 (concat
 (mapconcat
 (lambda (style)
 (when (plist-get fontset style)
 (concat (plist-get fontset style) "\n")))
 desired-styles
 "")
 (when (memq (cdr fontset-spec) desired-styles)
 (pcase (cdr fontset-spec)
 (:serif "\\renewcommand{\\familydefault}{\\rmdefault}\n")
 (:sans "\\renewcommand{\\familydefault}{\\sfdefault}\n")
 (:mono "\\renewcommand{\\familydefault}{\\ttdefault}\n")))))
 (error "Font-set %s is not provided in org-latex-fontsets" (car fontset-spec)))))
#+end_src

Now that all the functionality has been implemented, we should hook it into our
preamble generation.

#+begin_src emacs-lisp
(org-export-update-features 'latex
 (custom-font
 :condition org-latex-default-fontset
 :snippet (org-latex-fontset :serif :sans :mono)
 :order 0)
 (custom-maths-font
 :condition t
 :when (custom-font maths)
 :snippet (org-latex-fontset :maths)
 :after (custom-font maths)
 :order 0))
#+end_src

Finally, we just need to add some fonts.

#+begin_src emacs-lisp
(defvar org-latex-fontsets
 '((cm nil) ; computer modern
 (## nil) ; no font set
 (alegreya
 :serif "\\usepackage[osf]{Alegreya}"
 :sans "\\usepackage{AlegreyaSans}"
 :mono "\\usepackage[scale=0.88]{sourcecodepro}"
 :maths "\\let\\Bbbk\\relax\n\\usepackage[varbb]{newpxmath}")
 (biolinum
 :serif "\\usepackage[osf]{libertineRoman}"
 :sans "\\usepackage[sfdefault,osf]{biolinum}"
 :mono "\\usepackage[scale=0.88]{sourcecodepro}"
 :maths "\\usepackage[libertine,varvw]{newtxmath}")
 (fira
 :sans "\\usepackage[sfdefault,scale=0.85]{FiraSans}"
 :mono "\\usepackage[scale=0.80]{FiraMono}"
 :maths "\\usepackage{newtxsf} % change to firamath in future?")
 (kp
 :serif "\\usepackage{kpfonts}")
 (newpx
 :serif "\\usepackage{newpxtext}"
 :sans "\\usepackage{gillius}"
 :mono "\\usepackage[scale=0.9]{sourcecodepro}"
 :maths "\\let\\Bbbk\\relax\n\\usepackage[varbb]{newpxmath}")
 (noto
 :serif "\\usepackage[osf]{noto-serif}"
 :sans "\\usepackage[osf]{noto-sans}"
 :mono "\\usepackage[scale=0.96]{noto-mono}"
 :maths "\\usepackage{notomath}")
 (plex
 :serif "\\usepackage{plex-serif}"
 :sans "\\usepackage{plex-sans}"
 :mono "\\usepackage[scale=0.95]{plex-mono}"
 :maths "\\usepackage{newtxmath}") ; may be plex-based in future
 (source
 :serif "\\usepackage[osf,semibold]{sourceserifpro}"
 :sans "\\usepackage[osf,semibold]{sourcesanspro}"
 :mono "\\usepackage[scale=0.92]{sourcecodepro}"
 :maths "\\usepackage{newtxmath}") ; may be sourceserifpro-based in future
 (times
 :serif "\\usepackage{newtxtext}"
 :maths "\\usepackage{newtxmath}"))
 "Alist of fontset specifications.
Each car is the name of the fontset (which cannot include \"-\").

Each cdr is a plist with (optional) keys :serif, :sans, :mono, and :maths.
A key's value is a LaTeX snippet which loads such a font.")
#+end_src

When we're using Alegreya we can apply a lovely little tweak to =tabular= which
(locally) changes the figures used to lining fixed-width.

#+begin_src emacs-lisp
(org-export-update-features 'latex
 (alegreya-typeface
 :condition (string= (car (org-latex-fontset-entry)) "alegreya")
 :snippet nil)
 (alegreya-tabular-figures
 :condition t
 :when (alegreya-typeface table)
 :snippet "\
\\makeatletter
% tabular lining figures in tables
\\renewcommand{\\tabular}{\\AlegreyaTLF\\let\\@halignto\\@empty\\@tabular}
\\makeatother"
 :after custom-font
 :order 0.5))
#+end_src

Due to Alegreya's metrics, the =\LaTeX= symbol doesn't quite look right. We
can correct for this by redefining it with subtlety shifted kerning.

#+begin_src emacs-lisp
(org-export-update-features 'latex
 (alegreya-latex-symbol
 :condition "LaTeX"
 :when alegreya-typeface
 :snippet "\
\\makeatletter
% Kerning around the A needs adjusting
\\DeclareRobustCommand{\\LaTeX}{L\\kern-.24em%
 {\\sbox\\z@ T%
 \\vbox to\\ht\\z@{\\hbox{\\check@mathfonts
 \\fontsize\\sf@size\\z@
 \\math@fontsfalse\\selectfont
 A}%
 \\vss}%
 }%
 \\kern-.10em%
 \\TeX}
\\makeatother"
 :after alegreya-typeface
 :order 0.5))
#+end_src

**** Maths notation conveniences
:PROPERTIES:
:header-args:LaTeX: :noweb-ref latex-maths-conveniences
:END:

Maths has a way of popping up relentlessly. I think this says something both
about me and the subject itself. While the LaTeX set of commands is quite
reasonable, we can make a few common bits of notation a tad more convenient.

***** Packages

First, there are a few useful packages we want to use.

#+begin_src LaTeX
%% Maths-related packages
% More maths environments, commands, and symbols.
\usepackage{amsmath, amssymb}
% Slanted fractions with \sfrac{a}{b}, in text and maths.
\usepackage{xfrac}
% Visually cancel expressions with \cancel{value} and \cancelto{expression}{value}
\usepackage[makeroom]{cancel}
% Improvements on amsmath and utilities for mathematical typesetting
\usepackage{mathtools}
#+end_src

***** Custom delimiters

Next up we want to make the various types of rounding-related and absolute value
delimitors accessible as commands.

#+begin_src LaTeX
% Deliminators
\DeclarePairedDelimiter{\abs}{\lvert}{\rvert}
\DeclarePairedDelimiter{\norm}{\lVert}{\rVert}

\DeclarePairedDelimiter{\ceil}{\lceil}{\rceil}
\DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor}
\DeclarePairedDelimiter{\round}{\lfloor}{\rceil}
#+end_src

***** Number sets

Then we have the various common number sets, it would be nice to have a
convenient way of typing them and optionally giving them powers. It's fairly
easy to support both =\XX= and =\XX[n]=.

#+begin_src LaTeX
\newcommand{\RR}[1][]{\ensuremath{\ifstrempty{#1}{\mathbb{R}}{\mathbb{R}^{#1}}}} % Real numbers
\newcommand{\NN}[1][]{\ensuremath{\ifstrempty{#1}{\mathbb{N}}{\mathbb{N}^{#1}}}} % Natural numbers
\newcommand{\ZZ}[1][]{\ensuremath{\ifstrempty{#1}{\mathbb{Z}}{\mathbb{Z}^{#1}}}} % Integer numbers
\newcommand{\QQ}[1][]{\ensuremath{\ifstrempty{#1}{\mathbb{Q}}{\mathbb{Q}^{#1}}}} % Rational numbers
\newcommand{\CC}[1][]{\ensuremath{\ifstrempty{#1}{\mathbb{C}}{\mathbb{C}^{#1}}}} % Complex numbers
#+end_src

***** Derivatives

Derivatives are actually a bit of a pain to typeset, it would be nice to have a
=\dv= command that supports:
+ =\dv{x}= for the derivative with respect to =x=
+ =\dv{f}{x}= for the derivative of =f= with respect to =x=
+ =\dv[2]{f}{x}= for the second order derivative of =f= with respect to =x=

Similarly, it would be nice to have a partial derivate counterpart =\pdv= which
behaves in a similar way, but with the possibility of providing multiple
comma-delimited variables --- e.g. =\pdv{f}{x,y,z}=.

#+begin_src LaTeX
% Easy derivatives
\ProvideDocumentCommand\dv{o m g}{%
 \IfNoValueTF{#3}{%
 \dv[#1]{}{#2}}{%
 \IfNoValueTF{#1}{%
 \frac{\dd #2}{\dd #3}%
 }{\frac{\dd[#1] #2}{\dd {#3}^{#1}}}}}
% Easy partial derivatives
\ExplSyntaxOn
\ProvideDocumentCommand\pdv{o m g}{%
 \IfNoValueTF{#3}{\pdv[#1]{}{#2}}%
 {\ifnum\clist_count:n{#3}<2
 \IfValueTF{#1}{\frac{\partial^{#1} #2}{\partial {#3}^{#1}}}%
 {\frac{\partial #2}{\partial #3}}
 \else
 \frac{\IfValueTF{#1}{\partial^{#1}}{\partial^{\clist_count:n{#3}}}#2}%
 {\clist_map_inline:nn{#3}{\partial ##1 \,}\!}
 \fi}}
\ExplSyntaxOff
#+end_src

***** Common operators

The default set of operators could benefit from a bit of expansion.

#+begin_src LaTeX
% Laplacian
\DeclareMathOperator{\Lap}{\mathcal{L}}

% Statistics
\DeclareMathOperator{\Var}{Var} % varience
\DeclareMathOperator{\Cov}{Cov} % covarience
\newcommand{\EE}{\ensuremath{\mathbb{E}}} % expected value
\DeclareMathOperator{\E}{E} % expected value
#+end_src

***** Slanted inequalities

As a matter of personal taste, I prefer the slanted less/greater than or equal
to operators, and would like to use them by default.

#+begin_src LaTeX
% I prefer the slanted \leq/\geq
\let\barleq\leq % Save them in case they're every wanted
\let\bargeq\geq
\renewcommand{\leq}{\leqslant}
\renewcommand{\geq}{\geqslant}
#+end_src

***** Alignment of matrix columns

By default, everything in a matrix is centred, which I actually find often
undesirable. It would be much nicer to take the alignment as an optional
argument of the environment, and default to right-alignment.

#+begin_src LaTeX
% Redefine the matrix environment to allow for alignment
% via an optional argument, and use r as the default.
\makeatletter
\renewcommand*\env@matrix[1][r]{\hskip -\arraycolsep%
 \let\@ifnextchar\new@ifnextchar
 \array{*\c@MaxMatrixCols #1}}
\makeatother
#+end_src

***** Slanted derivative "d"

Determining an appropriate styling for a derivative "d" (e.g. "dx") is
surprisingly hard, as the "d" is neither:
+ An operator (which are typeset as upright roman)
+ A variable (which are typeset as italic roman)

The ISO 80000-2 standard (2009) specifies that it should be upright, however (a)
it is still not an operator, (b) not used in any maths book I've seen, and (c)
doesn't look very good. I'm not entirely comfortable with the variable styling
either though, so perhaps something else is in order?

After trying a few different options, I rather like the idea of using a /slanted
roman "d"/. This stylistically works for me, while being just distinct enough
from other faces. As long as we are creating a PDF, we can apply a transform
that slants a "d".

#+begin_src LaTeX
% Slanted roman "d" for derivatives
\ifcsname pdfoutput\endcsname
 \ifnum\pdfoutput>0 % PDF
 \newsavebox\diffdbox{}
 \newcommand{\slantedromand}{{\mathpalette\makesl{d}}}
 \newcommand{\makesl}[2]{%
 \begingroup
 \sbox{\diffdbox}{$\mathsurround=0pt#1\mathrm{#2}$}%
 \pdfsave%
 \pdfsetmatrix{1 0 0.2 1}%
 \rlap{\usebox{\diffdbox}}%
 \pdfrestore%
 \hskip\wd\diffdbox%
 \endgroup}
 \else % DVI
 \newcommand{\slantedromand}{d} % fallback
 \fi
\else % Also DVI
 \newcommand{\slantedromand}{d} % fallback
\fi
#+end_src

Now there's the matter of /placing/ the "d", or rather adjusting the space around
it. After much fiddling, I've ended up with the following.

#+begin_src LaTeX
% Derivative d^n, nicely spaced
\makeatletter
\newcommand{\dd}[1][]{\mathop{}\!%
 \expandafter\ifx\expandafter&\detokenize{#1}&% \ifstrempty from etoolbox
 \slantedromand\@ifnextchar^{\hspace{0.2ex}}{\hspace{0.1ex}}
 \else
 \slantedromand\hspace{0.2ex}^{#1}
 \fi}
\makeatother
#+end_src

While =\dd= isn't much effort to type, it would be much cleaner to be able to do
src_LaTeX{\int x^2 \d x}. The problem with defining =\d= is that it is already used
for the under-dot accent. However, since this is a text-mode (only) accent, and
defined with src_LaTeX{\@dec@text@cmd\newcommand} instead of
src_LaTeX{\DeclareRobustCommand} we can redefine the command to mean =\dd= in
math-mode.

#+begin_src LaTeX
\NewCommandCopy{\daccent}{\d}
\renewcommand{\d}{\ifmmode\dd\else\daccent\fi}
#+end_src

**** Cover page

To make a nice cover page, a simple method that comes to mind is just redefining
=\maketitle=. To get precise control over the positioning we'll use the =tikz=
package, and then add in the Tikz libraries =calc= and =shapes.geometric= to make
some nice decorations for the background.

I'll start off by setting up the required additions to the preamble.
This will accomplish the following:
+ Load the required packages
+ Redefine =\maketitle=
+ Draw an Org icon with Tikz to use in the cover page (it's a little easter egg)
+ Start a new page after the table of contents by redefining =\tableofcontents=

#+name: latex-cover-page
#+begin_src LaTeX
\usepackage{tikz}
\usetikzlibrary{shapes.geometric}
\usetikzlibrary{calc}

\newsavebox\orgicon
\begin{lrbox}{\orgicon}
 \begin{tikzpicture}[y=0.80pt, x=0.80pt, inner sep=0pt, outer sep=0pt]
 \path[fill=black!6] (16.15,24.00) .. controls (15.58,24.00) and (13.99,20.69) .. (12.77,18.06)arc(215.55:180.20:2.19) .. controls (12.33,19.91) and (11.27,19.09) .. (11.43,18.05) .. controls (11.36,18.09) and (10.17,17.83) .. (10.17,17.82) .. controls (9.94,18.75) and (9.37,19.44) .. (9.02,18.39) .. controls (8.32,16.72) and (8.14,15.40) .. (9.13,13.80) .. controls (8.22,9.74) and (2.18,7.75) .. (2.81,4.47) .. controls (2.99,4.47) and (4.45,0.99) .. (9.15,2.41) .. controls (14.71,3.99) and (17.77,0.30) .. (18.13,0.04) .. controls (18.65,-0.49) and (16.78,4.61) .. (12.83,6.90) .. controls (10.49,8.18) and (11.96,10.38) .. (12.12,11.15) .. controls (12.12,11.15) and (14.00,9.84) .. (15.36,11.85) .. controls (16.58,11.53) and (17.40,12.07) .. (18.46,11.69) .. controls (19.10,11.41) and (21.79,11.58) .. (20.79,13.08) .. controls (20.79,13.08) and (21.71,13.90) .. (21.80,13.99) .. controls (21.97,14.75) and (21.59,14.91) .. (21.47,15.12) .. controls (21.44,15.60) and (21.04,15.79) .. (20.55,15.44) .. controls (19.45,15.64) and (18.36,15.55) .. (17.83,15.59) .. controls (16.65,15.76) and (15.67,16.38) .. (15.67,16.38) .. controls (15.40,17.19) and (14.82,17.01) .. (14.09,17.32) .. controls (14.70,18.69) and (14.76,19.32) .. (15.50,21.32) .. controls (15.76,22.37) and (16.54,24.00) .. (16.15,24.00) -- cycle(7.83,16.74) .. controls (6.83,15.71) and (5.72,15.70) .. (4.05,15.42) .. controls (2.75,15.19) and (0.39,12.97) .. (0.02,10.68) .. controls (-0.02,10.07) and (-0.06,8.50) .. (0.45,7.18) .. controls (0.94,6.05) and (1.27,5.45) .. (2.29,4.85) .. controls (1.41,8.02) and (7.59,10.18) .. (8.55,13.80) -- (8.55,13.80) .. controls (7.73,15.00) and (7.80,15.64) .. (7.83,16.74) -- cycle;
 \end{tikzpicture}
\end{lrbox}

\makeatletter
\g@addto@macro\tableofcontents{\clearpage}
\renewcommand\maketitle{
 \thispagestyle{empty}
 \hyphenpenalty=10000 % hyphens look bad in titles
 \renewcommand{\baselinestretch}{1.1}
 \NewCommandCopy{\oldtoday}{\today}
 \renewcommand{\today}{\LARGE\number\year\\\large%
 \ifcase \month \or Jan\or Feb\or Mar\or Apr\or May \or Jun\or Jul\or Aug\or Sep\or Oct\or Nov\or Dec\fi
 ~\number\day}
 \begin{tikzpicture}[remember picture,overlay]
 %% Background Polygons %%
 \foreach \i in {2.5,...,22} % bottom left
 {\node[rounded corners,black!3.5,draw,regular polygon,regular polygon sides=6, minimum size=\i cm,ultra thick] at ($(current page.west)+(2.5,-4.2)$) {} ;}
 \foreach \i in {0.5,...,22} % top left
 {\node[rounded corners,black!5,draw,regular polygon,regular polygon sides=6, minimum size=\i cm,ultra thick] at ($(current page.north west)+(2.5,2)$) {} ;}
 \node[rounded corners,fill=black!4,regular polygon,regular polygon sides=6, minimum size=5.5 cm,ultra thick] at ($(current page.north west)+(2.5,2)$) {};
 \foreach \i in {0.5,...,24} % top right
 {\node[rounded corners,black!2,draw,regular polygon,regular polygon sides=6, minimum size=\i cm,ultra thick] at ($(current page.north east)+(0,-8.5)$) {} ;}
 \node[fill=black!3,rounded corners,regular polygon,regular polygon sides=6, minimum size=2.5 cm,ultra thick] at ($(current page.north east)+(0,-8.5)$) {};
 \foreach \i in {21,...,3} % bottom right
 {\node[black!3,rounded corners,draw,regular polygon,regular polygon sides=6, minimum size=\i cm,ultra thick] at ($(current page.south east)+(-1.5,0.75)$) {} ;}
 \node[fill=black!3,rounded corners,regular polygon,regular polygon sides=6, minimum size=2 cm,ultra thick] at ($(current page.south east)+(-1.5,0.75)$) {};
 \node[align=center, scale=1.4] at ($(current page.south east)+(-1.5,0.75)$) {\usebox\orgicon};
 %% Text %%
 \node[left, align=right, black, text width=0.8\paperwidth, minimum height=3cm, rounded corners,font=\Huge\bfseries] at ($(current page.north east)+(-2,-8.5)$)
 {\@title};
 \node[left, align=right, black, text width=0.8\paperwidth, minimum height=2cm, rounded corners, font=\Large] at ($(current page.north east)+(-2,-11.8)$)
 {\scshape \@author};
 \renewcommand{\baselinestretch}{0.75}
 \node[align=center,rounded corners,fill=black!3,text=black,regular polygon,regular polygon sides=6, minimum size=2.5 cm,inner sep=0, font=\Large\bfseries] at ($(current page.west)+(2.5,-4.2)$)
 {\@date};
 \end{tikzpicture}
 \let\today\oldtoday
 \clearpage}
\makeatother
#+end_src

Now we've got a nice cover page to work with, we just need to use it every now
and then. Adding this to =#+options= feels most appropriate.
Let's have the =coverpage= option accept =auto= as a value and then decide whether
or not a cover page should be used based on the word count --- I'll have this be
the global default. Then we just want to insert a LaTeX snippet tweak the
subtitle format to use the cover page.

#+begin_src emacs-lisp :noweb no-export :noweb-prefix no
(defvar org-latex-cover-page 'auto
 "When t, use a cover page by default.
When auto, use a cover page when the document's wordcount exceeds
`org-latex-cover-page-wordcount-threshold'.

Set with #+option: coverpage:{yes,auto,no} in org buffers.")
(defvar org-latex-cover-page-wordcount-threshold 5000
 "Document word count at which a cover page will be used automatically.
This condition is applied when cover page option is set to auto.")
(defvar org-latex-subtitle-coverpage-format "\\\\\\bigskip\n\\LARGE\\mdseries\\itshape\\color{black!80} %s\\par"
 "Variant of `org-latex-subtitle-format' to use with the cover page.")
(defvar org-latex-cover-page-maketitle
 <<grab("latex-cover-page")>>
 "LaTeX preamble snippet that sets \\maketitle to produce a cover page.")

(eval '(cl-pushnew '(:latex-cover-page nil "coverpage" org-latex-cover-page)
 (org-export-backend-options (org-export-get-backend 'latex))))

(defun org-latex-cover-page-p ()
 "Whether a cover page should be used when exporting this Org file."
 (pcase (or (car
 (delq nil
 (mapcar
 (lambda (opt-line)
 (plist-get (org-export--parse-option-keyword opt-line 'latex) :latex-cover-page))
 (cdar (org-collect-keywords '("OPTIONS"))))))
 org-latex-cover-page)
 ((or 't 'yes) t)
 ('auto (when (> (count-words (point-min) (point-max)) org-latex-cover-page-wordcount-threshold) t))
 (_ nil)))

(defadvice! org-latex-set-coverpage-subtitle-format-a (contents info)
 "Set the subtitle format when a cover page is being used."
 :before #'org-latex-template
 (when (org-latex-cover-page-p)
 (setf info (plist-put info :latex-subtitle-format org-latex-subtitle-coverpage-format))))

(org-export-update-features 'latex
 (cover-page
 :condition (org-latex-cover-page-p)
 :snippet org-latex-cover-page-maketitle
 :order 9))
#+end_src

**** Condensed lists

LaTeX is generally pretty good by default, but it's /really/ generous with how
much space it puts between list items by default. I'm generally not a fan.

Thankfully this is easy to correct with a small snippet:
#+name: latex-condense-lists
#+begin_src LaTeX
\newcommand{\setuplistspacing}{\setlength{\itemsep}{-0.5ex}\setlength{\parskip}{1.5ex}\setlength{\parsep}{0pt}}
\let\olditem\itemize\renewcommand{\itemize}{\olditem\setuplistspacing}
\let\oldenum\enumerate\renewcommand{\enumerate}{\oldenum\setuplistspacing}
\let\olddesc\description\renewcommand{\description}{\olddesc\setuplistspacing}
#+end_src

Then we can just hook this in with our clever preamble.

#+begin_src emacs-lisp :noweb no-export :noweb-prefix no
(defvar org-latex-condense-lists t
 "Reduce the space between list items.")
(defvar org-latex-condensed-lists
 <<grab("latex-condense-lists")>>
 "LaTeX preamble snippet that reduces the space between list items.")

(org-export-update-features 'latex
 (condensed-lists
 :condition (and org-latex-condense-lists "^[\t]*[-+]\\|^[\t]*[1Aa][.)] ")
 :snippet org-latex-condensed-lists
 :order 0.7))
#+end_src

**** Upright parentheses in italic text

TODO, see https://tex.stackexchange.com/a/13057/167605

**** Pretty code blocks

We could just use minted for syntax highlighting --- however, we can do better!
The =engrave-faces= package lets us use Emacs' font-lock for syntax highlighting,
exporting that as LaTeX commands.

#+begin_src emacs-lisp :noweb-ref none :tangle packages.el
(package! engrave-faces :recipe (:local-repo "lisp/engrave-faces"))
#+end_src

#+begin_src emacs-lisp
(use-package! engrave-faces-latex
 :after ox-latex)
#+end_src

Using this as in LaTeX exports is now as easy as

#+begin_src emacs-lisp
(setq org-latex-listings 'engraved
 org-latex-engraved-theme 'doom-one-light)
#+end_src

One little annoyance with this is the interaction between microtype and =Verbatim=
environments. Protrusion is not desirable here. Thankfully, we can patch the
=Verbatim= environment to turn off protrusion locally.

#+begin_src emacs-lisp
(org-export-update-features 'latex
 (no-protrusion-in-code
 :condition t
 :when (microtype engraved-code)
 :snippet "\\ifcsname Code\\endcsname\n \\let\\oldcode\\Code\\renewcommand{\\Code}{\\microtypesetup{protrusion=false}\\oldcode}\n\\fi"
 :after (engraved-code microtype)))
#+end_src

At some point it would be nice to make the box colours easily customisable. At
the moment it's fairly easy to change the syntax highlighting colours with
src_elisp{(setq engrave-faces-preset-styles (engrave-faces-generate-preset))},
but perhaps a toggle which specifies whether to use the default values, the
current theme, or any named theme could be a good idea. It should also possible
to set the box background dynamically to match. The named theme could work by
looking for a style definition with a certain name in a cache dir, and then
switching to that theme and producing (and saving) the style definition if it
doesn't exist.

Now let's have the example block be styled similarly.

#+begin_src emacs-lisp
(defadvice! org-latex-example-block-engraved (orig-fn example-block contents info)
 "Like `org-latex-example-block', but supporting an engraved backend"
 :around #'org-latex-example-block
 (let ((output-block (funcall orig-fn example-block contents info)))
 (if (eq 'engraved (plist-get info :latex-listings))
 (format "\\begin{Code}[alt]\n%s\n\\end{Code}" output-block)
 output-block)))
#+end_src

In addition to the vastly superior visual output, this should also be much
faster to compile for code-heavy documents (like this config).

Performing a little benchmark with this document, I find that this is indeed the
case.

| LaTeX syntax highlighting backend | Compile time | Overhead | Overhead ratio |
|-----------------------------------+--------------+----------+----------------|
verbatim	12 s	0	0.0
lstlistings	15 s	3 s	0.2
Engrave	34 s	22 s	1.8
Pygments (Minted)	184 s	172 s	14.3
#+TBLFM: $3=$2-@2$2::$4=$3 / @2$2;%.1f

Treating the verbatim (no syntax highlighting) result as a baseline; this
rudimentary test suggest that =engrave-faces= is around eight times faster than
=pygments=, and takes three times as long as no syntax highlighting (verbatim).

**** Julia code blocks

Julia code has fantastic support for unicode! The downside is that =pdflatex= is
/still/ a pain to use with unicode symbols. The solution --- =lualatex=. Now we just
need to make it automatic

#+begin_src emacs-lisp
(defadvice! org-latex-pick-compiler (_contents info)
 :before #'org-latex-template
 :before #'org-beamer-template
 (when (and (memq 'code (plist-get info :features))
 (memq 'julia-code (plist-get info :features))
 (save-excursion
 (goto-char (point-min))
 (re-search-forward "[^\x00-\x7F\u200b]" nil t)))
 (setf info (plist-put
 (if (member #'+org-latex-replace-non-ascii-chars (plist-get info :filter-final-output))
 (plist-put info :filter-final-output
 (delq #'+org-latex-replace-non-ascii-chars (plist-get info :filter-final-output)))
 info)
 :latex-compiler "lualatex"))))
#+end_src

Then a font with unicode support must be used. JuliaMono is the obvious choice,
and we can use it with the =fontspec= package. In future it may be nice to set
this just as a fallback font (when it isn't a pain to do so).

#+name: julia-mono-fontspec
#+begin_src LaTeX
\ifcsname directlua\endcsname
 \usepackage{fontspec}
 \newfontfamily\JuliaMono{JuliaMono-Regular.ttf}[Path=/usr/share/fonts/truetype/, Extension=.ttf]
 \newfontface\JuliaMonoRegular{JuliaMono-Regular}
 \setmonofont{JuliaMonoRegular}[Contextuals=Alternate, Scale=MatchLowercase]
\fi
#+end_src

Now all that remains is to hook this into the preamble generation.

#+begin_src emacs-lisp :noweb no-export :noweb-prefix no
(defvar org-latex-julia-mono-fontspec
 <<grab("julia-mono-fontspec")>>
 "LaTeX preamble snippet that sets LuaLaTeX's fontspec to use Julia Mono.")

(org-export-update-features 'latex
 (julia-code
 :condition "^[\t]*#\\+begin_src julia\\|^[\t]*#\\+BEGIN_SRC julia\\|src_julia"
 :when code
 :snippet org-latex-julia-mono-fontspec
 :after custom-font
 :order 0)
 (microtype-lualatex
 :condition t
 :when (microtype julia-code)
 :prevents microtype
 :snippet "\\usepackage[activate={true,nocompatibility},final,tracking=true,factor=2000]{microtype}\n"
 :order 0.1)
 (custom-font-no-mono
 :condition t
 :when julia-code
 :prevents custom-font
 :snippet (org-latex-fontset :serif :sans)
 :order 0))
#+end_src

**** Emojis

#+call: confpkg("ox-latex-emoji", after="ox-latex", prefix="")

It would be nice to actually include emojis where used.
Thanks to =emojify=, we have a folder of emoji images just sitting and waiting to
be used 🙂.

First up, we want to detect when emojis are actually present. Manually
constructing a regex for this would be a huge pain with the way the codepoints
are scattered around, but thanks to ~char-script-table~ we don't have to!

#+begin_src emacs-lisp
(defvar org-latex-emoji--rx
 (let (emojis)
 (map-char-table
 (lambda (char set)
 (when (eq set 'emoji)
 (push (copy-tree char) emojis)))
 char-script-table)
 (rx-to-string `(any ,@emojis)))
 "A regexp to find all emoji-script characters.")
#+end_src

Once we've found an Emoji, we would like to include it in LaTeX. We'll set up
the infrastructure for this with the help of two packages
+ =accsupp=, to provide the copy-paste text overlay
+ =transparent=, to provide invisible text to enable text copying at the image

With these packages we can insert an emoji image at the point and then place
some invisible text on-top of it that copies as the emoji codepoint.

Unfortunately though, =accsupp= doesn't seem to accept five digit hexadecimal
codepoints at this point in time, instead we need to convert to UTF-16 surrogate
pairs, so we'll give our =\DeclareEmoji= command two arguments: one for the
non-surrogate form required by =\DeclareUnicodeCharacter=, and another for the
surrogate form required by =\BeginAccSupp=.

#+name: latex-emoji-preamble
#+begin_src LaTeX
\usepackage{accsupp}
% The transparent package is also needed, but will be loaded later.
\newsavebox\emojibox

\NewDocumentCommand\DeclareEmoji{m m}{% UTF-8 codepoint, UTF-16 codepoint
 \DeclareUnicodeCharacter{#1}{%
 \sbox\emojibox{\raisebox{OFFSET}{%
 \includegraphics[height=HEIGHT]{EMOJI-FOLDER/#1}}}%
 \usebox\emojibox
 \llap{%
 \resizebox{\wd\emojibox}{\height}{%
 \BeginAccSupp{method=hex,unicode,ActualText=#2}%
 \texttransparent{0}{X}%
 \EndAccSupp{}}}}}
#+end_src

Once we know that there are emojis present we can add a bit of preamble to the
buffer to make insertion easier.

#+begin_src emacs-lisp :noweb no-export :noweb-prefix no
(defconst org-latex-emoji-base-dir
 (expand-file-name "emojis/" doom-cache-dir)
 "Directory where emojis should be saved and look for.")

(defvar org-latex-emoji-sets
 '(("twemoji" :url "https://github.com/jdecked/twemoji/archive/refs/tags/v15.1.0.zip"
 :folder "twemoji-15.1.0/assets/svg" :height "1.8ex" :offset "-0.3ex")
 ("twemoji-bw" :url "https://github.com/youdly/twemoji-color-font/archive/refs/heads/v11-release.zip"
 :folder "twemoji-color-font-11-release/assets/builds/svg-bw" :height "1.8ex" :offset "-0.3ex")
 ("openmoji" :url "https://github.com/hfg-gmuend/openmoji/releases/latest/download/openmoji-svg-color.zip"
 :height "2.2ex" :offset "-0.45ex")
 ("openmoji-bw" :url "https://github.com/hfg-gmuend/openmoji/releases/latest/download/openmoji-svg-black.zip"
 :height "2.2ex" :offset "-0.45ex")
 ("emojione" :url "https://github.com/joypixels/emojione/archive/refs/tags/v2.2.7.zip"
 :folder "emojione-2.2.7/assets/svg") ; Warning, poor coverage
 ("noto" :url "https://github.com/googlefonts/noto-emoji/archive/refs/tags/v2.038.zip"
 :folder "noto-emoji-2.038/svg" :file-regexp "^emoji_u\\([0-9a-f_]+\\)"
 :height "2.0ex" :offset "-0.3ex"))
 "An alist of plistst of emoji sets.
Specified with the minimal form:
 (\"SET-NAME\" :url \"URL\")
The following optional parameters are supported:
 :folder (defaults to \"\")
 The folder within the archive where the emojis exist.
 :file-regexp (defaults to nil)
 Pattern with the emoji code point as the first capture group.
 :height (defaults to \"1.8ex\")
 Height of the emojis to be used.
 :offset (defaults to \"-0.3ex\")
 Baseline offset of the emojis.")

(defconst org-latex-emoji-keyword
 "LATEX_EMOJI_SET"
 "Keyword used to set the emoji set from `org-latex-emoji-sets'.")

(defvar org-latex-emoji-preamble <<grab("latex-emoji-preamble")>>
 "LaTeX preamble snippet that will allow for emojis to be declared.
Contains the string \"EMOJI-FOLDER\" which should be replaced with
the path to the emoji folder.")

(defun org-latex-emoji-utf16 (char)
 "Return the pair of UTF-16 surrogates that represent CHAR."
 (list
 (+ #xD7C0 (ash char -10))
 (+ #xDC00 (logand char #x03FF))))

(defun org-latex-emoji-declaration (char)
 "Construct the LaTeX command declaring CHAR as an emoji."
 (format "\\DeclareEmoji{%X}{%s} %% %s"
 char
 (if (< char #xFFFF)
 (format "%X" char)
 (apply #'format "%X%X" (org-latex-emoji-utf16 char)))
 (capitalize (get-char-code-property char 'name))))

(defun org-latex-emoji-fill-preamble (emoji-folder &optional height offset svg-p)
 "Fill in `org-latex-emoji-preamble' with EMOJI-FOLDER, HEIGHT, and OFFSET.
If SVG-P is set \"includegraphics\" will be replaced with \"includesvg\"."
 (let* (case-fold-search
 (filled-preamble
 (replace-regexp-in-string
 "HEIGHT"
 (or height "1.8ex")
 (replace-regexp-in-string
 "OFFSET"
 (or offset "-0.3ex")
 (replace-regexp-in-string
 "EMOJI-FOLDER"
 (directory-file-name
 (if (getenv "HOME")
 (replace-regexp-in-string
 (regexp-quote (getenv "HOME"))
 "\\string~"
 emoji-folder t t)
 emoji-folder))
 org-latex-emoji-preamble t t)
 t t)
 t t)))
 (if svg-p
 (replace-regexp-in-string
 "includegraphics" "includesvg"
 filled-preamble t t)
 filled-preamble)))

(defun org-latex-emoji-setup (&optional info)
 "Construct a preamble snippet to set up emojis based on INFO."
 (let* ((emoji-set
 (or (org-element-map
 (plist-get info :parse-tree)
 'keyword
 (lambda (keyword)
 (and (string= (org-element-property :key keyword)
 org-latex-emoji-keyword)
 (org-element-property :value keyword)))
 info t)
 (caar org-latex-emoji-sets)))
 (emoji-spec (cdr (assoc emoji-set org-latex-emoji-sets)))
 (emoji-folder
 (expand-file-name emoji-set org-latex-emoji-base-dir))
 (emoji-svg-only
 (and (file-exists-p emoji-folder)
 (not (cl-some
 (lambda (path)
 (not (string= (file-name-extension path) "svg")))
 (directory-files emoji-folder nil "\\....$"))))))
 (cond
 ((not emoji-spec)
 (error "Emoji set `%s' is unknown. Try one of: %s" emoji-set
 (string-join (mapcar #'car org-latex-emoji-sets) ", ")))
 ((not (file-exists-p emoji-folder))
 (if (and (not noninteractive)
 (yes-or-no-p (format "Emoji set `%s' is not installed, would you like to install it?" emoji-set)))
 (org-latex-emoji-install
 emoji-set
 (or (executable-find "cairosvg") (executable-find "inkscape")))
 (error "Emoji set `%s' is not installed" emoji-set))))
 (org-latex-emoji-fill-preamble
 emoji-folder (plist-get emoji-spec :height)
 (plist-get emoji-spec :offset) emoji-svg-only)))

(org-export-update-features 'latex
 (emoji-setup ; The precompilable bit
 :condition (save-excursion
 (goto-char (point-min))
 (re-search-forward org-latex-emoji--rx nil t))
 :requires (image pkg-transparent)
 :snippet org-latex-emoji-setup
 :order 3)
 (pkg-transparent ; Part of emoji setup, but non-precompilable.
 :snippet "\\usepackage{transparent}"
 :order 84)
 (emoji-declarations
 :condition t
 :when emoji-setup
 :snippet
 (mapconcat
 #'org-latex-emoji-declaration
 (let (unicode-cars)
 (save-excursion
 (goto-char (point-min))
 (while (re-search-forward org-latex-emoji--rx nil t)
 (push (aref (match-string 0) 0) unicode-cars)))
 (cl-delete-duplicates unicode-cars))
 "\n")
 :order 85))
#+end_src

Unfortunately this isn't a global solution, as LuaLaTeX doesn't have
=\DeclareUnicodeCharacter=. However, we can fix this with a hack for the one case
when we know it will be used.

#+begin_src emacs-lisp
(org-export-update-features 'latex
 (emoji-lualatex-hack
 :condition t
 :when (emoji julia-code) ; LuaLaTeX is used with julia-code.
 :snippet
 "\\usepackage{newunicodechar}
\\newcommand{\\DeclareUnicodeCharacter}[2]{%
 \\begingroup\\lccode`|=\\string\"#1\\relax
 \\lowercase{\\endgroup\\newunicodechar{|}}{#2}}"
 :before emoji))
#+end_src

This works fairly nicely, there's just one little QOL upgrade that we can
perform. =emojify= downloads the ~72x72~ versions of Twemoji, however SVG versions
are also produced. We could use ~inkscape~ to convert those to PDFs, which would
likely be best for including.

This works fairly nicely, but it would be good to use =.pdf= forms whenever
possible. We can use =texdef= to check the file extension priority list.

#+begin_src shell :tangle no :exports both :results output verbatim :wrap example
texdef -t pdflatex -p graphicx Gin@extensions
#+end_src

#+RESULTS:
#+begin_example
\Gin@extensions:
macro:->.pdf,.png,.jpg,.mps,.jpeg,.jbig2,.jb2,.PDF,.PNG,.JPG,.JPEG,.JBIG2,.JB2,.eps
#+end_example

Fantastic! We can see that =.pdf= actually comes first in the priority list.
Now we just need to fetch and convert the emoji images.

#+begin_src emacs-lisp
(defun org-latex-emoji-install (set &optional convert)
 "Dowload, convert, and install emojis for use with LaTeX."
 (interactive
 (list (completing-read "Emoji set to install: "
 (mapcar
 (lambda (set-spec)
 (if (file-exists-p (expand-file-name (car set-spec) org-latex-emoji-base-dir))
 (propertize (car set-spec) 'face 'font-lock-doc-face)
 (car set-spec)))
 org-latex-emoji-sets)
 nil t)
 (if (or (executable-find "cairosvg") (executable-find "inkscape"))
 (yes-or-no-p "Would you like to create .pdf forms of the Emojis (strongly recommended)?")
 (message "Install `cairosvg' (recommended) or `inkscape' to convert to PDF forms")
 nil)))
 (let ((emoji-folder (expand-file-name set org-latex-emoji-base-dir)))
 (when (or (not (file-exists-p emoji-folder))
 (and (not noninteractive)
 (yes-or-no-p "Emoji folder already present, would you like to re-download?")
 (progn (delete-directory emoji-folder t) t)))
 (let* ((spec (cdr (assoc set org-latex-emoji-sets)))
 (dir (org-latex-emoji-install--download set (plist-get spec :url)))
 (svg-dir (expand-file-name (or (plist-get spec :folder) "") dir)))
 (org-latex-emoji-install--install
 set svg-dir (plist-get spec :file-regexp))))
 (when convert
 (org-latex-emoji-install--convert (file-name-as-directory emoji-folder))))
 (message "Emojis set `%s' installed." set))

(defun org-latex-emoji-install--download (name url)
 "Download the emoji archive URL for the set NAME."
 (let* ((dest-folder (make-temp-file (format "%s-" name) t)))
 (message "Downloading %s..." name)
 (let ((default-directory dest-folder))
 (call-process "curl" nil nil nil "-sL" url "--output" "emojis.zip")
 (message "Unzipping")
 (call-process "unzip" nil nil nil "emojis.zip")
 dest-folder)))

(defun org-latex-emoji-install--install (name dir &optional filename-regexp)
 "Install the emoji files in DIR to the NAME set folder.
If a FILENAME-REGEXP, only files matching this regexp will be moved,
and they will be renamed to the first capture group of the regexp."
 (message "Installing %s emojis into emoji directory" name)
 (let ((images (append (directory-files dir t ".*.svg")
 (directory-files dir t ".*.pdf")))
 (emoji-dir (file-name-as-directory
 (expand-file-name name org-latex-emoji-base-dir))))
 (unless (file-exists-p emoji-dir)
 (make-directory emoji-dir t))
 (mapc
 (lambda (image)
 (if filename-regexp
 (when (string-match filename-regexp (file-name-nondirectory image))
 (rename-file image
 (expand-file-name
 (file-name-with-extension
 (upcase (match-string 1 (file-name-nondirectory image)))
 (file-name-extension image))
 emoji-dir)
 t))
 (rename-file image
 (expand-file-name
 (file-name-with-extension
 (upcase (file-name-nondirectory image))
 (file-name-extension image))
 emoji-dir)
 t)))
 images)
 (message "%d emojis installed" (length images))))

(defun org-latex-emoji-install--convert (dir)
 "Convert all .svg files in DIR to .pdf forms.
Uses cairosvg if possible, falling back to inkscape."
 (let ((default-directory dir))
 (if (executable-find "cairosvg") ; cairo's PDFs are ~10% smaller
 (let* ((images (directory-files dir nil ".*.svg"))
 (num-images (length images))
 (index 0)
 (max-threads (1- (string-to-number (shell-command-to-string "nproc"))))
 (threads 0))
 (while (< index num-images)
 (setf threads (1+ threads))
 (let (message-log-max)
 (message "Converting emoji %d/%d (%s)" (1+ index) num-images (nth index images)))
 (make-process :name "cairosvg"
 :command (list "cairosvg" (nth index images) "-o" (concat (file-name-sans-extension (nth index images)) ".pdf"))
 :sentinel (lambda (proc msg)
 (when (memq (process-status proc) '(exit signal))
 (setf threads (1- threads)))))
 (setq index (1+ index))
 (while (> threads max-threads)
 (sleep-for 0.01)))
 (while (> threads 0)
 (sleep-for 0.01)))
 (message "Cairosvg not found. Proceeding with inkscape as a fallback.")
 (shell-command "inkscape --batch-process --export-type='pdf' *.svg"))
 (message "Finished conversion!")))
#+end_src

**** Remove non-ascii chars

When using ~pdflatex~, almost non-ascii characters are generally problematic, and
don't appear in the pdf. It's preferable to see that there was /some/ character
which wasn't displayed as opposed to nothing.

We check every non-ascii character to make sure it's not a character encoded by
the =inputenc= packages when loaded with the =utf8= option. We'll also allow
box-drawing characters since they can be mostly supported with =pmboxdraw=.
Finally, we see if we have our own LaTeX conversion we can apply and if there is
none we replace the non-ascii char with =¿=.

No to make sure we only remove characters that can't be displayed, we check
=/usr/share/texmf/tex/latex/base/utf8enc.dfu=.

We just need to make sure this is appended to the list of filter functions,
since we want to let emoji processing occur first.

#+begin_src emacs-lisp
(defvar +org-pdflatex-inputenc-encoded-chars
 "[[:ascii:]\u00A0-\u01F0\u0218-\u021BȲȳȷˆˇ˜˘˙˛˝\u0400-\u04FFḂḃẞ\u200B\u200C\u2010-\u201E†‡•…‰‱‹›※‽⁄⁎⁒₡₤₦₩₫€₱℃№℗℞℠™Ω℧℮←↑→↓〈〉␢␣◦◯♪⟨⟩Ḡḡ\uFB00-\uFB06\u2500-\u259F]")

(defun +org-latex-replace-non-ascii-chars (text backend info)
 "Replace non-ascii chars with \\char\"XYZ forms."
 (when (and (org-export-derived-backend-p backend 'latex)
 (string= (plist-get info :latex-compiler) "pdflatex"))
 (let (case-replace)
 (replace-regexp-in-string "[^[:ascii:]]"
 (lambda (nonascii)
 (if (or (string-match-p +org-pdflatex-inputenc-encoded-chars nonascii)
 (string-match-p org-latex-emoji--rx nonascii))
 nonascii
 (or (cdr (assoc nonascii +org-latex-non-ascii-char-substitutions))
 "¿")))
 text))))

(add-to-list 'org-export-filter-plain-text-functions #'+org-latex-replace-non-ascii-chars t)
#+end_src

Now, there are some symbols that aren't included in =inputenc=, but we should be
able to handle anyway. For them we define a table of LaTeX translations

#+name: latex-non-ascii-char-substitutions
| Character | LaTeX |
|-----------+-------|
ɑ	\(\alpha\)
β	\(\beta\)
γ	\(\gamma\)
δ	\(\delta\)
ε	\(\epsilon\)
ϵ	\(\varepsilon\)
ζ	\(\zeta\)
η	\(\eta\)
θ	\(\theta\)
ϑ	\(\vartheta\)
ι	\(\iota\)
κ	\(\kappa\)
λ	\(\lambda\)
μ	\(\mu\)
ν	\(\nu\)
ξ	\(\xi\)
π	\(\pi\)
ϖ	\(\varpi\)
ρ	\(\rho\)
ϱ	\(\varrho\)
σ	\(\sigma\)
ς	\(\varsigma\)
τ	\(\tau\)
υ	\(\upsilon\)
ϕ	\(\phi\)
φ	\(\varphi\)
ψ	\(\psi\)
ω	\(\omega\)
Γ	\(\Gamma\)
Δ	\(\Delta\)
Θ	\(\Theta\)
Λ	\(\Lambda\)
Ξ	\(\Xi\)
Π	\(\Pi\)
Σ	\(\Sigma\)
Υ	\(\Upsilon\)
Φ	\(\Phi\)
Ψ	\(\Psi\)
Ω	\(\Omega\)
א	\(\aleph\)
ב	\(\beth\)
ד	\(\daleth\)
ג	\(\gimel\)

#+name: gen-latex-non-ascii-char-substitutions
#+begin_src emacs-lisp :noweb-ref none :var latex-non-ascii-char-substitutions=latex-non-ascii-char-substitutions
(replace-regexp-in-string
 " '((" "\n '(("
 (replace-regexp-in-string
 ") (" ")\n ("
 (prin1-to-string
 `(defvar +org-latex-non-ascii-char-substitutions
 ',(mapcar
 (lambda (entry)
 (cons (car entry) (replace-regexp-in-string "\\\\" "\\\\\\\\" (cadr entry))))
 latex-non-ascii-char-substitutions)))))
#+end_src

#+begin_src emacs-lisp :noweb no-export
<<gen-latex-non-ascii-char-substitutions()>>
#+end_src

**** Normal spaces after abbreviations

In LaTeX inter-word and sentence spaces are typically of different widths. This
can be an issue when using abbreviations i.e. e.g. etc. et al..
This can be corrected by forcing a normal space with src_LaTeX{\ }.
When exporting Org documents, we can add a filter to check for common
abbreviations and make the space normal.

#+begin_src emacs-lisp
(defvar +org-latex-abbreviations
 '(;; Latin
 "cf." "e.g." "etc." "et al." "i.e." "v." "vs." "viz." "n.b."
 ;; Corperate
 "inc." "govt." "ltd." "pty." "dept."
 ;; Temporal
 "est." "c."
 ;; Honorifics
 "Prof." "Dr." "Mr." "Mrs." "Ms." "Miss." "Sr." "Jr."
 ;; Components of a work
 "ed." "vol." "sec." "chap." "pt." "pp." "op." "no."
 ;; Common usage
 "approx." "misc." "min." "max.")
 "A list of abbreviations that should be spaced correctly when exporting to LaTeX.")

(defun +org-latex-correct-latin-abbreviation-spaces (text backend _info)
 "Normalise spaces after Latin abbreviations."
 (when (org-export-derived-backend-p backend 'latex)
 (replace-regexp-in-string (rx (group (or line-start space)
 (regexp (regexp-opt-group +org-latex-abbreviations)))
 (or line-end space))
 "\\1\\\\ "
 text)))

(add-to-list 'org-export-filter-paragraph-functions #'+org-latex-correct-latin-abbreviation-spaces t)
#+end_src

**** Extra special strings

LaTeX already recognises =---= and =--= as em/en-dashes, =\-= as a shy hyphen, and the
conversion of =...= to =\ldots{}= is hardcoded into ~org-latex-plain-text~ (unlike
~org-html-plain-text~).

I'd quite like to also recognise =->= and =<-=, so let's set come up with some advice.

#+begin_src emacs-lisp
(defvar org-latex-extra-special-string-regexps
 '(("<->" . "\\\\(\\\\leftrightarrow{}\\\\)")
 ("->" . "\\\\textrightarrow{}")
 ("<-" . "\\\\textleftarrow{}")))

(defun org-latex-convert-extra-special-strings (string)
 "Convert special characters in STRING to LaTeX."
 (dolist (a org-latex-extra-special-string-regexps string)
 (let ((re (car a))
 (rpl (cdr a)))
 (setq string (replace-regexp-in-string re rpl string t)))))

(defadvice! org-latex-plain-text-extra-special-a (orig-fn text info)
 "Make `org-latex-plain-text' handle some extra special strings."
 :around #'org-latex-plain-text
 (let ((output (funcall orig-fn text info)))
 (when (plist-get info :with-special-strings)
 (setq output (org-latex-convert-extra-special-strings output)))
 output))
#+end_src

**** Chameleon --- aka. match theme

#+call: confpkg("!Pkg ox-chameleon")

Once I had the idea of having the look of the LaTeX document produced match the
current Emacs theme, I was enraptured. The result is the pseudo-class ~chameleon~,
which I have implemented in the package =ox-chameleon=.

#+begin_src emacs-lisp :tangle packages.el
(package! ox-chameleon :recipe (:local-repo "lisp/ox-chameleon"))
#+end_src

#+begin_src emacs-lisp
(use-package! ox-chameleon
 :after ox)
#+end_src

**** Make verbatim different to code

Since have just gone to so much effort above let's make the most of it by making
=verbatim= use ~verb~ instead of ~protectedtexttt~ (default).

This gives the same advantages as mentioned in the [[*Make verbatim different to code][HTML export section]].

#+begin_src emacs-lisp
(setq org-latex-text-markup-alist
 '((bold . "\\textbf{%s}")
 (code . protectedtexttt)
 (italic . "\\emph{%s}")
 (strike-through . "\\sout{%s}")
 (underline . "\\uline{%s}")
 (verbatim . verb)))
#+end_src

**** Check for required packages

For how I've setup Org's LaTeX export, the following packages are needed:
#+name: org-latex-required-packages-list
| Package | Description |
|-------------+---|
adjustbox	Adjust general LaTeX material in like includegraphics
accsupp	Copy-paste text overlay for emoji images
amsmath	A near-essential maths package
booktabs	Nice horizontal lines in tables
cancel	Cancel terms in equations
capt-of	Captions outside floats
caption	Finer control over captions
cleveref	Easy cross-referencing
embedall	Embed files in the document
etoolbox	Document hooks
float	Floating environments
fontenc	Font encodings
fvextra	Enhanced verbatim environments
graphicx	An extended graphics package
hanging	Used by oc-csl
hyperref	Links
inputenc	Input file encodings
longtable	Multi-page tables
mathalpha	Set extended math alphabet fonts
mathtools	Typesetting tools for maths
microtype	Microtypography
pdfx	Create pdf/a- and pdf/x- compatible documents
pifont	A collection of symbols
pmboxdraw	Good-looking box drawing characters
preview	Needed for AUCTeX and ob-latex
scrbase	KOMA classes and more
scrextend	KOMA utilities
siunitx	Proper unit support
soul	Strikethrough and underline, flexibly
subcaption	Form subfigures and subcaptions
svg	Insert SVG images
tcolorbox	Nice boxes for code
textcomp	Font encodings
tikz	Generally handy, as a dependancy and for graphics
transparent	Invisible text for emoji copying
xcoffins	Manipulate coffins (boxes) for typesetting
xcolor	Colours
xparse	Extended command/env definition forms

Then for the various fontsets:
#+name: org-latex-font-packages-list
+ Alegreya
+ arev
+ arevmath
+ biolinum
+ FiraMono
+ FiraSans
+ fourier
+ gillius
+ kpfonts
+ libertine
+ newpxmath
+ newpxtext
+ newtxmath
+ newtxtext
+ newtxsf
+ noto
+ notomath
+ plex-mono
+ plex-sans
+ plex-serif
+ sourcecodepro
+ sourcesanspro
+ sourceserifpro

We can write a function which will check for each of these packages with
=kpsewhich=, and then if any of them are missing we'll inject some advice into the
generated config that gets a list of missing packages and warns us every time we
export to a PDF.

#+name: org-missing-latex-packages
#+begin_src emacs-lisp :noweb-ref none :var org-latex-required-packages-list=org-latex-required-packages-list[,0] :var org-latex-font-packages-list=org-latex-font-packages-list
(setq org-required-latex-packages
 (append org-latex-required-packages-list
 org-latex-font-packages-list))

(defun check-for-latex-packages (packages)
 (delq nil (mapcar (lambda (package)
 (unless
 (= 0 (call-process "kpsewhich" nil nil nil (concat package ".sty")))
 package))
 packages)))

(if-let (((executable-find "kpsewhich"))
 (missing-pkgs (check-for-latex-packages org-required-latex-packages)))
 (concat
 (pp-to-string `(setq org-required-latex-packages ',org-required-latex-packages))
 (message ";; Detected missing LaTeX packages: %s\n" (mapconcat #'identity missing-pkgs ", "))
 (pp-to-string
 '(defun check-for-latex-packages (packages)
 (delq nil (mapcar (lambda (package)
 (unless
 (= 0 (call-process "kpsewhich" nil nil nil (concat package ".sty")))
 package))
 packages))))
 (pp-to-string
 '(defun +org-warn-about-missing-latex-packages (&rest _)
 (message "Checking for missing LaTeX packages...")
 (sleep-for 0.4)
 (if-let (missing-pkgs (check-for-latex-packages org-required-latex-packages))
 (message "%s You are missing the following LaTeX packages: %s."
 (propertize "Warning!" 'face '(bold warning))
 (mapconcat (lambda (pkg) (propertize pkg 'face 'font-lock-variable-name-face))
 missing-pkgs
 ", "))
 (message "%s You have all the required LaTeX packages. Run %s to make this message go away."
 (propertize "Success!" 'face '(bold success))
 (propertize "doom sync" 'face 'font-lock-keyword-face))
 (advice-remove 'org-latex-export-to-pdf #'+org-warn-about-missing-latex-packages))
 (sleep-for 1)))
 (pp-to-string
 '(advice-add 'org-latex-export-to-pdf :before #'+org-warn-about-missing-latex-packages)))
 ";; No missing LaTeX packags detected")
#+end_src

#+begin_src emacs-lisp :noweb no-export
<<org-missing-latex-packages()>>
#+end_src

*** Beamer Export

#+call: confpkg("ox-beamer", after="ox-beamer")

It's nice to use a different theme
#+begin_src emacs-lisp
(setq org-beamer-theme "[progressbar=foot]metropolis")
#+end_src

When using metropolis though, we want to make a few tweaks:
#+name: beamer-metropolis-tweaks
#+begin_src LaTeX
\NewCommandCopy{\moldusetheme}{\usetheme}
\renewcommand*{\usetheme}[2][]{\moldusetheme[#1]{#2}
 \setbeamertemplate{items}{\bullet}
 \setbeamerfont{block title}{size=\normalsize, series=\bfseries\parbox{0pt}{\rule{0pt}{4ex}}}}

\makeatletter
\newcommand{\setmetropolislinewidth}{
 \setlength{\metropolis@progressinheadfoot@linewidth}{1.2px}}
\makeatother

\usepackage{etoolbox}
\AtEndPreamble{\setmetropolislinewidth}
#+end_src

Now let's just apply this along with some extra beamer tweaks.

#+begin_src emacs-lisp :noweb no-export :noweb-prefix no
(defun org-beamer-p (info)
 (eq 'beamer (and (plist-get info :back-end)
 (org-export-backend-name (plist-get info :back-end)))))

(org-export-update-features 'beamer
 (beamer-setup
 :condition t
 :requires .missing-koma
 :prevents (italic-quotes condensed-lists cover-page)))

(org-export-update-features 'latex
 (.missing-koma
 :snippet "\\usepackage{scrextend}"
 :order 2))

(defvar org-beamer-metropolis-tweaks
 <<grab("beamer-metropolis-tweaks")>>
 "LaTeX preamble snippet that tweaks the Beamer metropolis theme styling.")

(org-export-update-features 'beamer
 (beamer-metropolis
 :condition (string-match-p "metropolis$" (plist-get info :beamer-theme))
 :snippet org-beamer-metropolis-tweaks
 :order 3))
#+end_src

And I think that it's natural to divide a presentation into sections, e.g.
Introduction, Overview... so let's set bump up the headline level that becomes a
frame from ~1~ to ~2~.
#+begin_src emacs-lisp
(setq org-beamer-frame-level 2)
#+end_src

*** Reveal export

#+call: confpkg("!Pkg org-re-reveal", after="org-re-reveal")

By default reveal is rather nice, there are just a few tweaks that I consider a
good idea.

#+begin_src emacs-lisp
(setq org-re-reveal-theme "white"
 org-re-reveal-transition "slide"
 org-re-reveal-plugins '(markdown notes math search zoom))
#+end_src

*** ASCII export

#+call: confpkg("ox-ascii", after="ox-ascii")

To start with, why settle for ASCII when UTF-8 exists?
#+begin_src emacs-lisp
(setq org-ascii-charset 'utf-8)
#+end_src

The ASCII export is generally fairly nice. I think the main aspect that could
benefit from improvement is the appearance of LaTeX fragments. There's a nice
utility we can use to create unicode representation, which are much nicer.
It's called ~latex2text~, and it's part of the =pylatexenc= package, and it's [[https://repology.org/project/python:pylatexenc/versions][not
really packaged]]. So, we'll resort to installing it with =pip=.

#+begin_src shell :tangle (if (executable-find "latex2text") "no" "setup.sh")
sudo python3 -m pip install pylatexenc
#+end_src

With an accompanying =doctor= check.

#+begin_src emacs-lisp :noweb-ref doctor
(unless (executable-find "latex2text")
 (warn! "Couldn't find latex2text executable (from pylatexenc), will be unable to render LaTeX fragments in org→text exports."))
#+end_src

With that installed, we can override the src_elisp{(org-ascii-latex-fragment)} and
src_elisp{(org-ascii-latex-environment)} functions, which are conveniently very
slim --- just extracting the content, and indenting. We'll only do something
different when =utf-8= is set.

#+begin_src emacs-lisp
(when (executable-find "latex2text")
 (after! ox-ascii
 (defvar org-ascii-convert-latex t
 "Use latex2text to convert LaTeX elements to unicode.")

 (defadvice! org-ascii-latex-environment-unicode-a (latex-environment _contents info)
 "Transcode a LATEX-ENVIRONMENT element from Org to ASCII, converting to unicode.
CONTENTS is nil. INFO is a plist holding contextual
information."
 :override #'org-ascii-latex-environment
 (when (plist-get info :with-latex)
 (org-ascii--justify-element
 (org-remove-indentation
 (let* ((latex (org-element-property :value latex-environment))
 (unicode (and (eq (plist-get info :ascii-charset) 'utf-8)
 org-ascii-convert-latex
 (doom-call-process "latex2text" "-q" "--code" latex))))
 (if (= (car unicode) 0) ; utf-8 set, and sucessfully ran latex2text
 (cdr unicode) latex)))
 latex-environment info)))

 (defadvice! org-ascii-latex-fragment-unicode-a (latex-fragment _contents info)
 "Transcode a LATEX-FRAGMENT object from Org to ASCII, converting to unicode.
CONTENTS is nil. INFO is a plist holding contextual
information."
 :override #'org-ascii-latex-fragment
 (when (plist-get info :with-latex)
 (let* ((latex (org-element-property :value latex-fragment))
 (unicode (and (eq (plist-get info :ascii-charset) 'utf-8)
 org-ascii-convert-latex
 (doom-call-process "latex2text" "-q" "--code" latex))))
 (if (and unicode (= (car unicode) 0)) ; utf-8 set, and sucessfully ran latex2text
 (cdr unicode) latex))))))
#+end_src

*** Markdown Export

#+call: confpkg("ox-md", after="ox-md")

**** GFM

#+call: confpkg("!Pkg ox-gfm")

Because of the /[[https://github.com/commonmark/commonmark-spec/wiki/markdown-flavors][lovely variety in markdown implementations]]/ there isn't actually
such a thing a standard table spec ... or standard anything really. Because
~org-md~ is a goody-two-shoes, it just uses HTML for all these non-standardised
elements (a lot of them). So ~ox-gfm~ is handy for exporting markdown with all the
features that GitHub has.

#+begin_src emacs-lisp :noweb-ref none :tangle packages.el
(package! ox-gfm :pin "4f774f13d34b3db9ea4ddb0b1edc070b1526ccbb")
#+end_src

#+begin_src emacs-lisp
(use-package! ox-gfm
 :after ox)
#+end_src

**** Character substitutions

When I want to paste exported markdown somewhere (for example when using [[Emacs Everywhere][Emacs
Everywhere]]), it can be preferable to have unicode characters for =---= etc. instead
of =—=.

To accomplish this, we just need to locally rebind the alist which provides
these substitution.

#+begin_src emacs-lisp
(defadvice! org-md-plain-text-unicode-a (orig-fn text info)
 "Locally rebind `org-html-special-string-regexps'"
 :around #'org-md-plain-text
 (let ((org-html-special-string-regexps
 '(("\\\\-" . "-")
 ("---\\([^-]\\|$\\)" . "—\\1")
 ("--\\([^-]\\|$\\)" . "–\\1")
 ("\\.\\.\\." . "…")
 ("<->" . "⟷")
 ("->" . "→")
 ("<-" . "←"))))
 (funcall orig-fn text (plist-put info :with-smart-quotes nil))))
#+end_src

In the future, I may want to check =info= to only have this active when =ox-gfm= is
being used.

Another worthwhile consideration is LaTeX formatting. It seems most Markdown
parsers are fixated on TeX-style syntax (=$= and =$$=). As unfortunate as this is,
it's probably best to accommodate them, for the sake of decent rendering.

=ox-md= doesn't provide any transcoders for this, so we'll have to whip up our own
and push them onto the =md= transcoders alist.

#+begin_src emacs-lisp
(after! ox-md
 (defun org-md-latex-fragment (latex-fragment _contents info)
 "Transcode a LATEX-FRAGMENT object from Org to Markdown."
 (let ((frag (org-element-property :value latex-fragment)))
 (cond
 ((string-match-p "^\\\\(" frag)
 (concat "$" (substring frag 2 -2) "$"))
 ((string-match-p "^\\\\\\[" frag)
 (concat "$$" (substring frag 2 -2) "$$"))
 (t (message "unrecognised fragment: %s" frag)
 frag))))

 (defun org-md-latex-environment (latex-environment contents info)
 "Transcode a LATEX-ENVIRONMENT object from Org to Markdown."
 (concat "$$\n"
 (org-html-latex-environment latex-environment contents info)
 "$$\n"))

 (defun org-utf8-entity (entity _contents _info)
 "Transcode an ENTITY object from Org to utf-8.
CONTENTS are the definition itself. INFO is a plist holding
contextual information."
 (org-element-property :utf-8 entity))

 ;; We can't let this be immediately parsed and evaluated,
 ;; because eager macro-expansion tries to call as-of-yet
 ;; undefined functions.
 ;; NOTE in the near future this shouldn't be required
 (eval
 '(dolist (extra-transcoder
 '((latex-fragment . org-md-latex-fragment)
 (latex-environment . org-md-latex-environment)
 (entity . org-utf8-entity)))
 (unless (member extra-transcoder (org-export-backend-transcoders
 (org-export-get-backend 'md)))
 (push extra-transcoder (org-export-backend-transcoders
 (org-export-get-backend 'md)))))))
#+end_src

*** Babel

#+call: confpkg("Org Babel")

Doom lazy-loads babel languages, with is lovely.
It also pulls in [[https://github.com/astahlman/ob-async][ob-async]], which is nice, but it would be even better if it was
used by default.

There are two caveats to =ob-async=:
1. It does not support =:session=
 + So, we don't want =:async= used when =:session= is set
2. It adds a fixed delay to execution
 + This is undesirable in a number of cases, for example it's generally
 unwanted with =emacs-lisp= code
 + As such, I also introduce a async language blacklist to control when it's
 automatically enabled

Due to the nuance in the desired behaviour, instead of just adding =:async= to
~org-babel-default-header-args~, I advice ~org-babel-get-src-block-info~ to add
=:async= intelligently. As an escape hatch, it also recognises =:sync= as an
indication that =:async= should not be added.

I did originally have this enabled for everything except for =emacs-lisp= and
=LaTeX= (there were weird issues), but this added a ~3s "startup" cost to every
src block evaluation, which was a bit of a pain. Since =:async= can be added
easily with =#+properties=, I've turned this behaviour from a blacklist to a
whitelist.

#+begin_src emacs-lisp
(add-transient-hook! #'org-babel-execute-src-block
 (require 'ob-async))

(defvar org-babel-auto-async-languages '()
 "Babel languages which should be executed asyncronously by default.")

(defadvice! org-babel-get-src-block-info-eager-async-a (orig-fn &optional light datum)
 "Eagarly add an :async parameter to the src information, unless it seems problematic.
This only acts o languages in `org-babel-auto-async-languages'.
Not added when either:
+ session is not \"none\"
+ :sync is set"
 :around #'org-babel-get-src-block-info
 (let ((result (funcall orig-fn light datum)))
 (when (and (string= "none" (cdr (assoc :session (caddr result))))
 (member (car result) org-babel-auto-async-languages)
 (not (assoc :async (caddr result))) ; don't duplicate
 (not (assoc :sync (caddr result))))
 (push '(:async) (caddr result)))
 result))
#+end_src

*** ESS

#+call: confpkg("Org ESS")

We don't want ~R~ evaluation to hang the editor, hence
#+begin_src emacs-lisp
(setq ess-eval-visibly 'nowait)
#+end_src

Syntax highlighting is nice, so let's turn all of that on
#+begin_src emacs-lisp
(setq ess-R-font-lock-keywords
 '((ess-R-fl-keyword:keywords . t)
 (ess-R-fl-keyword:constants . t)
 (ess-R-fl-keyword:modifiers . t)
 (ess-R-fl-keyword:fun-defs . t)
 (ess-R-fl-keyword:assign-ops . t)
 (ess-R-fl-keyword:%op% . t)
 (ess-fl-keyword:fun-calls . t)
 (ess-fl-keyword:numbers . t)
 (ess-fl-keyword:operators . t)
 (ess-fl-keyword:delimiters . t)
 (ess-fl-keyword:= . t)
 (ess-R-fl-keyword:F&T . t)))
#+end_src

Lastly, in the event that I use =JAGS=, it would be nice to be able to use =jags= as
the language identifier, not =ess-jags=.
#+begin_src emacs-lisp
(after! org
 (add-to-list '+org-babel-mode-alist '(jags . ess-jags)))
#+end_src

** LaTeX

#+call: confpkg()

[[xkcd:1301]]

*** To-be-implemented ideas

- Paste image from clipboard
 + Determine first folder in ~graphicspath~ if applicable
 + Ask for file name
 + Use ~xclip~ to save file to graphics folder, or current directory (whichever applies)
 #+begin_src shell :eval no :tangle no
command -v xclip >/dev/null 2>&1 || { echo >&1 "no xclip"; exit 1; }

if
 xclip -selection clipboard -target image/png -o >/dev/null 2>&1
then
 xclip -selection clipboard -target image/png -o >$1 2>/dev/null
 echo $1
else
 echo "no image"
fi
 #+end_src
 + Insert figure, with filled in details as a result (activate =yasnippet= with
 filename as variable maybe?)

*** Compilation

#+begin_src emacs-lisp
(setq TeX-save-query nil
 TeX-show-compilation t
 TeX-command-extra-options "-shell-escape")
(after! latex
 (add-to-list 'TeX-command-list '("XeLaTeX" "%`xelatex%(mode)%' %t" TeX-run-TeX nil t)))
#+end_src

For viewing the PDF, I rather like the pdf-tools viewer. While auctex is trying
to be nice in recognising that I have some PDF viewing apps installed, I'd
rather not have it default to using them, so let's re-order the preferences.
#+begin_src emacs-lisp
(setq +latex-viewers '(pdf-tools evince zathura okular skim sumatrapdf))
#+end_src

*** Snippet helpers
**** Template

For use in the new-file template, let's set out a nice preamble we may want to use.
#+name: latex-nice-preamble
#+begin_src latex :tangle no
\\usepackage[pdfa,unicode=true,hidelinks]{hyperref}

\\usepackage[dvipsnames,svgnames,table,hyperref]{xcolor}
\\renewcommand{\\UrlFont}{\\ttfamily\\small}

\\usepackage[a-2b]{pdfx} % why not be archival

\\usepackage[T1]{fontenc}
\\usepackage[osf]{newpxtext} % Palatino
\\usepackage{gillius}
\\usepackage[scale=0.9]{sourcecodepro}

\\usepackage{mathtools}
\\usepackage{amssymb}
\\let\\Bbbk\\relax
\\usepackage[varbb]{newpxmath}

\\usepackage[activate={true,nocompatibility},final,tracking=true,kerning=true,spacing=true,factor=2000]{microtype}
% microtype makes text look nicer

\\usepackage{graphicx} % include graphics

\\usepackage{booktabs} % nice table rules
#+end_src
Then let's bind the content to a function, and define some nice helpers.
#+begin_src emacs-lisp :noweb no-export
(setq tec/yas-latex-template-preamble "
<<latex-nice-preamble>>
")

(defun tec/yas-latex-get-class-choice ()
 "Prompt user for LaTeX class choice"
 (setq tec/yas-latex-class-choice (completing-read "Select document class: " '("article" "scrartcl" "bmc"))))

(defun tec/yas-latex-preamble-if ()
 "Based on class choice prompt for insertion of default preamble"
 (if (equal tec/yas-latex-class-choice "bmc") 'nil
 (eq (read-char-choice "Include default preamble? [Type y/n]" '(?y ?n)) ?y)))
#+end_src

**** Deliminators

#+begin_src emacs-lisp
(after! tex
 (defvar tec/tex-last-delim-char nil
 "Last open delim expanded in a tex document")
 (defvar tec/tex-delim-dot-second t
 "When the `tec/tex-last-delim-char' is . a second character (this) is prompted for")
 (defun tec/get-open-delim-char ()
 "Exclusivly read next char to tec/tex-last-delim-char"
 (setq tec/tex-delim-dot-second nil)
 (setq tec/tex-last-delim-char (read-char-exclusive "Opening deliminator, recognises: 9 ([{ < | ."))
 (when (eql ?. tec/tex-last-delim-char)
 (setq tec/tex-delim-dot-second (read-char-exclusive "Other deliminator, recognises: 0 9 () [] { } < > |"))))
 (defun tec/tex-open-delim-from-char (&optional open-char)
 "Find the associated opening delim as string"
 (unless open-char (setq open-char (if (eql ?. tec/tex-last-delim-char)
 tec/tex-delim-dot-second
 tec/tex-last-delim-char)))
 (pcase open-char
 (?\("(")
 (?9 "(")
 (?\["[")
 (?\{ "\\{")
 (?< "<")
 (?| (if tec/tex-delim-dot-second "." "|"))
 (_ ".")))
 (defun tec/tex-close-delim-from-char (&optional open-char)
 "Find the associated closing delim as string"
 (if tec/tex-delim-dot-second
 (pcase tec/tex-delim-dot-second
 (?\) ")")
 (?0 ")")
 (?\] "]")
 (?\} "\\}")
 (?\> ">")
 (?| "|")
 (_ "."))
 (pcase (or open-char tec/tex-last-delim-char)
 (?\(")")
 (?9 ")")
 (?\["]")
 (?\{ "\\}")
 (?< ">")
 (?\) ")")
 (?0 ")")
 (?\] "]")
 (?\} "\\}")
 (?\> ">")
 (?| "|")
 (_ "."))))
 (defun tec/tex-next-char-smart-close-delim (&optional open-char)
 (and (bound-and-true-p smartparens-mode)
 (eql (char-after) (pcase (or open-char tec/tex-last-delim-char)
 (?\(?\))
 (?\[?\])
 (?{ ?})
 (?< ?>)))))
 (defun tec/tex-delim-yas-expand (&optional open-char)
 (yas-expand-snippet (yas-lookup-snippet "_deliminators" 'latex-mode) (point) (+ (point) (if (tec/tex-next-char-smart-close-delim open-char) 2 1)))))
#+end_src

*** Editor visuals

Let's enhance ~TeX-fold-math~ a bit
#+begin_src emacs-lisp
(after! latex
 (setcar (assoc "⋆" LaTeX-fold-math-spec-list) "★")) ;; make \star bigger

(setq TeX-fold-math-spec-list
 `(;; missing/better symbols
 ("≤" ("le"))
 ("≥" ("ge"))
 ("≠" ("ne"))
 ;; convenience shorts -- these don't work nicely ATM
 ;; ("‹" ("left"))
 ;; ("›" ("right"))
 ;; private macros
 ("ℝ" ("RR"))
 ("ℕ" ("NN"))
 ("ℤ" ("ZZ"))
 ("ℚ" ("QQ"))
 ("ℂ" ("CC"))
 ("ℙ" ("PP"))
 ("ℍ" ("HH"))
 ("𝔼" ("EE"))
 ("𝑑" ("dd"))
 ;; known commands
 ("" ("phantom"))
 (,(lambda (num den) (if (and (TeX-string-single-token-p num) (TeX-string-single-token-p den))
 (concat num "／" den)
 (concat "❪" num "／" den "❫"))) ("frac"))
 (,(lambda (arg) (concat "√" (TeX-fold-parenthesize-as-necessary arg))) ("sqrt"))
 (,(lambda (arg) (concat "⭡" (TeX-fold-parenthesize-as-necessary arg))) ("vec"))
 ("‘{1}’" ("text"))
 ;; private commands
 ("|{1}|" ("abs"))
 ("‖{1}‖" ("norm"))
 ("⌊{1}⌋" ("floor"))
 ("⌈{1}⌉" ("ceil"))
 ("⌊{1}⌉" ("round"))
 ("𝑑{1}/𝑑{2}" ("dv"))
 ("∂{1}/∂{2}" ("pdv"))
 ;; fancification
 ("{1}" ("mathrm"))
 (,(lambda (word) (string-offset-roman-chars 119743 word)) ("mathbf"))
 (,(lambda (word) (string-offset-roman-chars 119951 word)) ("mathcal"))
 (,(lambda (word) (string-offset-roman-chars 120003 word)) ("mathfrak"))
 (,(lambda (word) (string-offset-roman-chars 120055 word)) ("mathbb"))
 (,(lambda (word) (string-offset-roman-chars 120159 word)) ("mathsf"))
 (,(lambda (word) (string-offset-roman-chars 120367 word)) ("mathtt"))
)
 TeX-fold-macro-spec-list
 '(
 ;; as the defaults
 ("[f]" ("footnote" "marginpar"))
 ("[c]" ("cite"))
 ("[l]" ("label"))
 ("[r]" ("ref" "pageref" "eqref"))
 ("[i]" ("index" "glossary"))
 ("..." ("dots"))
 ("{1}" ("emph" "textit" "textsl" "textmd" "textrm" "textsf" "texttt"
 "textbf" "textsc" "textup"))
 ;; tweaked defaults
 ("©" ("copyright"))
 ("®" ("textregistered"))
 ("™" ("texttrademark"))
 ("[1]:||►" ("item"))
 ("❡❡ {1}" ("part" "part*"))
 ("❡ {1}" ("chapter" "chapter*"))
 ("§ {1}" ("section" "section*"))
 ("§§ {1}" ("subsection" "subsection*"))
 ("§§§ {1}" ("subsubsection" "subsubsection*"))
 ("¶ {1}" ("paragraph" "paragraph*"))
 ("¶¶ {1}" ("subparagraph" "subparagraph*"))
 ;; extra
 ("⬖ {1}" ("begin"))
 ("⬗ {1}" ("end"))
))

(defun string-offset-roman-chars (offset word)
 "Shift the codepoint of each character in WORD by OFFSET with an extra -6 shift if the letter is lowercase"
 (apply 'string
 (mapcar (lambda (c)
 (string-offset-apply-roman-char-exceptions
 (+ (if (>= c 97) (- c 6) c) offset)))
 word)))

(defvar string-offset-roman-char-exceptions
 '(;; lowercase serif
 (119892 . 8462) ; ℎ
 ;; lowercase caligraphic
 (119994 . 8495) ; ℯ
 (119996 . 8458) ; ℊ
 (120004 . 8500) ; ℴ
 ;; caligraphic
 (119965 . 8492) ; ℬ
 (119968 . 8496) ; ℰ
 (119969 . 8497) ; ℱ
 (119971 . 8459) ; ℋ
 (119972 . 8464) ; ℐ
 (119975 . 8466) ; ℒ
 (119976 . 8499) ; ℳ
 (119981 . 8475) ; ℛ
 ;; fraktur
 (120070 . 8493) ; ℭ
 (120075 . 8460) ; ℌ
 (120076 . 8465) ; ℑ
 (120085 . 8476) ; ℜ
 (120092 . 8488) ; ℨ
 ;; blackboard
 (120122 . 8450) ; ℂ
 (120127 . 8461) ; ℍ
 (120133 . 8469) ; ℕ
 (120135 . 8473) ; ℙ
 (120136 . 8474) ; ℚ
 (120137 . 8477) ; ℝ
 (120145 . 8484) ; ℤ
)
 "An alist of deceptive codepoints, and then where the glyph actually resides.")

(defun string-offset-apply-roman-char-exceptions (char)
 "Sometimes the codepoint doesn't contain the char you expect.
Such special cases should be remapped to another value, as given in `string-offset-roman-char-exceptions'."
 (if (assoc char string-offset-roman-char-exceptions)
 (cdr (assoc char string-offset-roman-char-exceptions))
 char))

(defun TeX-fold-parenthesize-as-necessary (tokens &optional suppress-left suppress-right)
 "Add ❪ ❫ parenthesis as if multiple LaTeX tokens appear to be present"
 (if (TeX-string-single-token-p tokens) tokens
 (concat (if suppress-left "" "❪")
 tokens
 (if suppress-right "" "❫"))))

(defun TeX-string-single-token-p (teststring)
 "Return t if TESTSTRING appears to be a single token, nil otherwise"
 (if (string-match-p "^\\\\?\\w+$" teststring) t nil))
#+end_src

Some local keybindings to make life a bit easier
#+begin_src emacs-lisp
(after! tex
 (map!
 :map LaTeX-mode-map
 :ei [C-return] #'LaTeX-insert-item)
 (setq TeX-electric-math '("\\(" . "")))
#+end_src

Maths deliminators can be de-emphasised a bit
#+begin_src emacs-lisp
;; Making \(\) less visible
(defface unimportant-latex-face
 '((t :inherit font-lock-comment-face :weight extra-light))
 "Face used to make \\(\\), \\[\\] less visible."
 :group 'LaTeX-math)

(font-lock-add-keywords
 'latex-mode
 `(("\\\\[]()[]" 0 'unimportant-latex-face prepend))
 'end)

;; (font-lock-add-keywords
;; 'latex-mode
;; '(("\\\\[[:word:]]+" 0 'font-lock-keyword-face prepend))
;; 'end)
#+end_src

And enable shell escape for the preview
#+begin_src emacs-lisp
(setq preview-LaTeX-command '("%`%l \"\\nonstopmode\\nofiles\
\\PassOptionsToPackage{" ("," . preview-required-option-list) "}{preview}\
\\AtBeginDocument{\\ifx\\ifPreview\\undefined"
preview-default-preamble "\\fi}\"%' \"\\detokenize{\" %t \"}\""))
#+end_src

*** Math input
**** CDLaTeX

The symbols and modifies are very nice by default, but could do with a bit of
fleshing out. Let's change the prefix to a key which is similarly rarely used,
but more convenient, like =;=.
#+begin_src emacs-lisp
(after! cdlatex
 (setq cdlatex-env-alist
 '(("bmatrix" "\\begin{bmatrix}\n?\n\\end{bmatrix}" nil)
 ("equation*" "\\begin{equation*}\n?\n\\end{equation*}" nil)))
 (setq ;; cdlatex-math-symbol-prefix ?\; ;; doesn't work at the moment :(
 cdlatex-math-symbol-alist
 '(;; adding missing functions to 3rd level symbols
 (?_ ("\\downarrow" "" "\\inf"))
 (?2 ("^2" "\\sqrt{?}" ""))
 (?3 ("^3" "\\sqrt[3]{?}" ""))
 (?^ ("\\uparrow" "" "\\sup"))
 (?k ("\\kappa" "" "\\ker"))
 (?m ("\\mu" "" "\\lim"))
 (?c ("" "\\circ" "\\cos"))
 (?d ("\\delta" "\\partial" "\\dim"))
 (?D ("\\Delta" "\\nabla" "\\deg"))
 ;; no idea why \Phi isnt on 'F' in first place, \phi is on 'f'.
 (?F ("\\Phi"))
 ;; now just convenience
 (?. ("\\cdot" "\\dots"))
 (?: ("\\vdots" "\\ddots"))
 (?* ("\\times" "\\star" "\\ast")))
 cdlatex-math-modify-alist
 '(;; my own stuff
 (?B "\\mathbb" nil t nil nil)
 (?a "\\abs" nil t nil nil))))
#+end_src

**** LAAS

#+call: confpkg("!Pkg LAAS")

This makes use of =aas= (/Auto Activating Snippets/) for CDLaTeX-like symbol input.

#+begin_src emacs-lisp :tangle packages.el
(package! laas :recipe (:local-repo "lisp/LaTeX-auto-activating-snippets"))
#+end_src

#+begin_src emacs-lisp
(use-package! laas
 :hook (LaTeX-mode . laas-mode)
 :config
 (defun laas-tex-fold-maybe ()
 (unless (equal "/" aas-transient-snippet-key)
 (+latex-fold-last-macro-a)))
 (add-hook 'aas-post-snippet-expand-hook #'laas-tex-fold-maybe))
#+end_src

*** SyncTeX

#+begin_src emacs-lisp
(after! tex
 (add-to-list 'TeX-view-program-list '("Evince" "evince %o"))
 (add-to-list 'TeX-view-program-selection '(output-pdf "Evince")))
#+end_src

*** Fixes

In case of Emacs28:

#+begin_src emacs-lisp
(when (>= emacs-major-version 28)
 (add-hook 'latex-mode-hook #'TeX-latex-mode))
#+end_src

With Emacs 29.4

#+begin_src emacs-lisp
(when (and (= emacs-major-version 29) (= emacs-minor-version 4))
 (after! auctex ; See <https://github.com/minad/vertico/discussions/475>
 (fmakunbound 'ConTeXt-mode)))
#+end_src

** Python

Since I'm using =mypyls=, as suggested in [[file:~/.config/emacs/modules/lang/python/README.org::*Language Server Protocol Support][:lang python LSP support]] I'll tweak the
priority of =mypyls=

#+begin_src emacs-lisp
(after! lsp-python-ms
 (set-lsp-priority! 'mspyls 1))
#+end_src

** PDF
*** MuPDF

=pdf-tools= is nice, but a =mupdf=-based solution is nicer.

#+begin_src emacs-lisp :tangle no
(package! paper :recipe (:host github :repo "ymarco/paper-mode"
 :files ("*.el" ".so")
 :pre-build ("make")))
#+end_src

#+begin_src emacs-lisp
;; (use-package paper
;; ;; :mode ("\\.pdf\\'" . paper-mode)
;; ;; :mode ("\\.epub\\'" . paper-mode)
;; :config
;; (require 'evil-collection-paper)
;; (evil-collection-paper-setup))
#+end_src

*** Terminal viewing

#+call: confpkg("!Pkg pdftotext", needs="pdftotext")

Sometimes I'm in a terminal and I still want to see the content. Additionally,
sometimes I'd like to act on the textual content and so would like a plaintext version.
Thanks to src_shell{pdftotext} we have a convenient way of performing this conversion.
I've integrated this into a little package, =pdftotext.el=.
#+begin_src emacs-lisp :tangle (if (executable-find "pdftotext") "packages.el" "no")
(package! pdftotext :recipe (:local-repo "lisp/pdftotext"))
#+end_src

The output can be slightly nicer without spelling errors, and with prettier page
feeds (=^L= by default).

This is very nice, now we just need to associate it with =.pdf= files, and make
sure =pdf-tools= doesn't take priority.

Lastly, whenever Emacs is non-graphical (i.e. a TUI), we want to use this by default.

#+begin_src emacs-lisp
(use-package! pdftotext
 :init
 (unless (display-graphic-p)
 (add-to-list 'auto-mode-alist '("\\.[pP][dD][fF]\\'" . pdftotext-mode))
 (add-to-list 'magic-mode-alist '("%PDF" . pdftotext-mode)))
 :config
 (unless (display-graphic-p) (after! pdf-tools (pdftotext-install)))
 ;; For prettyness
 (add-hook 'pdftotext-mode-hook #'spell-fu-mode-disable)
 (add-hook 'pdftotext-mode-hook (lambda () (page-break-lines-mode 1)))
 ;; I have no idea why this is needed
 (map! :map pdftotext-mode-map
 "<mouse-4>" (cmd! (scroll-down mouse-wheel-scroll-amount-horizontal))
 "<mouse-5>" (cmd! (scroll-up mouse-wheel-scroll-amount-horizontal))))

#+end_src

** R

#+call: confpkg("R lang")

*** Editor Visuals

#+begin_src emacs-lisp
(after! ess-r-mode
 (appendq! +ligatures-extra-symbols
 '(:assign "⟵"
 :multiply "×"))
 (set-ligatures! 'ess-r-mode
 ;; Functional
 :def "function"
 ;; Types
 :null "NULL"
 :true "TRUE"
 :false "FALSE"
 :int "int"
 :floar "float"
 :bool "bool"
 ;; Flow
 :not "!"
 :and "&&" :or "||"
 :for "for"
 :in "%in%"
 :return "return"
 ;; Other
 :assign "<-"
 :multiply "%*%"))
#+end_src

** Julia

#+call: confpkg(after="julia-mode")

It would be nice if =julia-mode= also highlighted the =julia>= prompt when writing
REPL examples.

#+begin_src emacs-lisp
(add-to-list
 'julia-font-lock-keywords
 '("^julia>" 0 '(font-lock-string-face bold) prepend))
#+end_src

As mentioned in [[https://github.com/non-Jedi/lsp-julia/issues/35][lsp-julia#35]], =lsp-mode= seems to serve an invalid response to the
Julia server. The pseudo-fix is rather simple at least
#+begin_src emacs-lisp
(add-hook 'julia-mode-hook #'rainbow-delimiters-mode-enable)
(add-hook! 'julia-mode-hook
 (setq-local lsp-enable-folding t
 lsp-folding-range-limit 100))
#+end_src

** Data.toml files

#+call: confpkg("conf-data-toml")

For =DataToolkit.jl=-formatted TOML files, I've made a major mode.

#+begin_src emacs-lisp :tangle packages.el
(package! conf-data-toml :recipe (:local-repo "lisp/conf-data-toml"))
#+end_src

Since the major mode is autoloaded, all we need to do is register an appropriate
magic command for it to be used in =Data.toml= files.

#+begin_src emacs-lisp
(use-package! conf-data-toml
 :magic ("\\`data_config_version = [0-9]" . conf-data-toml-mode))
#+end_src

** Graphviz

#+call: confpkg("!Pkg graphviz-dot-mode")

Graphviz is a nice method of visualising simple graphs, based on plaintext
=.dot= / =.gv= files.
#+begin_src emacs-lisp :tangle packages.el
(package! graphviz-dot-mode :pin "8ff793b13707cb511875f56e167ff7f980a31136")
#+end_src

#+begin_src emacs-lisp
(use-package! graphviz-dot-mode
 :commands graphviz-dot-mode
 :mode ("\\.dot\\'" . graphviz-dot-mode)
 :init
 (after! org
 (setcdr (assoc "dot" org-src-lang-modes)
 'graphviz-dot)))
#+end_src

** Markdown

#+call: confpkg()

Most of the time when I write markdown, it's going into some app/website which
will do it's own line wrapping, hence we /only/ want to use visual line wrapping. No hard stuff.
#+begin_src emacs-lisp
(add-hook! (gfm-mode markdown-mode) #'visual-line-mode #'turn-off-auto-fill)
#+end_src

Since markdown is often seen as rendered HTML, let's try to somewhat mirror the
style or markdown renderers.

Most markdown renders seem to make the first three headings levels larger than
normal text, the first two much so. Then the fourth level tends to be the same
as body text, while the fifth and sixth are (increasingly) smaller, with the
sixth greyed out. Since the sixth level is so small, I'll turn up the boldness a notch.
#+begin_src emacs-lisp
(custom-set-faces!
 '(markdown-header-face-1 :height 1.25 :weight extra-bold :inherit markdown-header-face)
 '(markdown-header-face-2 :height 1.15 :weight bold :inherit markdown-header-face)
 '(markdown-header-face-3 :height 1.08 :weight bold :inherit markdown-header-face)
 '(markdown-header-face-4 :height 1.00 :weight bold :inherit markdown-header-face)
 '(markdown-header-face-5 :height 0.90 :weight bold :inherit markdown-header-face)
 '(markdown-header-face-6 :height 0.75 :weight extra-bold :inherit markdown-header-face))
#+end_src

** Beancount

#+call: confpkg("!Pkg Beancount")

There are a number of rather compelling advantages to [[https://plaintextaccounting.org/][plain text accounting]],
with [[https://www.ledger-cli.org/][ledger]] being the most obvious example. However, [[https://github.com/beancount/beancount][beancount]], a more recent
implementation of the idea is ledger-compatible (meaning I can switch easily if
I change my mind) and has a gorgeous front-end --- [[https://beancount.github.io/fava/][fava]].

Of course, there's an Emacs mode for this.

#+begin_src emacs-lisp :tangle packages.el
(package! beancount :recipe (:host github :repo "beancount/beancount-mode")
 :pin "ddd4b8725703cf17a665b56cc26a3f9f95642424")
#+end_src

#+begin_src emacs-lisp
(use-package! beancount
 :mode ("\\.beancount\\'" . beancount-mode)
 :init
 (after! nerd-icons
 (add-to-list 'nerd-icons-extension-icon-alist
 '("beancount" nerd-icons-faicon "nf-fa-dollar" :face nerd-icons-lblue))
 (add-to-list 'nerd-icons-mode-icon-alist
 '(beancount-mode nerd-icons-faicon "nf-fa-dollar" :face nerd-icons-lblue)))
 :config
 (setq beancount-electric-currency t)
 (defun beancount-bal ()
 "Run bean-report bal."
 (interactive)
 (let ((compilation-read-command nil))
 (beancount--run "bean-report"
 (file-relative-name buffer-file-name) "bal")))
 (map! :map beancount-mode-map
 :n "TAB" #'beancount-align-to-previous-number
 :i "RET" (cmd! (newline-and-indent) (beancount-align-to-previous-number))))
#+end_src

** GIMP Palette files

#+call: confpkg("gimp-palette")

I like using colour schemes with Inkscape, and it uses "GIMP Palette" colour
scheme definition files. It's easy to edit them by hand, but often a bit annoying
as you need to keep the RGB code and hex representation in sync. Let's make that
a little easier by writing a little major mode for it.

The major mode doesn't need to do much, just try to turn ~rainbow-mode~ on for
 pretty hex colours, turn off ~hl-line-mode~ (if required) so the =hl-line= face
 doesn't overshadow them, and then the most crucial part: syncing the RGB/hex
 colour specifications on every buffer modification.

To catch all relevant modifications, but not trigger more frequently than needed
(as would happen if using ~post-command-hook~, for example),
~after-change-functions~ is the perfect option. We can make a buffer-local
addition that will sync all colours in the modified region.

#+begin_src emacs-lisp
(define-derived-mode gimp-palette-mode fundamental-mode "GIMP Palette"
 "A major mode for GIMP Palette (.gpl) files that keeps RGB and Hex colors in sync."
 (when (require 'rainbow-mode)
 (rainbow-mode 1))
 (when (bound-and-true-p hl-line-mode)
 (hl-line-mode -1))
 (add-hook 'after-change-functions #'gimp-palette-update-region nil t))
#+end_src

Now we need to implement the ~gimp-palette-update-region~ function. If we plan on
implementing a per-line update function, this is simply a matter of calling it
on each line with a few quality of life improvements:
+ Batching all the changes into a single undo step (via ~undo-amalgamate-change-group~)
+ Working interactively with a selected region, or the whole buffer.

#+begin_src emacs-lisp
(defun gimp-palette-update-region (beg end &optional _)
 "Update each line between BEG and END with `gimp-palette-update-line'.
If run interactively without a region set, the whole buffer is affected."
 (interactive
 (if (region-active-p)
 (list (region-beginning) (region-end))
 (list (point-min) (point-max))))
 (let ((marker (prepare-change-group)))
 (unwind-protect
 (save-excursion
 (goto-char beg)
 (while (< (point) end)
 (gimp-palette-update-line)
 (forward-line 1)))
 (undo-amalgamate-change-group marker))))
#+end_src

Now we need to implement the per-line update function. This won't be a
particularly short function, but it isn't complicated either. It should work as
follows:
1. Check to see whether the line starts with =R G B #HEX=
2. Check that ~point~ is within the RGB/hex part of the linen
3. If on the hex part, parse the hex string and update the RGB to match
 (inserting the RGB component if it does not already exist)
4. If on the RGB part, update the hex part to match

#+begin_src emacs-lisp
(defun gimp-palette-update-line ()
 "Update the RGB and Hex colour codes on the current line.
Whichever `point' is currently on is taken as the source of truth."
 (interactive)
 (let ((column (current-column))
 (ipoint (point)))
 (beginning-of-line)
 (when (and (re-search-forward "\\=\\([0-9]*\\)\\(#[0-9A-Fa-f]\\{6\\}\\)" nil t)
 (<= column (length (match-string 0))))
 (cond
 ((>= column (length (match-string 1))) ; Point in #HEX
 (cl-destructuring-bind (r g b) (color-name-to-rgb (match-string 2))
 (replace-match
 (format "%3d %3d %3d "
 (round (* 255 r))
 (round (* 255 g))
 (round (* 255 b)))
 nil t nil 1)))
 ((string-match-p "\\`[0-9]+ +[0-9]+ +[0-9]+\\'" (match-string 1)) ; Valid R G B
 (cl-destructuring-bind (r g b)
 (mapcar #'string-to-number
 (save-match-data
 (split-string (match-string 1) " +" t)))
 (replace-match
 (format "%3d %3d %3d " r g b)
 nil t nil 1)
 (replace-match
 (color-rgb-to-hex (/ r 255.0) (/ g 255.0) (/ b 255.0) 2)
 nil t nil 2)))))
 (goto-char ipoint)))
#+end_src

The last thing that's needed to make this functionality convenient is to have it
automatically activate when appropriate. GIMP palette files re-use the =.gpl=
extension, so ~auto-mode-alist~ isn't a good choice, but we can use the
~magic-mode-alist~ to use this mode in any file that begins with =GIMP Palette=,
which is perfect for our needs.

#+begin_src emacs-lisp
(add-to-list 'magic-mode-alist (cons "\\`GIMP Palette\n" #'gimp-palette-mode))
#+end_src

Local Variables:
jinx-local-words: "confpkg confpkgs smartparens tempbuffer"
End:

%& /tmp/org-persist-IRkN4n/b3/f0d652-8e3a-4f46-9d96-01c52041dcb6-393f895b1722d1d48ec225deca6383a7
% Created 2025-06-14 Sat 10:35
% Intended LaTeX compiler: pdflatex
\documentclass[twoside=false]{scrbook}\RedeclareSectionCommand[afterindent=false, beforeskip=0pt, afterskip=0pt, innerskip=0pt]{chapter}
\setkomafont{chapter}{\normalfont\Huge}
\renewcommand*{\chapterheadstartvskip}{\vspace*{0\baselineskip}}
\renewcommand*{\chapterheadendvskip}{\vspace*{0\baselineskip}}
\renewcommand*{\chapterformat}{%
 \fontsize{60}{30}\selectfont\rlap{\hspace{6pt}\thechapter}}
\renewcommand*\chapterlinesformat[3]{%
 \parbox[b]{\dimexpr\textwidth-0.5em\relax}{%
 \raggedleft{{\large\scshape\bfseries\chapapp}\vspace{-0.5ex}\par\Huge#3}}%
 \hfill\makebox[0pt][l]{#2}}\renewcommand\sectionformat{\llap{\thesection\autodot\enskip}}
\renewcommand\subsectionformat{\llap{\thesubsection\autodot\enskip}}
\renewcommand\subsubsectionformat{\llap{\thesubsubsection\autodot\enskip}}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{capt-of}
\usepackage{hyperref}
\usepackage{xcolor}

%% ox-latex features:
% !announce-start, julia-code, alegreya-typeface, toc-hidelinks,
% hanging-section-numbers, .pifont, .xcoffins, .fancy-box, box-error,
% box-success, box-notes, box-info, box-warning, checkbox,
% custom-font-no-mono, engraved-code, no-protrusion-in-code, maths,
% custom-maths-font, !guess-pollyglossia, !guess-babel,
% !guess-inputenc, box-drawing, microtype-lualatex, acronym,
% alegreya-latex-symbol, par-sep, italic-quotes,
% alegreya-tabular-figures, underline, condensed-lists, cleveref,
% image, svg, booktabs, caption, emoji-setup, cover-page,
% embed-files, embed-source, embed-tangled, pkg-transparent,
% emoji-declarations, !announce-end.

\ifcsname directlua\endcsname
 \usepackage{fontspec}
 \newfontfamily\JuliaMono{JuliaMono-Regular.ttf}[Path=/usr/share/fonts/truetype/, Extension=.ttf]
 \newfontface\JuliaMonoRegular{JuliaMono-Regular}
 \setmonofont{JuliaMonoRegular}[Contextuals=Alternate, Scale=MatchLowercase]
\fi

%% hide links styles in toc
\NewCommandCopy{\oldtoc}{\tableofcontents}
\renewcommand{\tableofcontents}{\begingroup\hypersetup{hidelinks}\oldtoc\endgroup}

\renewcommand\sectionformat{\llap{\thesection\autodot\enskip}}
\renewcommand\subsectionformat{\llap{\thesubsection\autodot\enskip}}
\renewcommand\subsubsectionformat{\llap{\thesubsubsection\autodot\enskip}}

\usepackage{pifont}

\usepackage{xcoffins}

\ExplSyntaxOn
\NewCoffin\SBXBaseline
\NewCoffin\SBXHeader
\NewCoffin\SBXContent
\NewCoffin\SBXSideRule
\newbox\SBXSplitBox
\cs_new_protected:Nn \simplebox_start:nnn {
 % #1 ding, #3 name, #4 label
 \vcoffin_set:Nnn \SBXHeader { \linewidth - 1em } {
 \noindent\textcolor{#2}{#1}~\textcolor{#2}{\textbf{#3}}}
 \vcoffin_set:Nnw \SBXContent { \linewidth - 1.5em }
}
\cs_new_protected:Nn \simplebox_split_content:n {
 % #1 name
 \setbox\SBXSplitBox = \vbox:n { \vbox_unpack_drop:N \SBXContent }
 \dim_set:Nn \l_tmpa_dim { \dim_eval:n { \dim_min:nn { \pagegoal } { \textheight } - \pagetotal - 2\baselineskip } }
 \setbox0 = \vsplit\SBXSplitBox to \l_tmpa_dim
 \vcoffin_set:Nnn \SBXContent { \CoffinWidth \SBXContent } { \box0 %
 \vspace{-1.7\baselineskip}
 \noindent\textcolor{#1}{\textbf{\ldots }}
 \vspace*{-0.3\baselineskip}}
}
\cs_new_protected:Nn \simplebox_split_refill:nnnn {
 % #1 ding, #2 ding offset, #3 name, #4 label
 \simplebox_start:nnn {#1} {#3} {#4,\space{}\emph{continued}}
 \vspace*{-0.2\baselineskip}
 \vbox_unpack_drop:N \SBXSplitBox
 \vcoffin_set_end:
}
\cs_new_protected:Nn \simplebox_typeset:nn {
 % #1 name, #2 ding offset
 \vcoffin_set:Nnn \SBXBaseline {0pt} {\vbox{}}
 \SetHorizontalCoffin\SBXSideRule{\color{#1}\rule{1pt}{\dim_eval:n { \CoffinTotalHeight\SBXContent + \baselineskip }}}
 \JoinCoffins*\SBXContent[l,t]\SBXSideRule[l,t](\dim_eval:n {#2 - 1em}, \dim_eval:n{\baselineskip - 0.5em})
 \JoinCoffins*\SBXContent[l,t]\SBXHeader[l,B](-1em, 0.5\baselineskip)
 \JoinCoffins*\SBXBaseline[l,T]\SBXContent[l,T]
 \vspace{-0.5\baselineskip}
 \noindent\TypesetCoffin\SBXBaseline(\dim_eval:n { 1em - #2 + 1pt }, 0pt)
 \vspace*{\CoffinTotalHeight\SBXContent}
 \vspace{-0.08em} % Why on earth is this needed for baseline alignment!?
}
\cs_new_protected:Nn \simplebox_typeset_breakable:nnnn {
 % #1 ding, #2 ding offset, #3 name, #4 label
 \dim_set:Nn \l_tmpa_dim {\dim_eval:n { \CoffinTotalHeight\SBXContent + \baselineskip }}
 \dim_set:Nn \l_tmpb_dim { \dim_eval:n { \dim_min:nn { \pagegoal } { \textheight } - \pagetotal - \baselineskip } }
 \dim_compare:nNnTF {\l_tmpa_dim} > {\l_tmpb_dim} {
 \simplebox_split_content:n {#3}
 \simplebox_typeset:nn {#3} {#2}
 \newpage
 \simplebox_split_refill:nnnn {#1} {#2} {#3} {#4}
 \simplebox_typeset_breakable:nnnn {#1} {#2} {#3} {#4}
 }{
 \simplebox_typeset:nn {#3} {#2}
 }
}
\NewDocumentCommand{\defsimplebox}{O{\ding{117}} O{0.35em} O{#1} O{#2} m m m}{
 % #1 ding, #2 ding offset, #3 alt-ding, #4 alt-ding offset,
 % #5 name, #6 colour, #7 default label
 \definecolor{#5}{HTML}{#6}
 \NewDocumentEnvironment{#5}{ O{#7} }{
 \simplebox_start:nnn {#1} {#5} {##1}
 }{
 \vcoffin_set_end:
 \simplebox_typeset_breakable:nnnn {#3} {#4} {#5} {##1}
 }
}
\ExplSyntaxOff

\defsimplebox{error}{c01c28}{Important}

\defsimplebox{success}{26a269}{\vspace{-\baselineskip}}

\defsimplebox{notes}{26a269}{Notes}

\defsimplebox{info}{3584e4}{Information}

\defsimplebox{warning}{e66100}{Warning}

\usepackage{amssymb} % provides \square\newcommand{\checkboxUnchecked}{\square}
\newcommand{\checkboxTransitive}{\rlap{\raisebox{-0.1ex}{\hspace{0.35ex}\Large\textbf -}}\square}
\newcommand{\checkboxChecked}{\rlap{\raisebox{0.2ex}{\hspace{0.35ex}\scriptsize \ding{52}}}\square}

\usepackage[osf]{Alegreya}
\usepackage{AlegreyaSans}

% Setup for code blocks [1/2]

\usepackage{fvextra}

\fvset{%
 commandchars=\\\{\},
 highlightcolor=white!95!black!80!blue,
 breaklines=true,
 breaksymbol=\color{white!60!black}\tiny\ensuremath{\hookrightarrow}}

% Make line numbers smaller and grey.
\renewcommand\theFancyVerbLine{\footnotesize\color{black!40!white}\arabic{FancyVerbLine}}

\usepackage{xcolor}

% In case engrave-faces-latex-gen-preamble has not been run.
\providecolor{EfD}{HTML}{f7f7f7}
\providecolor{EFD}{HTML}{28292e}

% Define a Code environment to prettily wrap the fontified code.
\usepackage[breakable,xparse]{tcolorbox}
\providecommand{\codefont}{\footnotesize}
\DeclareTColorBox[]{Code}{o}%
{colback=EfD!98!EFD, colframe=EfD!95!EFD,
 fontupper=\setlength{\fboxsep}{0pt}\codefont,
 colupper=EFD,
 IfNoValueTF={#1}%
 {boxsep=2pt, arc=2.5pt, outer arc=2.5pt,
 boxrule=0.5pt, left=2pt}%
 {boxsep=2.5pt, arc=0pt, outer arc=0pt,
 boxrule=0pt, leftrule=1.5pt, left=0.5pt},
 right=2pt, top=1pt, bottom=0.5pt,
 breakable}

% Support listings with captions
\usepackage{float}
\floatstyle{plain}
\newfloat{listing}{htbp}{lst}
\newcommand{\listingsname}{Listing}
\floatname{listing}{\listingsname}
\newcommand{\listoflistingsname}{List of Listings}
\providecommand{\listoflistings}{\listof{listing}{\listoflistingsname}}

% Setup for code blocks [2/2]: syntax highlighting colors

\newcommand\efstrut{\vrule height 2.1ex depth 0.8ex width 0pt}
\definecolor{EFD}{HTML}{383a42}
\definecolor{EfD}{HTML}{fafafa}
\newcommand{\EFD}[1]{\textcolor{EFD}{#1}} % default
\newcommand{\EFvp}[1]{#1} % variable-pitch
\definecolor{EFh}{HTML}{84888b}
\newcommand{\EFh}[1]{\textcolor{EFh}{#1}} % shadow
\definecolor{EFsc}{HTML}{50a14f}
\newcommand{\EFsc}[1]{\textcolor{EFsc}{#1}} % success
\definecolor{EFw}{HTML}{986801}
\newcommand{\EFw}[1]{\textcolor{EFw}{#1}} % warning
\definecolor{EFe}{HTML}{e45649}
\newcommand{\EFe}[1]{\textcolor{EFe}{#1}} % error
\definecolor{EFl}{HTML}{4078f2}
\newcommand{\EFl}[1]{\textcolor{EFl}{\textbf{#1}}} % link
\definecolor{EFlv}{HTML}{8b008b}
\newcommand{\EFlv}[1]{\textcolor{EFlv}{\textbf{#1}}} % link-visited
\definecolor{EFhi}{HTML}{f0f0f0}
\definecolor{Efhi}{HTML}{4078f2}
\newcommand{\EFhi}[1]{\colorbox{Efhi}{\efstrut{}\textcolor{EFhi}{#1}}} % highlight
\definecolor{EFc}{HTML}{84888b}
\newcommand{\EFc}[1]{\textcolor{EFc}{#1}} % font-lock-comment-face
\definecolor{EFcd}{HTML}{84888b}
\newcommand{\EFcd}[1]{\textcolor{EFcd}{#1}} % font-lock-comment-delimiter-face
\definecolor{EFs}{HTML}{50a14f}
\newcommand{\EFs}[1]{\textcolor{EFs}{#1}} % font-lock-string-face
\definecolor{EFd}{HTML}{727578}
\newcommand{\EFd}[1]{\textcolor{EFd}{\textit{#1}}} % font-lock-doc-face
\definecolor{EFm}{HTML}{b751b6}
\newcommand{\EFm}[1]{\textcolor{EFm}{#1}} % font-lock-doc-markup-face
\definecolor{EFk}{HTML}{e45649}
\newcommand{\EFk}[1]{\textcolor{EFk}{#1}} % font-lock-keyword-face
\definecolor{EFb}{HTML}{a626a4}
\newcommand{\EFb}[1]{\textcolor{EFb}{#1}} % font-lock-builtin-face
\definecolor{EFf}{HTML}{a626a4}
\newcommand{\EFf}[1]{\textcolor{EFf}{#1}} % font-lock-function-name-face
\definecolor{EFv}{HTML}{6a1868}
\newcommand{\EFv}[1]{\textcolor{EFv}{#1}} % font-lock-variable-name-face
\definecolor{EFt}{HTML}{986801}
\newcommand{\EFt}[1]{\textcolor{EFt}{#1}} % font-lock-type-face
\definecolor{EFo}{HTML}{b751b6}
\newcommand{\EFo}[1]{\textcolor{EFo}{#1}} % font-lock-constant-face
\definecolor{EFwr}{HTML}{986801}
\newcommand{\EFwr}[1]{\textcolor{EFwr}{#1}} % font-lock-warning-face
\definecolor{EFnc}{HTML}{4078f2}
\newcommand{\EFnc}[1]{\textcolor{EFnc}{\textbf{#1}}} % font-lock-negation-char-face
\definecolor{EFpp}{HTML}{4078f2}
\newcommand{\EFpp}[1]{\textcolor{EFpp}{\textbf{#1}}} % font-lock-preprocessor-face
\definecolor{EFrc}{HTML}{4078f2}
\newcommand{\EFrc}[1]{\textcolor{EFrc}{\textbf{#1}}} % font-lock-regexp-grouping-construct
\definecolor{EFrb}{HTML}{4078f2}
\newcommand{\EFrb}[1]{\textcolor{EFrb}{\textbf{#1}}} % font-lock-regexp-grouping-backslash
\definecolor{Efob}{HTML}{e7e7e7}
\newcommand{\EFob}[1]{\colorbox{Efob}{\efstrut{}#1}} % org-block
\definecolor{Efobb}{HTML}{e7e7e7}
\newcommand{\EFobb}[1]{\colorbox{Efobb}{\efstrut{}\textit{#1}}} % org-block-begin-line
\definecolor{Efobe}{HTML}{e7e7e7}
\newcommand{\EFobe}[1]{\colorbox{Efobe}{\efstrut{}\textit{#1}}} % org-block-end-line
\definecolor{EFOa}{HTML}{e45649}
\newcommand{\EFOa}[1]{\textcolor{EFOa}{\textbf{#1}}} % outline-1
\definecolor{EFOb}{HTML}{da8548}
\newcommand{\EFOb}[1]{\textcolor{EFOb}{\textbf{#1}}} % outline-2
\definecolor{EFOc}{HTML}{b751b6}
\newcommand{\EFOc}[1]{\textcolor{EFOc}{\textbf{#1}}} % outline-3
\definecolor{EFOd}{HTML}{6f99f5}
\newcommand{\EFOd}[1]{\textcolor{EFOd}{#1}} % outline-4
\definecolor{EFOe}{HTML}{bc5cba}
\newcommand{\EFOe}[1]{\textcolor{EFOe}{#1}} % outline-5
\definecolor{EFOf}{HTML}{9fbbf8}
\newcommand{\EFOf}[1]{\textcolor{EFOf}{#1}} % outline-6
\definecolor{EFOg}{HTML}{d292d1}
\newcommand{\EFOg}[1]{\textcolor{EFOg}{\textbf{#1}}} % outline-7
\definecolor{EFOh}{HTML}{d8e4fc}
\newcommand{\EFOh}[1]{\textcolor{EFOh}{#1}} % outline-8
\definecolor{EFhn}{HTML}{da8548}
\newcommand{\EFhn}[1]{\textcolor{EFhn}{\textbf{#1}}} % highlight-numbers-number
\definecolor{EFhq}{HTML}{4078f2}
\newcommand{\EFhq}[1]{\textcolor{EFhq}{#1}} % highlight-quoted-quote
\definecolor{EFhs}{HTML}{986801}
\newcommand{\EFhs}[1]{\textcolor{EFhs}{#1}} % highlight-quoted-symbol
\definecolor{EFrda}{HTML}{4078f2}
\newcommand{\EFrda}[1]{\textcolor{EFrda}{#1}} % rainbow-delimiters-depth-1-face
\definecolor{EFrdb}{HTML}{a626a4}
\newcommand{\EFrdb}[1]{\textcolor{EFrdb}{#1}} % rainbow-delimiters-depth-2-face
\definecolor{EFrdc}{HTML}{50a14f}
\newcommand{\EFrdc}[1]{\textcolor{EFrdc}{#1}} % rainbow-delimiters-depth-3-face
\definecolor{EFrdd}{HTML}{b751b6}
\newcommand{\EFrdd}[1]{\textcolor{EFrdd}{#1}} % rainbow-delimiters-depth-4-face
\definecolor{EFrde}{HTML}{4db5bd}
\newcommand{\EFrde}[1]{\textcolor{EFrde}{#1}} % rainbow-delimiters-depth-5-face
\definecolor{EFrdf}{HTML}{4078f2}
\newcommand{\EFrdf}[1]{\textcolor{EFrdf}{#1}} % rainbow-delimiters-depth-6-face
\definecolor{EFrdg}{HTML}{a626a4}
\newcommand{\EFrdg}[1]{\textcolor{EFrdg}{#1}} % rainbow-delimiters-depth-7-face
\definecolor{EFrdh}{HTML}{50a14f}
\newcommand{\EFrdh}[1]{\textcolor{EFrdh}{#1}} % rainbow-delimiters-depth-8-face
\definecolor{EFrdi}{HTML}{b751b6}
\newcommand{\EFrdi}[1]{\textcolor{EFrdi}{#1}} % rainbow-delimiters-depth-9-face

\ifcsname Code\endcsname
 \let\oldcode\Code\renewcommand{\Code}{\microtypesetup{protrusion=false}\oldcode}
\fi

%% Maths-related packages
% More maths environments, commands, and symbols.
\usepackage{amsmath, amssymb}
% Slanted fractions with \sfrac{a}{b}, in text and maths.
\usepackage{xfrac}
% Visually cancel expressions with \cancel{value} and \cancelto{expression}{value}
\usepackage[makeroom]{cancel}
% Improvements on amsmath and utilities for mathematical typesetting
\usepackage{mathtools}

% Deliminators
\DeclarePairedDelimiter{\abs}{\lvert}{\rvert}
\DeclarePairedDelimiter{\norm}{\lVert}{\rVert}

\DeclarePairedDelimiter{\ceil}{\lceil}{\rceil}
\DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor}
\DeclarePairedDelimiter{\round}{\lfloor}{\rceil}

\newcommand{\RR}[1][]{\ensuremath{\ifstrempty{#1}{\mathbb{R}}{\mathbb{R}^{#1}}}} % Real numbers
\newcommand{\NN}[1][]{\ensuremath{\ifstrempty{#1}{\mathbb{N}}{\mathbb{N}^{#1}}}} % Natural numbers
\newcommand{\ZZ}[1][]{\ensuremath{\ifstrempty{#1}{\mathbb{Z}}{\mathbb{Z}^{#1}}}} % Integer numbers
\newcommand{\QQ}[1][]{\ensuremath{\ifstrempty{#1}{\mathbb{Q}}{\mathbb{Q}^{#1}}}} % Rational numbers
\newcommand{\CC}[1][]{\ensuremath{\ifstrempty{#1}{\mathbb{C}}{\mathbb{C}^{#1}}}} % Complex numbers

% Easy derivatives
\ProvideDocumentCommand\dv{o m g}{%
 \IfNoValueTF{#3}{%
 \dv[#1]{}{#2}}{%
 \IfNoValueTF{#1}{%
 \frac{\dd #2}{\dd #3}%
 }{\frac{\dd[#1] #2}{\dd {#3}^{#1}}}}}
% Easy partial derivatives
\ExplSyntaxOn
\ProvideDocumentCommand\pdv{o m g}{%
 \IfNoValueTF{#3}{\pdv[#1]{}{#2}}%
 {\ifnum\clist_count:n{#3}<2
 \IfValueTF{#1}{\frac{\partial^{#1} #2}{\partial {#3}^{#1}}}%
 {\frac{\partial #2}{\partial #3}}
 \else
 \frac{\IfValueTF{#1}{\partial^{#1}}{\partial^{\clist_count:n{#3}}}#2}%
 {\clist_map_inline:nn{#3}{\partial ##1 \,}\!}
 \fi}}
\ExplSyntaxOff

% Laplacian
\DeclareMathOperator{\Lap}{\mathcal{L}}

% Statistics
\DeclareMathOperator{\Var}{Var} % varience
\DeclareMathOperator{\Cov}{Cov} % covarience
\newcommand{\EE}{\ensuremath{\mathbb{E}}} % expected value
\DeclareMathOperator{\E}{E} % expected value

% I prefer the slanted \leq/\geq
\let\barleq\leq % Save them in case they're every wanted
\let\bargeq\geq
\renewcommand{\leq}{\leqslant}
\renewcommand{\geq}{\geqslant}

% Redefine the matrix environment to allow for alignment
% via an optional argument, and use r as the default.
\makeatletter
\renewcommand*\env@matrix[1][r]{\hskip -\arraycolsep%
 \let\@ifnextchar\new@ifnextchar
 \array{*\c@MaxMatrixCols #1}}
\makeatother

% Slanted roman "d" for derivatives
\ifcsname pdfoutput\endcsname
 \ifnum\pdfoutput>0 % PDF
 \newsavebox\diffdbox{}
 \newcommand{\slantedromand}{{\mathpalette\makesl{d}}}
 \newcommand{\makesl}[2]{%
 \begingroup
 \sbox{\diffdbox}{$\mathsurround=0pt#1\mathrm{#2}$}%
 \pdfsave%
 \pdfsetmatrix{1 0 0.2 1}%
 \rlap{\usebox{\diffdbox}}%
 \pdfrestore%
 \hskip\wd\diffdbox%
 \endgroup}
 \else % DVI
 \newcommand{\slantedromand}{d} % fallback
 \fi
\else % Also DVI
 \newcommand{\slantedromand}{d} % fallback
\fi

% Derivative d^n, nicely spaced
\makeatletter
\newcommand{\dd}[1][]{\mathop{}\!%
 \expandafter\ifx\expandafter&\detokenize{#1}&% \ifstrempty from etoolbox
 \slantedromand\@ifnextchar^{\hspace{0.2ex}}{\hspace{0.1ex}}
 \else
 \slantedromand\hspace{0.2ex}^{#1}
 \fi}
\makeatother

\NewCommandCopy{\daccent}{\d}
\renewcommand{\d}{\ifmmode\dd\else\daccent\fi}

\let\Bbbk\relax
\usepackage[varbb]{newpxmath}

\usepackage{pmboxdraw}

\usepackage[activate={true,nocompatibility},final,tracking=true,factor=2000]{microtype}

\newcommand{\acr}[1]{\protect\textls*[110]{\scshape #1}}
\newcommand{\acrs}{\protect\scalebox{.91}[.84]{\hspace{0.15ex}s}}

\makeatletter
% Kerning around the A needs adjusting
\DeclareRobustCommand{\LaTeX}{L\kern-.24em%
 {\sbox\z@ T%
 \vbox to\ht\z@{\hbox{\check@mathfonts
 \fontsize\sf@size\z@
 \math@fontsfalse\selectfont
 A}%
 \vss}%
 }%
 \kern-.10em%
 \TeX}
\makeatother

\setlength{\parskip}{\baselineskip}
\setlength{\parindent}{0pt}

\renewcommand{\quote}{\list{}{\rightmargin\leftmargin}\item\relax\em}

\makeatletter
% tabular lining figures in tables
\renewcommand{\tabular}{\AlegreyaTLF\let\@halignto\@empty\@tabular}
\makeatother

\usepackage[normalem]{ulem}

\newcommand{\setuplistspacing}{\setlength{\itemsep}{-0.5ex}\setlength{\parskip}{1.5ex}\setlength{\parsep}{0pt}}
\let\olditem\itemize\renewcommand{\itemize}{\olditem\setuplistspacing}
\let\oldenum\enumerate\renewcommand{\enumerate}{\oldenum\setuplistspacing}
\let\olddesc\description\renewcommand{\description}{\olddesc\setuplistspacing}

\usepackage[capitalize]{cleveref}
% Fix for cleveref in order to work with long range of pages
% See https://tex.stackexchange.com/a/620066
\makeatletter
\newcommand*{\@setcpagerefrange}[3]{%
 \@@setcpagerefrange{#1}{#2}{cref}{#3}}
\newcommand*{\@setCpagerefrange}[3]{%
 \@@setcpagerefrange{#1}{#2}{Cref}{#3}}
\newcommand*{\@setlabelcpagerefrange}[3]{%
 \@@setcpagerefrange{#1}{#2}{labelcref}{#3}}
\makeatother

\usepackage{graphicx}

\usepackage[inkscapelatex=false]{svg}

\usepackage{booktabs}

\usepackage{subcaption}
\usepackage[hypcap=true]{caption}
\setkomafont{caption}{\sffamily\small}
\setkomafont{captionlabel}{\upshape\bfseries}
\captionsetup{justification=raggedright,singlelinecheck=true}
\usepackage{capt-of} % required by Org

\usepackage{accsupp}
% The transparent package is also needed, but will be loaded later.
\newsavebox\emojibox

\NewDocumentCommand\DeclareEmoji{m m}{% UTF-8 codepoint, UTF-16 codepoint
 \DeclareUnicodeCharacter{#1}{%
 \sbox\emojibox{\raisebox{-0.3ex}{%
 \includegraphics[height=1.8ex]{\string~/.config/emacs/.local/cache/emojis/twemoji/#1}}}%
 \usebox\emojibox
 \llap{%
 \resizebox{\wd\emojibox}{\height}{%
 \BeginAccSupp{method=hex,unicode,ActualText=#2}%
 \texttransparent{0}{X}%
 \EndAccSupp{}}}}}

\usepackage{tikz}
\usetikzlibrary{shapes.geometric}
\usetikzlibrary{calc}

\newsavebox\orgicon
\begin{lrbox}{\orgicon}
 \begin{tikzpicture}[y=0.80pt, x=0.80pt, inner sep=0pt, outer sep=0pt]
 \path[fill=black!6] (16.15,24.00) .. controls (15.58,24.00) and (13.99,20.69) .. (12.77,18.06)arc(215.55:180.20:2.19) .. controls (12.33,19.91) and (11.27,19.09) .. (11.43,18.05) .. controls (11.36,18.09) and (10.17,17.83) .. (10.17,17.82) .. controls (9.94,18.75) and (9.37,19.44) .. (9.02,18.39) .. controls (8.32,16.72) and (8.14,15.40) .. (9.13,13.80) .. controls (8.22,9.74) and (2.18,7.75) .. (2.81,4.47) .. controls (2.99,4.47) and (4.45,0.99) .. (9.15,2.41) .. controls (14.71,3.99) and (17.77,0.30) .. (18.13,0.04) .. controls (18.65,-0.49) and (16.78,4.61) .. (12.83,6.90) .. controls (10.49,8.18) and (11.96,10.38) .. (12.12,11.15) .. controls (12.12,11.15) and (14.00,9.84) .. (15.36,11.85) .. controls (16.58,11.53) and (17.40,12.07) .. (18.46,11.69) .. controls (19.10,11.41) and (21.79,11.58) .. (20.79,13.08) .. controls (20.79,13.08) and (21.71,13.90) .. (21.80,13.99) .. controls (21.97,14.75) and (21.59,14.91) .. (21.47,15.12) .. controls (21.44,15.60) and (21.04,15.79) .. (20.55,15.44) .. controls (19.45,15.64) and (18.36,15.55) .. (17.83,15.59) .. controls (16.65,15.76) and (15.67,16.38) .. (15.67,16.38) .. controls (15.40,17.19) and (14.82,17.01) .. (14.09,17.32) .. controls (14.70,18.69) and (14.76,19.32) .. (15.50,21.32) .. controls (15.76,22.37) and (16.54,24.00) .. (16.15,24.00) -- cycle(7.83,16.74) .. controls (6.83,15.71) and (5.72,15.70) .. (4.05,15.42) .. controls (2.75,15.19) and (0.39,12.97) .. (0.02,10.68) .. controls (-0.02,10.07) and (-0.06,8.50) .. (0.45,7.18) .. controls (0.94,6.05) and (1.27,5.45) .. (2.29,4.85) .. controls (1.41,8.02) and (7.59,10.18) .. (8.55,13.80) -- (8.55,13.80) .. controls (7.73,15.00) and (7.80,15.64) .. (7.83,16.74) -- cycle;
 \end{tikzpicture}
\end{lrbox}

\makeatletter
\g@addto@macro\tableofcontents{\clearpage}
\renewcommand\maketitle{
 \thispagestyle{empty}
 \hyphenpenalty=10000 % hyphens look bad in titles
 \renewcommand{\baselinestretch}{1.1}
 \NewCommandCopy{\oldtoday}{\today}
 \renewcommand{\today}{\LARGE\number\year\\\large%
 \ifcase \month \or Jan\or Feb\or Mar\or Apr\or May \or Jun\or Jul\or Aug\or Sep\or Oct\or Nov\or Dec\fi
 ~\number\day}
 \begin{tikzpicture}[remember picture,overlay]
 %% Background Polygons %%
 \foreach \i in {2.5,...,22} % bottom left
 {\node[rounded corners,black!3.5,draw,regular polygon,regular polygon sides=6, minimum size=\i cm,ultra thick] at ($(current page.west)+(2.5,-4.2)$) {} ;}
 \foreach \i in {0.5,...,22} % top left
 {\node[rounded corners,black!5,draw,regular polygon,regular polygon sides=6, minimum size=\i cm,ultra thick] at ($(current page.north west)+(2.5,2)$) {} ;}
 \node[rounded corners,fill=black!4,regular polygon,regular polygon sides=6, minimum size=5.5 cm,ultra thick] at ($(current page.north west)+(2.5,2)$) {};
 \foreach \i in {0.5,...,24} % top right
 {\node[rounded corners,black!2,draw,regular polygon,regular polygon sides=6, minimum size=\i cm,ultra thick] at ($(current page.north east)+(0,-8.5)$) {} ;}
 \node[fill=black!3,rounded corners,regular polygon,regular polygon sides=6, minimum size=2.5 cm,ultra thick] at ($(current page.north east)+(0,-8.5)$) {};
 \foreach \i in {21,...,3} % bottom right
 {\node[black!3,rounded corners,draw,regular polygon,regular polygon sides=6, minimum size=\i cm,ultra thick] at ($(current page.south east)+(-1.5,0.75)$) {} ;}
 \node[fill=black!3,rounded corners,regular polygon,regular polygon sides=6, minimum size=2 cm,ultra thick] at ($(current page.south east)+(-1.5,0.75)$) {};
 \node[align=center, scale=1.4] at ($(current page.south east)+(-1.5,0.75)$) {\usebox\orgicon};
 %% Text %%
 \node[left, align=right, black, text width=0.8\paperwidth, minimum height=3cm, rounded corners,font=\Huge\bfseries] at ($(current page.north east)+(-2,-8.5)$)
 {\@title};
 \node[left, align=right, black, text width=0.8\paperwidth, minimum height=2cm, rounded corners, font=\Large] at ($(current page.north east)+(-2,-11.8)$)
 {\scshape \@author};
 \renewcommand{\baselinestretch}{0.75}
 \node[align=center,rounded corners,fill=black!3,text=black,regular polygon,regular polygon sides=6, minimum size=2.5 cm,inner sep=0, font=\Large\bfseries] at ($(current page.west)+(2.5,-4.2)$)
 {\@date};
 \end{tikzpicture}
 \let\today\oldtoday
 \clearpage}
\makeatother

\usepackage[include]{embedall}

% end precompiled preamble
\ifcsname endofdump\endcsname\endofdump\fi

\IfFileExists{./\jobname.org}{\embedfile[desc=Primary source file]{\jobname.org}}{}
\IfFileExists{./\jobname.tex}{\embedfile[desc=The (generated) LaTeX source file]{\jobname.tex}}{}

\IfFileExists{init.el}{\embedfile[desc=Tangled emacs-lisp file]{init.el}}{}
\IfFileExists{\string~/.config/emacs/profiles.el}{\embedfile[desc=Tangled emacs-lisp file]{\string~/.config/emacs/profiles.el}}{}
\IfFileExists{../doom.orgdev/init.el}{\embedfile[desc=Tangled emacs-lisp file]{../doom.orgdev/init.el}}{}
\IfFileExists{../doom.orgdev/packages.el}{\embedfile[desc=Tangled emacs-lisp file]{../doom.orgdev/packages.el}}{}
\IfFileExists{../doom.orgdev/config.el}{\embedfile[desc=Tangled emacs-lisp file]{../doom.orgdev/config.el}}{}
\IfFileExists{cli.el}{\embedfile[desc=Tangled emacs-lisp file]{cli.el}}{}
\IfFileExists{\string~/.config/inkscape/palettes/Emacs Fancy Splash.gpl}{\embedfile[desc=Tangled text file]{\string~/.config/inkscape/palettes/Emacs Fancy Splash.gpl}}{}
\IfFileExists{doctor.el}{\embedfile[desc=Tangled emacs-lisp file]{doctor.el}}{}
\IfFileExists{\string~/.config/systemd/user/emacs.service}{\embedfile[desc=Tangled systemd file]{\string~/.config/systemd/user/emacs.service}}{}
\IfFileExists{setup.sh}{\embedfile[desc=Tangled shell file]{setup.sh}}{}
\IfFileExists{\string~/.local/share/applications/emacs-client.desktop}{\embedfile[desc=Tangled conf file]{\string~/.local/share/applications/emacs-client.desktop}}{}
\IfFileExists{\string~/.local/bin/e}{\embedfile[desc=Tangled shell file]{\string~/.local/bin/e}}{}
\IfFileExists{packages.el}{\embedfile[desc=Tangled emacs-lisp file]{packages.el}}{}
\IfFileExists{misc/mbsync-imapnotify.py}{\embedfile[desc=Tangled python file]{misc/mbsync-imapnotify.py}}{}
\IfFileExists{\string~/.config/systemd/user/goimapnotify@.service}{\embedfile[desc=Tangled systemd file]{\string~/.config/systemd/user/goimapnotify@.service}}{}
\IfFileExists{\string~/.local/bin/emacsmail}{\embedfile[desc=Tangled shell file]{\string~/.local/bin/emacsmail}}{}
\IfFileExists{\string~/.local/share/applications/emacsmail.desktop}{\embedfile[desc=Tangled conf file]{\string~/.local/share/applications/emacsmail.desktop}}{}
\IfFileExists{\string~/.local/share/mime/packages/org.xml}{\embedfile[desc=Tangled xml file]{\string~/.local/share/mime/packages/org.xml}}{}
\IfFileExists{misc/org-export-header.html}{\embedfile[desc=Tangled html file]{misc/org-export-header.html}}{}
\IfFileExists{LICENCE}{\embedfile[desc=(MIT licence file)]{LICENCE}}{}

\usepackage{transparent}

\DeclareEmoji{1F61B}{D83DDE1B} % Face With Stuck-Out Tongue
\DeclareEmoji{1F4B8}{D83DDCB8} % Money With Wings
\DeclareEmoji{1F4AF}{D83DDCAF} % Hundred Points Symbol
\DeclareEmoji{1F446}{D83DDC46} % White Up Pointing Backhand Index
\DeclareEmoji{1F449}{D83DDC49} % White Right Pointing Backhand Index
\DeclareEmoji{1F448}{D83DDC48} % White Left Pointing Backhand Index
\DeclareEmoji{1F44E}{D83DDC4E} % Thumbs Down Sign
\DeclareEmoji{1F44D}{D83DDC4D} % Thumbs Up Sign
\DeclareEmoji{1FAE1}{D83EDEE1} % Saluting Face
\DeclareEmoji{FE0F}{FE0F} % Variation Selector-16
\DeclareEmoji{1F47F}{D83DDC7F} % Imp
\DeclareEmoji{1F608}{D83DDE08} % Smiling Face With Horns
\DeclareEmoji{1F922}{D83EDD22} % Nauseated Face
\DeclareEmoji{1F92C}{D83EDD2C} % Serious Face With Symbols Covering Mouth
\DeclareEmoji{1F621}{D83DDE21} % Pouting Face
\DeclareEmoji{1F620}{D83DDE20} % Angry Face
\DeclareEmoji{1F925}{D83EDD25} % Lying Face
\DeclareEmoji{1F92A}{D83EDD2A} % Grinning Face With One Large And One Small Eye
\DeclareEmoji{1F60E}{D83DDE0E} % Smiling Face With Sunglasses
\DeclareEmoji{1F611}{D83DDE11} % Expressionless Face
\DeclareEmoji{1F62E}{D83DDE2E} % Face With Open Mouth
\DeclareEmoji{1F972}{D83EDD72} % Smiling Face With Tear
\DeclareEmoji{1F622}{D83DDE22} % Crying Face
\DeclareEmoji{1F923}{D83EDD23} % Rolling On The Floor Laughing
\DeclareEmoji{1F606}{D83DDE06} % Smiling Face With Open Mouth And Tightly-Closed Eyes
\DeclareEmoji{1F641}{D83DDE41} % Slightly Frowning Face
\DeclareEmoji{1F609}{D83DDE09} % Winking Face
\DeclareEmoji{1F604}{D83DDE04} % Smiling Face With Open Mouth And Smiling Eyes
\DeclareEmoji{2753}{2753} % Black Question Mark Ornament
\DeclareEmoji{23EA}{23EA} % Black Left-Pointing Double Triangle
\DeclareEmoji{23E9}{23E9} % Black Right-Pointing Double Triangle
\DeclareEmoji{1F642}{D83DDE42} % Slightly Smiling Face

%% end ox-latex features

\usepackage[autooneside=false,automark,headsepline]{scrlayer-scrpage}
\clearpairofpagestyles \renewcommand*{\chaptermarkformat}{} \renewcommand*{\sectionmarkformat}{}
\ihead{\upshape\scshape\leftmark} \chead{\Ifstr{\leftmark}{\rightmark}{}{\rightmark}} \ohead[\pagemark]{\pagemark}
\author{tecosaur}
\date{\href{https://code.tecosaur.net/tec/emacs-config/commit/e1dfc56}{\normalsize\texttt{e1dfc56}}\\\Large\bfseries 2025-06-09 \\\normalsize\mdseries14:56 \acr{\lowercase{UTC}}\iffalse, \href{https://code.tecosaur.net/tec/emacs-config/commit/e1dfc56}{\normalsize\texttt{e1dfc56}}\fi}
\title{Doom Emacs Configuration\\\bigskip
\LARGE\mdseries\itshape\color{black!80} The Methods, Management, and Menagerie\\ of Madness --- in meticulous detail\par}
\providecolor{url}{HTML}{0077bb}
\providecolor{link}{HTML}{882255}
\providecolor{cite}{HTML}{999933}
\hypersetup{
 pdfauthor={tecosaur},
 pdftitle={Doom Emacs Configuration},
 pdfkeywords={},
 pdfsubject={},
 pdfcreator={},
 pdflang={English},
 breaklinks=true,
 colorlinks=true,
 linkcolor=link,
 urlcolor=url,
 citecolor=cite
}
\urlstyle{same}\begin{document}

\maketitle
\tableofcontents

\begin{quote}
Let us change our traditional attitude to the construction of programs:
Instead of imagining that our main task is to instruct a computer what to do,
let us concentrate rather on explaining to human beings what we want a
computer to do. \mbox{--- Donald Knuth}
\end{quote}
\chapter{Introduction}
\label{sec:org53c797e}

Customising an editor can be very rewarding \ldots{} until you have to leave it.
For years I have been looking for ways to avoid this pain.
Then I discovered \href{https://github.com/cknadler/vim-anywhere}{vim-anywhere}, and found that it had an Emacs companion,
\href{https://github.com/zachcurry/emacs-anywhere}{emacs-anywhere}. To me, this looked most attractive.

Separately, online I have seen the following statement enough times I think it's a catchphrase
\begin{quote}
Redditor 1: I just discovered this thing, isn't it cool. \\
Redditor 2: Oh, there's an Emacs mode for that.
\end{quote}

This was enough for me to install Emacs, but I soon learned there are \href{https://github.com/remacs/remacs\#why-emacs}{far more
compelling reasons} to keep using it.

I tried out the \verb~spacemacs~ distribution a bit, but it wasn't quite to my liking.
Then I heard about \verb~doom emacs~ and thought I may as well give that a try.
TLDR; it's great.

Now I've discovered the wonders of literate programming, and am becoming more
settled by the day. This is both my config, and a cautionary tale (just replace
"Linux" with "Emacs" in the comic below).
\section{Why Emacs?}
\label{sec:org42b3337}

Emacs is \href{https://www.eigenbahn.com/2020/01/12/emacs-is-no-editor}{not a text editor}, this is a common misnomer. It is far more apt to
describe Emacs as \emph{a Lisp machine providing a generic user-centric text
manipulation environment}. That's quite a mouthful.
In simpler terms one can think of Emacs as a platform for text-related
applications. It's a vague and generic definition because Emacs itself is
generic.

Good with text. How far does that go? A lot further than one initially thinks:
\begin{itemize}
\item \href{https://orgmode.org/}{Task planning}
\item \href{https://www.gnu.org/software/emacs/manual/html_node/emacs/Dired.html}{File management}
\item \href{https://github.com/akermu/emacs-libvterm}{Terminal emulation}
\item \href{https://www.djcbsoftware.nl/code/mu/mu4e.html}{Email client}
\item \href{https://www.gnu.org/software/tramp/}{Remote server tool}
\item \href{https://magit.vc/}{Git frontend}
\item Web \href{https://github.com/pashky/restclient.el}{client}/\href{https://github.com/skeeto/emacs-web-server}{server}
\item and more\ldots{}
\end{itemize}

Ideally, one may use Emacs as \emph{the} interface to perform \verb~input â�� transform â�� output~ cycles, i.e.\ form a bridge between the human mind and information
manipulation.
\subsection{The enveloping editor}
\label{sec:org0e60167}

Emacs allows one to do more in one place than any other application. Why is this
good?
\begin{itemize}
\item Enables one to complete tasks with a consistent, standard set of keybindings,
GUI and editing methods --- learn once, use everywhere
\item Reduced context-switching
\item Compressing the stages of a project --- a more centralised workflow can progress
with greater ease
\item Integration between tasks previously relegated to different applications, but
with a common subject --- e.g.\ linking to an email in a to-do list
\end{itemize}

Emacs can be thought of as a platform within which various elements of your
workflow may settle, with the potential for rich integrations between them --- a
\emph{life} IDE if you will.

Today, many aspects of daily computer usage are split between different
applications which act like islands, but this often doesn't mirror how we
\emph{actually use} our computers. Emacs, if one goes down the rabbit hole, can give
users the power to bridge this gap.

\begin{figure}[htbp]
\centering
\includesvg[width=0.55\linewidth]{misc/emacs-platform}
\caption{Some sample workflow integrations that can be used within Emacs}
\end{figure}
\subsection{Some notably unique features}
\label{sec:org40092a2}

\begin{itemize}
\item Recursive editing
\item Completely introspectable, with pervasive docstrings
\item Mutable environment, which can be incrementally modified
\item Functionality without applications
\item Client-server separation allows for a daemon, giving near-instant perceived
startup time.
\end{itemize}
\subsection{Issues}
\label{sec:org767b7c7}

\begin{itemize}
\item Emacs has irritating quirks
\item Some aspects are showing their age (naming conventions, APIs)
\item Emacs is (\href{https://www.gnu.org/software/emacs/manual/html_node/elisp/Threads.html}{mostly}) single-threaded, meaning that when something holds that
thread up the whole application freezes
\item A few other nuisances
\end{itemize}
\subsection{Teach a man to fish\ldots{}}
\label{sec:orgc9b284d}

\begin{quote}
Give a man a fish, and you feed him for a day. Teach a man to fish, and you feed
him for a lifetime. --- Anne Isabella
\end{quote}

Most popular editors have a simple and pretty \href{https://code.visualstudio.com/docs/getstarted/settings}{settings interface}, filled with
check-boxes, selects, and the occasional text-box. This makes it easy for the
user to pick between common desirable behaviours. To me this is now like \emph{giving
a man a fish}.

What if you want one of those 'check-box' settings to be only on in certain
conditions? Some editors have workspace settings, but that requires you to
manually set the value for \emph{every single instance}. Urgh, \href{https://github.com/microsoft/vscode/issues/93153}{what} \href{https://github.com/microsoft/vscode/issues/93628}{a} \href{https://github.com/microsoft/vscode/issues/5595}{pain}.

What if you could set the value of that 'check-box' setting to be the result of
an arbitrary expression evaluated for each file? This is where an editor like
Emacs comes in.
Configuration for Emacs isn't a list of settings in JSON etc.\ it's \textbf{an executable
program which modifies the behaviour of the editor to suit your liking}.
This is 'teaching a man to fish'.

Emacs is built in the same language you configure it in (Emacs \href{https://en.wikipedia.org/wiki/Lisp_(programming_language)}{Lisp}, or \href{https://www.gnu.org/software/emacs/manual/html_node/eintr/}{elisp}).
It comes with a broad array of useful functions for text-editing, and Doom adds
a few handy little convenience functions.

Want to add a keybinding to delete the previous line? It's as easy as
\begin{Code}
\begin{Verbatim}
\color{EFD}(map! \EFs{"C-d"}
 (\EFk{cmd!} (previous-line)
 (kill-line)
 (forward-line)))
\end{Verbatim}
\end{Code}

How about another example, say you want to be presented with a list of currently
open \emph{buffers} (think files, almost) when you split the window. It's as simple as
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defadvice!} prompt-for-buffer (\EFt{\&rest} _)
 \EFb{:after} 'window-split (switch-to-buffer))
\end{Verbatim}
\end{Code}

Want to test it out? You don't need to save and restart, you can just \emph{evaluate
the expression} within your current Emacs instance and try it immediately! This
editor is, after all, a Lisp interpreter.

Want to tweak the behaviour? Just re-evaluate your new version --- it's a
super-tight iteration loop.
\section{Editor comparison}
\label{sec:org17b8a7e}

Over the years I have tried out (spent at least a year using as my primary
editor) the following applications
\begin{itemize}
\item Python IDLE
\item Komodo Edit
\item Brackets
\item VSCode
\item and now, Emacs
\end{itemize}

I have attempted to quantify aspects of my impressions of them below.

\begin{center}
\begin{tabular}{lrrrrrr}
\toprule
Editor & Extensibility & Ecosystem & Ease of Use & Comfort & Completion & Performance\\
\midrule
IDLE & 1 & 1 & 3 & 1 & 1 & 2\\
VSCode & 3 & 3 & 4 & 3.5 & 4 & 3\\
Brackets & 2.5 & 2 & 3 & 3 & 2.5 & 2\\
Emacs & 4 & 4 & 2 & 4 & 3.5 & 3\\
Komodo Edit & 2 & 1 & 3 & 2 & 2 & 2\\
\bottomrule
\end{tabular}
\end{center}

\begin{center}
\includesvg[inkscapelatex=false,width=.9\linewidth]{misc/editor-comparison}
\end{center}
\section{Notes for the unwary adventurer}
\label{sec:org3faaa76}

If you like the look of this, that's marvellous, and I'm really happy that I've
made something which you may find interesting, however:
\begin{warning}
This config is \emph{insidious}. Copying the whole thing blindly can easily lead to
undesired effects. I recommend copying chunks instead.
\end{warning}

If you are so bold as to wish to steal bits of my config (or if I upgrade and
wonder why things aren't working), here's a list of sections which rely on
external setup (i.e. outside of this config).

\begin{description}
\item[{dictionary}] I've downloaded a custom \href{http://app.aspell.net/create}{SCOWL} dictionary, which I use in .
If this causes issues, just delete the \Verb[commandchars=\\\{\},highlightcolor=white!95!black!80!blue,breaklines=true,breaksymbol=\color{white!60!black}\tiny\ensuremath{\hookrightarrow}]{\color{EFD}(\EFk{setq} ispell-dictionary ...)}
bit.
\end{description}

There are also a number of files I may tangle to \emph{other than}
\verb~{init,config,package}.el~. The complete list (excluding confpkg generated files)
is as follows:

\phantomsection
\label{org0d711d9}
\begin{itemize}
\item \verb,~/.config/doom.orgdev/config.el,
\item \verb,~/.config/doom.orgdev/init.el,
\item \verb,~/.config/doom.orgdev/packages.el,
\item \verb,~/.config/doom/cli.el,
\item \verb,~/.config/doom/doctor.el,
\item \verb,~/.config/doom/init.el,
\item \verb,~/.config/doom/misc/mbsync-imapnotify.py,
\item \verb,~/.config/doom/misc/org-export-header.html,
\item \verb,~/.config/doom/packages.el,
\item \verb,~/.config/doom/setup.sh,
\item \verb,~/.config/emacs/profiles.el,
\item \verb,~/.config/inkscape/palettes/Emacs Fancy Splash.gpl,
\item \verb,~/.config/systemd/user/emacs.service,
\item \verb,~/.config/systemd/user/goimapnotify@.service,
\item \verb,~/.config/systemd/user/mbsync.service,
\item \verb,~/.config/systemd/user/mbsync.timer,
\item \verb,~/.local/bin/e,
\item \verb,~/.local/bin/emacsmail,
\item \verb,~/.local/share/applications/emacs-client.desktop,
\item \verb,~/.local/share/applications/emacsmail.desktop,
\item \verb,~/.local/share/mime/packages/org.xml,
\end{itemize}

Oh, did I mention that I started this config when I didn't know any \verb~elisp~, and
this whole thing is a hack job? If you can suggest any improvements, please do
so, no matter how much criticism you include I'll appreciate it :)
\subsection{Extra Requirements}
\label{sec:org2ba4809}

The lovely \texttt{doom doctor} is good at diagnosing most missing things, but here are a
few extras.
\begin{itemize}
\item A \href{https://www.tug.org/texlive/}{\LaTeX{} Compiler} is required for the mathematics rendering performed in \hyperref[sec:orge77ab31]{Org},
and by \hyperref[sec:orgc2a8cee]{CalcTeX}.
\item I use the \href{https://overpassfont.org/}{Overpass} font as a go-to sans serif.
It's used as my \texttt{doom-variable-pitch-font} and in the graph generated
by \hyperref[sec:orgd13acf1]{Roam}.
I have chosen it because it possesses a few characteristics I consider
desirable, namely:
\begin{itemize}
\item A clean, and legible style. Highway-style fonts tend to be designed to be
clear at a glance, and work well with a thicker weight, and this is inspired
by \emph{Highway Gothic}.
\item It's slightly quirky. Look at the diagonal cut on stems for example.
Helvetica is a masterful design, but I like a bit more pizzazz now and then.
\end{itemize}
\item A few LSP servers. Take a look at \href{init.el}{init.el} to see which modules have the \texttt{+lsp} flag.
\end{itemize}
\section{Current Issues}
\label{sec:org88d3447}
\subsection{Magit push in daemon}
\label{sec:org726bcd3}

Quite often trying to push to a remote in the Emacs daemon produces as error like this:

\begin{verbatim}
128 git â�¦ push -v origin refs/heads/master\:refs/heads/master
Pushing to git@github.com:tecosaur/emacs-config.git

fatal: Could not read from remote repository.

Please make sure you have the correct access rights
and the repository exists.
\end{verbatim}
\subsection{Unread emails doesn't work across Emacs instances}
\label{sec:org5da0701}

It would be nice if it did, so that I could have the Emacs-daemon hold the
active mu4e session, but still get that information. In this case I'd want to
change the action to open the Emacs daemon, but it should be possible.

This would probably involve hooking into the daemon's modeline update function
to write to a temporary file, and having a file watcher started in other Emacs
instances, in a similar manner to \hyperref[sec:org4aa500d]{Rebuild mail index while using mu4e}.
\chapter{Rudimentary configuration}
\label{sec:org85b9ea0}
\section{Confpkg}
\label{sec:org44a122b}
\subsection{Motivation}
\label{sec:org2529fc0}

Previously, all of my configuration was directly tangled into \verb~config.el~. This
\emph{almost} satisfies my use. Occasionally though, I'd want to apply or extract a
\emph{specific bit} of my config in an elisp script, such as some of my Org-export
customisations. This is a hassle, either loading my entire config (of which 90\%
simply complicates the state), or manually copying the relevant code in pieces,
one source block at a time (just a different kind of hassle). While I'd like to
think my config is "greater than the sum of its parts", much of it can be safely
clumped into self-contained packets of functionality.

One afternoon I thought "wouldn't it be nice if I could just load a few of those
self-contained chunks of my config", then I started thinking about how I could
have that \emph{and} \verb~config.el~. This is the result.
\subsection{Design}
\label{sec:orgfa35dae}

It's already natural to organise blocks of config under sections, and we can use
\verb~:noweb-ref~ with a \verb~header-args:emacs-lisp~ property to direct all child source
blocks into a single parent. We could have two parents, one tangling to
\verb~subconf/config-X.el~ and the other to \verb~config.el~, however this will duplicate
any evaluations required to generate the content, which isn't great
(particularly for things which take a moment, like checking for \LaTeX{}
packages). Instead we can \emph{just} write to the \verb~subconf/*~ files and then at the
end of tangling extract their contents into \verb~config.el~.

\begin{Code}
\begin{Verbatim}
\color{EFD}digraph \{
 graph [bgcolor="transparent"];
 node [shape="underline" penwidth="2" style="rounded,filled" fillcolor="\#efefef" color="\#c9c9c9" fontcolor="\#000000" fontname="Alegreya Sans"];
 edge [color="\#aaaaaa" penwidth="1.2" fontname="Alegreya Sans"]
 rankdir="LR"
 "config.org" [color="\#4db5bd"]
 "config.el" [color="\#e69055"]
 node[color="\#a991f1"]
 "subconf/config-magit.el"
 "subconf/config-org.el"
 "subconf/config-?.el"
 node[color="\#51afef"]
 "config.org" -> "Magit\#src1" -> "subconf/config-magit.el" -> "config.el"
 "config.org" -> "Magit\#src2" -> "subconf/config-magit.el"
 "config.org" -> "Org\#src1" -> "subconf/config-org.el" -> "config.el"
 "config.org" -> "Org\#src2" -> "subconf/config-org.el"
 "config.org" -> "Org\#..." -> "subconf/config-org.el"
 "config.org" -> "(etc.)\#..." -> "subconf/config-?.el" -> "config.el"
\}
\end{Verbatim}
\end{Code}

To set this up within each section, instead of manually repeating a common form
we can generate the form and supply the relevant section properties via a babel
call keyword, like so:

\begin{Code}
\begin{Verbatim}
\color{EFD}\textcolor[HTML]{e45649}{\textbf{* Subject}}

\textcolor[HTML]{84888b}{\#+call: confpkg("subject")}

\EFobb{\#+begin_src emacs-lisp}
\colorbox[HTML]{e7e7e7}{\textcolor[HTML]{84888b}{;;}} \colorbox[HTML]{e7e7e7}{\textcolor[HTML]{84888b}{Code that configures the subject...}}
\EFobe{\#+end_src}
\end{Verbatim}
\end{Code}

This isn't entirely straightforward, but with some mild abuse of noweb and babel
we can make it work!
\subsection{Preparation}
\label{sec:orgf922740}

This approach is built around \verb~#+call~ invocations that affect the tangling.
Unfortunately for this use-case, babel call keywords are not executed on tangle.
Tangled noweb blocks \emph{are} however, and so we can fudge the behaviour we want by
tangling a noweb block to a temp file, with a noweb block that executes babel
calls in the buffer.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{condition-case} nil
 (\EFk{progn}
 (message \EFs{"Intitialising confpkg"})
 <<bootstrap>>
 (\EFk{org-fold-core-ignore-fragility-checks}
 (\EFk{org-babel-map-executables} nil
 (\EFk{when} (eq (org-element-type (org-element-context)) 'babel-call)
 (org-babel-lob-execute-maybe)))))
 (quit (revert-buffer t t t)))
\end{Verbatim}
\end{Code}

See the \cref{sec:org9f1dcae} section for an explanation of the \verb~<<bootstrap>>~ noweb reference.

\begin{Code}
\begin{Verbatim}
\color{EFD}<<confpkg-prepare()>>
\end{Verbatim}
\end{Code}
\subsection{Setup}
\label{sec:org55a45ec}

Before generating the template with babel, we want to keep track of:
\begin{itemize}
\item How many config groups are created
\item Information about each config group
\end{itemize}

To do this we can simply create two variables. Due to temp-buffer shenanigans,
we'll have to use global variables here.

Then we need to set up the two final phases of this process:
\begin{itemize}
\item Creating \verb~config.el~
\item Cleaning up the superfluous generated content
\end{itemize}

To trigger the final phases we'll add a hook to \texttt{org-babel-post-tangle-hook}. Once
again, it would be preferred if this was done locally, but it needs to be
global. To avoid this causing headaches down the line we'll make sure when
implementing the hook function to have it remove itself from the hook when
executed.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} confpkg--num 0
 confpkg--list nil)

<<confpkg-dependency-analysis>>
<<confpkg-strip-package-statements>>
<<confpkg-create-config>>
(\EFk{defun} \EFf{confpkg-cleanup} ()
 <<confpkg-cleanup>>
)
<<confpkg-finaliser>>

<<confpkg-clear-old-files>>

(add-hook 'org-babel-tangle-finished-hook \#'confpkg-tangle-finalise)
\end{Verbatim}
\end{Code}

To avoid generating cruft, it would also be good to get rid of old tangled
config files at the start.

\begin{Code}
\begin{Verbatim}
\color{EFD}(make-directory \EFs{"subconf"} t)
(\EFk{dolist} (conf-file (directory-files \EFs{"subconf"} t \EFs{"config-.*\char92{}\char92{}.el"}))
 (delete-file conf-file))
\end{Verbatim}
\end{Code}

Now to have this take effect, we can just use a babel call keyword. Thanks to
the preparation step this will be executed during tangling.
\subsection{Package generation}
\label{sec:org7df63a0}

Now we actually implement the \verb~confpkg~ babel function. We could just direct the
output into the \verb~subconf/config-X.el~ file without any extra steps, but why not be
a bit fancier and make it more like a package.

To do this, we'll have \verb~confpkg~ load a template and then fill it in using
\texttt{format-spec}. To make sure this is actually used, we'll call \texttt{org-set-property} to
modify the parent heading, and register the config group with the variables we
created earlier.

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{;;} \EFc{Babel block for use with \#+call}
\EFcd{;;} \EFc{Arguments:}
\EFcd{;;} \EFc{- name, the name of the config sub-package}
\EFcd{;;} \EFc{- needs, (when non-empty) required system executable(s)}
\EFcd{;;} \EFc{- after, required features as a string or vector of strings}
\EFcd{;;} \EFc{- pre, a noweb reference to code that should be executed eagerly,}
\EFcd{;;} \EFc{and not deferred via after. The code is not included in the}
\EFcd{;;} \EFc{generated .el file and should only be used in dire situations.}
\EFcd{;;} \EFc{- prefix, the package prefix ("config-" by default)}
\EFcd{;;} \EFc{- via, how this configuration should be included in config.el,}
\EFcd{;;} \EFc{the current options are:}
\EFcd{;;} \EFc{+ "copy", copy the configuration lisp}
\EFcd{;;} \EFc{+ "require", insert a require statement}
\EFcd{;;} \EFc{+ "none", do not do anything to load this configuration.}
\EFcd{;;} \EFc{This only makes sense when configuration is either being}
\EFcd{;;} \EFc{temporarily disabled or loaded indirectly/elsewhere.}
\EFcd{;;} \EFc{- emacs-minimum, the minimum emacs version ("29.1" by default)}
(\EFk{when} (\EFk{or} (string-empty-p needs)
 (cl-every \#'executable-find (delq nil (split-string needs \EFs{","}))))
 (\EFk{let*} ((name (\EFk{if} (string-empty-p name)
 (\EFk{save-excursion}
 (\EFk{and} (org-back-to-heading-or-point-min t)
 (substring-no-properties
 (org-element-interpret-data
 (org-element-property \EFb{:title} (org-element-at-point))))))
 name))
 (after
 (\EFk{cond}
 ((\EFk{and} (stringp after) (string-empty-p after)) nil)
 ((\EFk{and} (stringp after) (string-match-p \EFs{"\char92{}\char92{}`[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{()]+\char92{}\char92{}'"} after))
 (intern after)) \EFcd{;} \EFc{Single feature.}
 ((\EFk{and} (vectorp after) (cl-every \#'stringp after))
 (nconc (list \EFb{:and}) (mapcar \#'intern after)))
 (t nil)))
 (pre (\EFk{and} (not (string-empty-p pre)) pre))
 (confpkg-name
 (concat prefix (replace-regexp-in-string
 \EFs{"[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{a-z-]"} \EFs{"-"} (downcase name))))
 (confpkg-file (expand-file-name (concat confpkg-name \EFs{".el"})
 \EFs{"subconf"})))
 (\EFk{unless} (file-exists-p confpkg-file)
 (make-empty-file confpkg-file t))
 (\EFk{cl-incf} confpkg--num)
 (org-set-property
 \EFs{"header-args:emacs-lisp"}
 (format \EFs{":tangle no :noweb-ref \%s :noweb-sep \char92{}"\char92{}\char92{}n\char92{}\char92{}n\char92{}""} confpkg-name))
 (\EFk{push} (list \EFb{:name} name
 \EFb{:package} confpkg-name
 \EFb{:file} confpkg-file
 \EFb{:after} after
 \EFb{:pre} pre
 \EFb{:via} (intern via)
 \EFb{:package-statements} nil)
 confpkg--list)
 (format-spec
 \EFs{"\#+begin_src emacs-lisp :tangle \%f :mkdirp yes :noweb no-export :noweb-ref none :comments no}
\EFs{<<confpkg-template>>}
\EFs{\#+end_src"}
 `((?n . ,confpkg--num)
 (?p . ,confpkg-name)
 (?f . ,confpkg-file)
 (?e . ,emacs-minimum)
 (?Y . ,(format-time-string \EFs{"\%Y"}))
 (?B . ,(format-time-string \EFs{"\%B"}))
 (?m . ,(format-time-string \EFs{"\%m"}))
 (?d . ,(format-time-string \EFs{"\%d"}))
 (?M . ,(format-time-string \EFs{"\%M"}))
 (?S . ,(format-time-string \EFs{"\%S"}))))))
\end{Verbatim}
\end{Code}

Now all that's needed is a template to be used.

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{;;;} \EFc{\%p.el --- Generated package (no.\%n) from my config -*- lexical-binding: t; -*-}
\EFcd{;;}
\EFcd{;;} \EFc{Copyright (C) \%Y TEC}
\EFcd{;;}
\EFcd{;;} \EFc{Author: TEC <https://code.tecosaur.net/tec>}
\EFcd{;;} \EFc{Maintainer: TEC <contact@tecosaur.net>}
\EFcd{;;} \EFc{Created: \%B \%d, \%Y}
\EFcd{;;} \EFc{Modified: \%B \%d, \%Y}
\EFcd{;;} \EFc{Version: \%Y.\%m.\%d}
\EFcd{;;} \EFc{Homepage: https://code.tecosaur.net/tec/emacs-config}
\EFcd{;;} \EFc{Package-Requires: ((emacs \char92{}"\%e\char92{}"))}
\EFcd{;;}
\EFcd{;;} \EFc{This file is not part of GNU Emacs.}
\EFcd{;;}
\EFcd{;;;} \EFc{Commentary:}
\EFcd{;;}
\EFcd{;;} \EFc{Generated package (no.\%n) from my config.}
\EFcd{;;}
\EFcd{;;} \EFc{During generation, dependency on other aspects of my configuration and}
\EFcd{;;} \EFc{packages is inferred via (regexp-based) static analysis. While this seems}
\EFcd{;;} \EFc{to do a good job, this method is imperfect. This code likely depends on}
\EFcd{;;} \EFc{utilities provided by Doom, and if you try to run it in isolation you may}
\EFcd{;;} \EFc{discover the code makes more assumptions.}
\EFcd{;;}
\EFcd{;;} \EFc{That said, I've found pretty good results so far.}
\EFcd{;;}
\EFcd{;;;} \EFc{Code:}

<<\%p>>

(\EFk{provide} '\EFo{\%p})
\EFcd{;;;} \EFc{\%p.el ends here}
\end{Verbatim}
\end{Code}

This currently makes the included content look much more package-like that in
truly is. However, I hope that some static analysis in future will allow for
dependency information to be collected and included.

Lastly, should there be an issue or interruption, it's possible that the
modifications from \verb~#+call: confpkg~ may persist. If I've been good with my
committing, resolving this should be as simple as reverting unstaged changes.
So\ldots{} back in reality, it would be nice to have a way to clean up \verb~confpkg~
residue.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{org-fold-core-ignore-fragility-checks}
 (\EFk{org-babel-map-executables} nil
 (\EFk{when} (\EFk{and} (eq (org-element-type (org-element-context)) 'babel-call)
 (equal (org-element-property \EFb{:call} (org-element-context)) \EFs{"confpkg"}))
 (org-babel-remove-result)
 (org-entry-delete nil \EFs{"header-args:emacs-lisp"}))))
\end{Verbatim}
\end{Code}
\subsection{Identify cross-package dependencies}
\label{sec:org978b96c}
At a basic level, we can search for regexp expressions indicating the definition
of functions or variables and search for their usage.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{confpkg--rough-extract-definitions} (file)
 (\EFk{with-temp-buffer}
 (insert-file-contents file)
 (goto-char (point-min))
 (\EFk{let} (symbols)
 (\EFk{while} (re-search-forward
 (\EFk{rx} line-start (* (any ?\char92{}s ?\char92{}t)) \EFs{"("}
 (\EFk{or} \EFs{"defun"} \EFs{"defmacro"} \EFs{"defsubst"} \EFs{"defgeneric"} \EFs{"defalias"} \EFs{"defvar"} \EFs{"defcustom"} \EFs{"defface"} \EFs{"deftheme"}
 \EFs{"cl-defun"} \EFs{"cl-defmacro"} \EFs{"cl-defsubst"} \EFs{"cl-defmethod"} \EFs{"cl-defstruct"} \EFs{"cl-defgeneric"} \EFs{"cl-deftype"})
 (+ (any ?\char92{}s ?\char92{}t))
 (group (+ (any \EFs{"A-Z"} \EFs{"a-z"} \EFs{"0-9"}
 ?+ ?- ?* ?/ ?_ ?\char126{} ?! ?@ ?\$?\% ?\char94{} ?\& ?= ?: ?< ?> ?\{ ?\})))
 (\EFk{or} blank ?\char92{}n))
 nil t)
 (\EFk{push} (match-string 1) symbols))
 symbols)))
\end{Verbatim}
\end{Code}

Continuing our rough regexp approach, we can construct a similar function to
look for uses of symbols.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{confpkg--rough-uses-p} (file symbols)
 (\EFk{with-temp-buffer}
 (insert-file-contents file)
 (\EFk{let} ((symbols (copy-sequence symbols)) uses-p)
 (\EFk{while} symbols
 (goto-char (point-min))
 (\EFk{if} (re-search-forward (\EFk{rx} word-start (literal (car symbols)) word-end) nil t)
 (\EFk{setq} uses-p t symbols nil)
 (\EFk{setq} symbols (cdr symbols))))
 uses-p)))
\end{Verbatim}
\end{Code}

Now we can put these two functions together to annotate \texttt{confpkg-{}-{}list} with their
(confpkg) dependencies.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{confpkg-annotate-list-dependencies} ()
 (\EFk{dolist} (confpkg confpkg--list)
 (plist-put confpkg \EFb{:defines}
 (confpkg--rough-extract-definitions
 (plist-get confpkg \EFb{:file}))))
 (\EFk{dolist} (confpkg confpkg--list)
 (\EFk{let} ((after (plist-get confpkg \EFb{:after}))
 requires)
 (\EFk{dolist} (other-confpkg confpkg--list)
 (\EFk{when} (\EFk{and} (not (eq other-confpkg confpkg))
 (confpkg--rough-uses-p (plist-get confpkg \EFb{:file})
 (plist-get other-confpkg \EFb{:defines})))
 (\EFk{push} (plist-get other-confpkg \EFb{:package}) requires)))
 (\EFk{when} (\EFk{and} after (symbolp after))
 (\EFk{push} after requires))
 (plist-put confpkg \EFb{:requires} requires))))
\end{Verbatim}
\end{Code}

Finally, we can use this information to edit the confpkg files to add the
necessary \texttt{require} statements.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{confpkg-write-dependencies} ()
 (\EFk{dolist} (confpkg confpkg--list)
 (\EFk{when} (plist-get confpkg \EFb{:requires})
 (\EFk{with-temp-buffer}
 (\EFk{setq} buffer-file-name (plist-get confpkg \EFb{:file}))
 (insert-file-contents buffer-file-name)
 (re-search-forward \EFs{"\char94{};;; Code:\char92{}n"})
 (insert \EFs{"\char92{}n"})
 (\EFk{dolist} (req (plist-get confpkg \EFb{:requires}))
 (insert (format \EFs{"(require '\%s)\char92{}n"} req)))
 (write-region nil nil buffer-file-name)
 (set-buffer-modified-p nil)))))
\end{Verbatim}
\end{Code}
\subsection{Commenting out \texttt{package!} statements}
\label{sec:org6014319}

It's easy enough to set \texttt{package!} statements to tangle to \verb~packages.el~, however
with our noweb ref approach they will \emph{also} go to the config files. This could be
viewed as a problem, but I actually think it's rather nice to have the package
information with the config. So, we can look for an immediate \texttt{package!} statement
and simply comment it out. As a bonus, we can also then record which packages
are needed for each block of config.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{confpkg-comment-out-package-statements} ()
 (\EFk{dolist} (confpkg confpkg--list)
 (\EFk{with-temp-buffer}
 (\EFk{setq} buffer-file-name (plist-get confpkg \EFb{:file}))
 (insert-file-contents buffer-file-name)
 (goto-char (point-min))
 (\EFk{while} (re-search-forward \EFs{"\char94{};;; Code:\char92{}n[[:space:]\char92{}n]*(}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{package!}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{unpin!}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{[[:space:]\char92{}n]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{[:space:]]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{\char92{}\char92{}b"} nil t)
 (plist-put confpkg \EFb{:package-statements}
 (nconc (plist-get confpkg \EFb{:package-statements})
 (list (match-string 2))))
 (\EFk{let*} ((start (\EFk{progn} (beginning-of-line) (point)))
 (end (\EFk{progn} (forward-sexp 1)
 (\EFk{if} (looking-at \EFs{"[\char92{}t]*;.*"})
 (line-end-position)
 (point))))
 (contents (buffer-substring start end))
 paste-start paste-end
 (comment-start \EFs{";"})
 (comment-padding \EFs{" "})
 (comment-end \EFs{""}))
 (delete-region start (1+ end))
 (re-search-backward \EFs{"\char94{};;; Code:"})
 (beginning-of-line)
 (insert \EFs{";; Package statement:\char92{}n"})
 (\EFk{setq} paste-start (point))
 (insert contents)
 (\EFk{setq} paste-end (point))
 (insert \EFs{"\char92{}n;;\char92{}n"})
 (comment-region paste-start paste-end 2)))
 (\EFk{when} (buffer-modified-p)
 (write-region nil nil buffer-file-name)
 (set-buffer-modified-p nil)))))
\end{Verbatim}
\end{Code}
\subsection{Creating the config file}
\label{sec:org504312a}

After all the subconfig files have been tangled, we need to collect their
content and put them together into \verb~config.el~. For this, all that's needed is a
function to go through the registered config groups and put their content in a
tempbuffer. We can call this with the finalising step.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{confpkg-create-config} ()
 (\EFk{let} ((revert-without-query '(\EFs{"config\char92{}\char92{}.el"}))
 (keywords (org-collect-keywords '(\EFs{"AUTHOR"} \EFs{"EMAIL"})))
 (original-buffer (current-buffer)))
 (\EFk{with-temp-buffer}
 (insert
 (format \EFs{";;; config.el -*- lexical-binding: t; -*-}

\EFs{;; SPDX-FileCopyrightText: Â© 2020-\%s \%s <\%s>}
\EFs{;; SPDX-License-Identifier: MIT}

\EFs{;; Generated at \%s from the literate configuration.}

\EFs{(add-to-list 'load-path \%S)\char92{}n"}
 (format-time-string \EFs{"\%Y"})
 (cadr (assoc \EFs{"AUTHOR"} keywords))
 (cadr (assoc \EFs{"EMAIL"} keywords))
 (format-time-string \EFs{"\%FT\%T\%z"})
 (replace-regexp-in-string
 (regexp-quote (getenv \EFs{"HOME"})) \EFs{"\char126{}"}
 (expand-file-name \EFs{"subconf/"}))))
 (mapc
 (\EFk{lambda} (confpkg)
 (insert
 (\EFk{if} (eq 'none (plist-get confpkg \EFb{:via}))
 (format \EFs{"\char92{}n;;; \%s intentionally omitted.\char92{}n"} (plist-get confpkg \EFb{:name}))
 (\EFk{with-temp-buffer}
 (\EFk{cond}
 ((eq 'copy (plist-get confpkg \EFb{:via}))
 (insert-file-contents (plist-get confpkg \EFb{:file}))
 (goto-char (point-min))
 (narrow-to-region
 (re-search-forward \EFs{"\char94{};;; Code:\char92{}n+"})
 (\EFk{progn}
 (goto-char (point-max))
 (re-search-backward (format \EFs{"[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{\char92{}n\char92{}t][\char92{}n\char92{}t]*\char92{}n[\char92{}t]*(provide '\%s)"} (plist-get confpkg \EFb{:package})))
 (match-end 0))))
 ((eq 'require (plist-get confpkg \EFb{:via}))
 (insert (format \EFs{"(require '\%s)\char92{}n"} (plist-get confpkg \EFb{:package}))))
 (t (insert (format \EFs{"(warn \char92{}"\%s confpkg :via has unrecognised value: \%S\char92{}" \%S \%S)"}
 (plist-get confpkg \EFb{:name}) (plist-get confpkg \EFb{:via})))))
 (goto-char (point-min))
 (insert \EFs{"\char92{}n;;:------------------------"}
 \EFs{"\char92{}n;;; "} (plist-get confpkg \EFb{:name})
 \EFs{"\char92{}n;;:------------------------\char92{}n\char92{}n"})
 (\EFk{when} (plist-get confpkg \EFb{:defines})
 (insert \EFs{";; This block defines "}
 (mapconcat
 (\EFk{lambda} (d) (format \EFs{"`}\textcolor[HTML]{b751b6}{\%s}\EFs{'"} d))
 (plist-get confpkg \EFb{:defines})
 \EFs{", "})
 \EFs{"."})
 (\EFk{when} (re-search-backward \EFs{"}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{,]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{,} \textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{,]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{,} \textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{,]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{.}\textcolor[HTML]{a626a4}{\char92{}\char92{}=}\EFs{"}
 (line-beginning-position) t)
 (replace-match \EFs{"\char92{}\char92{}1, \char92{}\char92{}2, and \char92{}\char92{}3."}))
 (\EFk{when} (re-search-backward \EFs{"}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{,]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{,} \textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{,]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{.}\textcolor[HTML]{a626a4}{\char92{}\char92{}=}\EFs{"}
 (line-beginning-position) t)
 (replace-match \EFs{"\char92{}\char92{}1 and \char92{}\char92{}2."}))
 (insert \EFs{"\char92{}n\char92{}n"})
 (forward-line -2)
 (\EFk{setq-local} comment-start \EFs{";"})
 (fill-comment-paragraph)
 (forward-paragraph 1)
 (forward-line 1))
 (\EFk{if} (equal (plist-get confpkg \EFb{:package}) \EFs{"config-confpkg-timings"})
 (\EFk{progn}
 (goto-char (point-max))
 (insert \EFs{"\char92{}n\char92{}n\char92{}}
\EFs{(confpkg-create-record 'doom-pre-config (float-time (time-subtract (current-time) before-init-time)))}
\EFs{(confpkg-start-record 'config)}
\EFs{(confpkg-create-record 'config-defered 0.0 'config)}
\EFs{(confpkg-create-record 'set-hooks 0.0 'config-defered)}
\EFs{(confpkg-create-record 'load-hooks 0.0 'config-defered)}
\EFs{(confpkg-create-record 'requires 0.0 'root)\char92{}n"}))
 (\EFk{let} ((after (plist-get confpkg \EFb{:after}))
 (pre (\EFk{and} (plist-get confpkg \EFb{:pre})
 (org-babel-expand-noweb-references
 (list \EFs{"emacs-lisp"}
 (format \EFs{"<<\%s>>"} (plist-get confpkg \EFb{:pre}))
 '((\EFb{:noweb} . \EFs{"yes"})
 (\EFb{:comments} . \EFs{"none"})))
 original-buffer)))
 (name (replace-regexp-in-string
 \EFs{"config--?"} \EFs{""}
 (plist-get confpkg \EFb{:package}))))
 (\EFk{if} after
 (insert (format \EFs{"(confpkg-with-record '\%S\char92{}n"}
 (list (concat \EFs{"hook: "} name) 'set-hooks))
 (\EFk{if} pre
 (concat \EFs{";; Begin pre\char92{}n"} pre \EFs{"\char92{}n;; End pre\char92{}n"})
 \EFs{""})
 (format (\EFk{if} (symbolp after) \EFcd{;} \EFc{If single feature.}
 \EFs{" (with-eval-after-load '\%s\char92{}n"}
 \EFs{" (after! \%s\char92{}n"})
 after))
 (\EFk{when} pre
 (insert \EFs{"\char92{}n;; Begin pre (unnecesary since after is unused)\char92{}n"}
 pre
 \EFs{"\char92{}n;; End pre\char92{}n"})))
 (insert
 (format \EFs{"(confpkg-with-record '\%S\char92{}n"}
 (list (concat \EFs{"load: "} name)
 (\EFk{if} after 'load-hooks 'config)))))
 (goto-char (point-max))
 (\EFk{when} (string-match-p \EFs{";"} (thing-at-point 'line))
 (insert \EFs{"\char92{}n"}))
 (insert \EFs{")"})
 (\EFk{when} (plist-get confpkg \EFb{:after})
 (insert \EFs{"))"}))
 (insert \EFs{"\char92{}n"}))
 (buffer-string)))))
 (\EFk{let} ((confpkg-timings \EFcd{;;} \EFc{Ensure timings is put first.}
 (cl-some (\EFk{lambda} (p) (\EFk{and} (equal (plist-get p \EFb{:package}) \EFs{"config-confpkg-timings"}) p))
 confpkg--list)))
 (append (list confpkg-timings)
 (nreverse (remove confpkg-timings confpkg--list)))))
 (insert \EFs{"\char92{}n(confpkg-finish-record 'config)\char92{}n\char92{}n;;; config.el ends here"})
 (write-region nil nil \EFs{"config.el"} nil \EFb{:silent}))))
\end{Verbatim}
\end{Code}

Applying lexical binding to the config file is good for a number of reasons,
among which it's (slightly) faster than dynamic binding (see \href{https://nullprogram.com/blog/2016/12/22/}{this blog post} for
more info).
\subsection{Quieter output}
\label{sec:org3f41493}

All the babel evaluation here ends up being quite noisy (along with a few other
things during tangle), let's see if we can change that.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{when} noninteractive
 (\EFk{unless} (fboundp 'doom-shut-up-a)
 (\EFk{defun} \EFf{doom-shut-up-a} (fn \EFt{\&rest} args)
 (\EFk{let} ((standard-output \#'ignore)
 (inhibit-message t))
 (apply fn args))))
 (advice-add 'org-babel-expand-body:emacs-lisp \EFb{:around} \#'doom-shut-up-a)
 \EFcd{;;} \EFc{Quiet some other annoying messages}
 (advice-add 'sh-set-shell \EFb{:around} \#'doom-shut-up-a)
 (advice-add 'rng-what-schema \EFb{:around} \#'doom-shut-up-a)
 (advice-add 'python-indent-guess-indent-offset \EFb{:around} \#'doom-shut-up-a))
\end{Verbatim}
\end{Code}
\subsection{Reporting load time information}
\label{sec:orgc3733c4}

When generating the config we added a form to collect load-time information.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{confpkg-load-time-tree} (list (list 'root)))
(\EFk{defvar} \EFv{confpkg-record-branch} (list 'root))
(\EFk{defvar} \EFv{confpkg-record-num} 0)
\end{Verbatim}
\end{Code}

It would be good to process \texttt{confpkg-load-times} at the end to make it more
useful, and provide a function to display load time information from it. This is
to aid in identification of confpkgs that take particularly long to load, and
thus would benefit from some attention.

To extract the per-confpkg load times, we can just take the difference in
\texttt{(float-time)} and exclude the first entry.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{confpkg-create-record} (name elapsed \EFt{\&optional} parent enclosing)
 (\EFk{let} ((parent (assoc (\EFk{or} parent (car confpkg-record-branch))
 confpkg-load-time-tree))
 (record (cons name (list (list 'self
 \EFb{:name} (format \EFs{"\%s"} name)
 \EFb{:num} (\EFk{cl-incf} confpkg-record-num)
 \EFb{:elapsed} elapsed
 \EFb{:enclosing} enclosing)))))
 (\EFk{push} record confpkg-load-time-tree)
 (\EFk{push} record (cdr parent))
 record))

(\EFk{defun} \EFf{confpkg-start-record} (name \EFt{\&optional} parent)
 (\EFk{let} ((record (confpkg-create-record name 0.0e+NaN parent t)))
 (plist-put (cdadr record) \EFb{:start} (float-time))
 (\EFk{push} name confpkg-record-branch)
 record))

(\EFk{defun} \EFf{confpkg-finish-record} (name)
 (\EFk{let} ((self-record (cdar (last (cdr (assoc name confpkg-load-time-tree))))))
 (plist-put self-record \EFb{:elapsed}
 (- (float-time) (plist-get self-record \EFb{:start}) 0.0))
 (\EFk{unless} (equal (car confpkg-record-branch) name)
 (message \EFs{"Warning: Confpkg timing record expected to finish \%S, instead found \%S. \%S"}
 name (car confpkg-record-branch) confpkg-record-branch))
 (\EFk{setq} confpkg-record-branch (cdr confpkg-record-branch))))
\end{Verbatim}
\end{Code}

A convenience macro could be nice to have.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defmacro} \EFf{confpkg-with-record} (name \EFt{\&rest} body)
 \EFd{"Create a time record around BODY.}
\EFd{The record must have a NAME."}
 (\EFk{declare} (indent 1))
 (\EFk{let} ((name-val (make-symbol \EFs{"name-val"}))
 (record-spec (make-symbol \EFs{"record-spec"})))
 `(\EFk{let*} ((,name-val ,name)
 (,record-spec (\EFk{if} (consp ,name-val) ,name-val (list ,name-val))))
 (apply \#'confpkg-start-record ,record-spec)
 (\EFk{unwind-protect}
 (\EFk{progn} ,@body)
 (confpkg-finish-record (car ,record-spec))))))
\end{Verbatim}
\end{Code}

It would also be nice to collect some other load-time-related information.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defadvice!} +require--log-timing-a (orig-fn feature \EFt{\&optional} filename noerror)
 \EFb{:around} \#'require
 (\EFk{if} (\EFk{or} (\EFk{featurep} \EFo{feature})
 (eq feature 'cus-start) \EFcd{;} \EFc{HACK Why!?!}
 (assoc (format \EFs{"require: \%s"} feature) confpkg-load-time-tree))
 (funcall orig-fn feature filename noerror)
 (confpkg-with-record (list (format \EFs{"require: \%s"} feature)
 (\EFk{and} (eq (car confpkg-record-branch) 'root)
 'requires))
 (funcall orig-fn feature filename noerror))))
\end{Verbatim}
\end{Code}

At last, we'll go to some pains to make a nice result tabulation function.

I will readily admit that this function is absolutely horrible. I just spent an
evening adding to it till it worked then stopped touching it. Maybe in the
future I'll go back to it and try to clean up the implementation.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{confpkg-timings-report} (\EFt{\&optional} sort-p node)
 \EFd{"Display a report on load-time information.}
\EFd{Supply SORT-P (or the universal argument) to sort the results.}
\EFd{NODE defaults to the root node."}
 (\EFk{interactive}
 (list (\EFk{and} current-prefix-arg t)))
 (\EFk{let} ((buf (get-buffer-create \EFs{"*Confpkg Load Time Report*"}))
 (depth 0)
 num-pad name-pad max-time max-total-time max-depth)
 (\EFk{cl-labels}
 ((sort-records-by-time
 (record)
 (\EFk{let} ((self (assoc 'self record)))
 (append (list self)
 (sort (nreverse (remove self (cdr record)))
 (\EFk{lambda} (a b)
 (> (\EFk{or} (plist-get (alist-get 'self a) \EFb{:total}) 0.0)
 (\EFk{or} (plist-get (alist-get 'self b) \EFb{:total}) 0.0)))))))
 (print-record
 (record)
 (\EFk{cond}
 ((eq (car record) 'self)
 (insert
 (propertize
 (string-pad (number-to-string (plist-get (cdr record) \EFb{:num})) num-pad)
 'face 'font-lock-keyword-face)
 \EFs{" "}
 (propertize
 (apply \#'concat
 (make-list (1- depth) \EFs{"â�¢ "}))
 'face 'font-lock-comment-face)
 (string-pad (format \EFs{"\%s"} (plist-get (cdr record) \EFb{:name})) name-pad)
 (make-string (* (- max-depth depth) 2) ?\char92{}s)
 (propertize
 (format \EFs{"\%.4fs"} (plist-get (cdr record) \EFb{:elapsed}))
 'face
 (list \EFb{:foreground}
 (doom-blend 'orange 'green
 (/ (plist-get (cdr record) \EFb{:elapsed}) max-time))))
 (\EFk{if} (= (plist-get (cdr record) \EFb{:elapsed})
 (plist-get (cdr record) \EFb{:total}))
 \EFs{""}
 (concat \EFs{" (Î£="}
 (propertize
 (format \EFs{"\%.3fs"} (plist-get (cdr record) \EFb{:total}))
 'face
 (list \EFb{:foreground}
 (doom-blend 'orange 'green
 (/ (plist-get (cdr record) \EFb{:total}) max-total-time))))
 \EFs{")"}))
 \EFs{"\char92{}n"}))
 (t
 (\EFk{cl-incf} depth)
 (mapc
 \#'print-record
 (\EFk{if} sort-p
 (sort-records-by-time record)
 (reverse (cdr record))))
 (\EFk{cl-decf} depth))))
 (flatten-records
 (records)
 (\EFk{if} (eq (car records) 'self)
 (list records)
 (mapcan
 \#'flatten-records
 (reverse (cdr records)))))
 (tree-depth
 (records \EFt{\&optional} depth)
 (\EFk{if} (eq (car records) 'self)
 (\EFk{or} depth 0)
 (1+ (cl-reduce \#'max (cdr records) \EFb{:key} \#'tree-depth))))
 (mapreduceprop
 (list map reduce prop)
 (cl-reduce
 reduce list
 \EFb{:key}
 (\EFk{lambda} (p) (funcall map (plist-get (cdr p) prop)))))
 (elaborate-timings
 (record)
 (\EFk{if} (eq (car record) 'self)
 (plist-get (cdr record) \EFb{:elapsed})
 (\EFk{let} ((total (cl-reduce \#'+ (cdr record)
 \EFb{:key} \#'elaborate-timings))
 (self (cdr (assoc 'self record))))
 (\EFk{if} (plist-get self \EFb{:enclosing})
 (\EFk{prog1}
 (plist-get self \EFb{:elapsed})
 (plist-put self \EFb{:total} (plist-get self \EFb{:elapsed}))
 (plist-put self \EFb{:elapsed}
 (- (* 2 (plist-get self \EFb{:elapsed})) total)))
 (plist-put self \EFb{:total} total)
 total))))
 (elaborated-timings
 (record)
 (\EFk{let} ((record (copy-tree record)))
 (elaborate-timings record)
 record)))
 (\EFk{let*} ((tree
 (elaborated-timings
 (append '(root)
 (copy-tree
 (alist-get (\EFk{or} node 'root)
 confpkg-load-time-tree
 nil nil \#'equal))
 '((self \EFb{:num} 0 \EFb{:elapsed} 0)))))
 (flat-records
 (cl-remove-if
 (\EFk{lambda} (rec) (= (plist-get (cdr rec) \EFb{:num}) 0))
 (flatten-records tree))))
 (\EFk{setq} max-time (mapreduceprop flat-records \#'identity \#'max \EFb{:elapsed})
 max-total-time (mapreduceprop flat-records \#'identity \#'max \EFb{:total})
 name-pad (mapreduceprop flat-records \#'length \#'max \EFb{:name})
 num-pad (mapreduceprop flat-records
 (\EFk{lambda} (n) (length (number-to-string n)))
 \#'max \EFb{:num})
 max-depth (tree-depth tree))
 (\EFk{with-current-buffer} buf
 (erase-buffer)
 (\EFk{setq-local} outline-regexp \EFs{"[0-9]+ *}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(?:}}\EFs{â�¢} \textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{*"})
 (outline-minor-mode 1)
 (use-local-map (make-sparse-keymap))
 (local-set-key \EFs{"TAB"} \#'outline-toggle-children)
 (local-set-key \EFs{"\char92{}t"} \#'outline-toggle-children)
 (local-set-key (kbd \EFs{"<backtab>"}) \#'outline-show-subtree)
 (local-set-key (kbd \EFs{"C-<iso-lefttab>"})
 (eval `(\EFk{cmd!} (\EFk{if} current-prefix-arg
 (outline-show-all)
 (outline-hide-sublevels (+ ,num-pad 2))))))
 (insert
 (propertize
 (concat (string-pad \EFs{"\#"} num-pad) \EFs{" "}
 (string-pad \EFs{"Confpkg"}
 (+ name-pad (* 2 max-depth) -3))
 (format \EFs{" Load Time (Î£=\%.3fs)\char92{}n"}
 (plist-get (cdr (assoc 'self tree)) \EFb{:total})))
 'face '(\EFb{:inherit} (tab-bar-tab bold) \EFb{:extend} t \EFb{:underline} t)))
 (\EFk{dolist} (record (\EFk{if} sort-p
 (sort-records-by-time tree)
 (reverse (cdr tree))))
 (\EFk{unless} (eq (car record) 'self)
 (print-record record)))
 (set-buffer-modified-p nil)
 (goto-char (point-min)))
 (pop-to-buffer buf)))))
\end{Verbatim}
\end{Code}
\subsection{Finalise}
\label{sec:org29c602f}

At last, to clean up the content inserted by the babel calls we can just revert
the buffer. As long as \texttt{org-babel-pre-tangle-hook} hasn't been modified,
\texttt{save-buffer} will be run at the start of the tangle process and so reverting will
take us back to just before the tangle started.

Since this is \emph{the} function added as the post-tangle hook, we also need to remove
the function from the hook and call the \verb~config.el~ creation function.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{confpkg-tangle-finalise} ()
 (remove-hook 'org-babel-tangle-finished-hook \#'confpkg-tangle-finalise)
 (revert-buffer t t t)
 (confpkg-comment-out-package-statements)
 (confpkg-annotate-list-dependencies)
 (confpkg-create-config)
 (confpkg-write-dependencies)
 (message \EFs{"Processed \%s elisp files"} (length confpkg--list)))
\end{Verbatim}
\end{Code}

Within \texttt{confpkg-tangle-finalise} we carefully order each step so that
the most important steps go first, to minimise the impact should a particular
step fail.
\subsection{Bootstrap}
\label{sec:org9f1dcae}

This system makes use of some recent commits introduced to Org, such as \href{https://git.savannah.gnu.org/cgit/emacs/org-mode.git/commit/?id=cb8bf4a0d}{this
noweb expansion bugfix} which will be included in Org 9.5.4. This is
problematic if using Emacs 28.2 or older, so to get around this we must go
through a bootstrap process.

To start with, we'll check if we are:
\begin{itemize}
\item Running an Org version prior to 9.5.4
\item Running in a \texttt{noninteractive} session
\item Using an Org that's not installed in the user directory
\item In a session with the symbol \texttt{exit!} defined
\end{itemize}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{let} ((required-org-version \EFs{"9.5.4"})
 (standard-output t))
 (\EFk{when} (\EFk{and} (version< (org-version) required-org-version)
 (not (string-match-p (regexp-quote (expand-file-name \EFs{"\char126{}"}))
 (locate-library \EFs{"org"}))))
 (\EFk{cond}
 ((\EFk{and} noninteractive (fboundp 'exit!))
 (\EFk{print!} (\EFwr{warn} (format \EFs{"Detected conditions provoking a config bootstrap (Org \%s)"} (org-version))))
 (\EFk{print!} (start \EFs{"Initiating bootstrap..."}))
 <<bootstrap-perform>>
)
 (t (message \EFs{"Installed Org version \%s is too old, \%s is needed.\char92{}nRun \char92{}"doom sync\char92{}" to fix."}
 (org-version) required-org-version)))))
\end{Verbatim}
\end{Code}

If these conditions are met, we can assume that the loaded Org version is
insufficient, and that it's likely a Emacs is currently running a command like
\verb~doom sync~, and so it makes sense to perform the 3-step bootstrap.
\begin{enumerate}
\item Temporarily rename \verb~config.org~ to \verb~config.original.org~.
\item Create a new \verb~config.org~ that when tangled results in Org being installed.
\item Swap back to the original \verb~config.org~, and re-sync.
\end{enumerate}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{print!} (item \EFs{"Temporarily relocating config.org to config.original.org"}))
(rename-file \EFs{"config.org"} \EFs{"config.original.org"} t)
<<boostrap-create-transient-config>>
(\EFk{print!} (item \EFs{"\%s"}) (bold \EFs{"Re-running sync"}))
(exit! \EFb{:restart}) \EFcd{;} \EFc{Re-run =doom sync= with the transient config.}
\end{Verbatim}
\end{Code}

With the approach worked out, we just need to generate a snipped that will
create a new \verb~config.org~ that when tangled:
\begin{itemize}
\item Tangles our Org recipe to \verb~packages.el~
\item Swaps back to the original \verb~config.org~
\item Re-runs \verb~doom sync~
\end{itemize}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{print!} (item \EFs{"Creating minimal init.el"}))

(\EFk{let} ((standard-output \#'ignore))
 (\EFk{with-temp-buffer}
 (insert
 \EFs{";;; init.el -*- lexical-binding: t; -*-\char92{}n\char92{}n"}
 (pp (\EFk{quote}
 <<bootstrap-init>>
)))
 (write-region nil nil \EFs{"init.el"})))

(\EFk{print!} (item \EFs{"Creating boostrap config.el"}))

(\EFk{let} ((standard-output \#'ignore))
 (\EFk{with-temp-buffer}
 (insert
 (org-element-interpret-data
 (list
 '(keyword (\EFb{:key} \EFs{"title"} \EFb{:value} \EFs{"Boostrap Stage 1 Config"} \EFb{:post-blank} 1))
 `(src-block
 (\EFb{:language} \EFs{"emacs-lisp"}
 \EFb{:value} ,(pp (\EFk{quote} (\EFk{progn}
 <<boostrap-transition>>
)))
 \EFb{:name} \EFs{"bootstrap-transition"}
 \EFb{:post-blank} 1))
 `(src-block
 (\EFb{:language} \EFs{"emacs-lisp"}
 \EFb{:parameters}
 ,(concat \EFs{":noweb no-export "}
 \EFs{":tangle (expand-file-name (make-temp-name \char92{}"emacs-org-babel-excuses/confpkg-prepare-\char92{}") temporary-file-directory) "}
 \EFs{":mkdirp yes"})
 \EFb{:value} ,(concat \EFs{"<<"} \EFcd{;} \EFc{Split to avoid (prematurely) creating a noweb reference.}
 \EFs{"bootstrap-transition()"}
 \EFs{">>\char92{}n"}))))))
 (write-region nil nil \EFs{"config.org"})))
\end{Verbatim}
\end{Code}

For the bootstrap we need a minimal \verb~init.el~, just the literate module should be
sufficient.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{doom!} \EFb{:config} literate)
\end{Verbatim}
\end{Code}

This \verb~config.org~ simply provides an entry point for us to run elisp during
tangle. We just need to make use of it to install Org and re-sync the original
configuration.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} standard-output t)

(\EFk{print!} (start \EFs{"Starting second stage of the bootstrap."}))
(\EFk{print!} (item \EFs{"Creating minimal packages.el"}))

(\EFk{let} ((standard-output \#'ignore))
 (\EFk{with-temp-buffer}
 (insert
 \EFs{";; -*- no-byte-compile: t; -*-\char92{}n\char92{}n"}
 (pp (\EFk{quote}
 <<org-pkg-statement()>>
)))
 (write-region nil nil \EFs{"packages.el"})))

(doom-packages-install)

(\EFk{print!} (item \EFs{"Switching back to original config.org"}))
(rename-file \EFs{"config.original.org"} \EFs{"config.org"} t)

(\EFk{print!} (item \EFs{"\%s"}) (bold \EFs{"Re-running sync"}))
(exit! \EFb{:restart})
\end{Verbatim}
\end{Code}

There we go, that should do the trick, so long as we call the \verb~bootstrap~ block at
the start of the tangle process. This is done by calling \verb~bootstrap~ within the
\hyperref[sec:orgf922740]{confpkg preparation} stage.
\section{Personal Information}
\label{sec:org70f865d}

It's useful to have some basic personal information
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} user-full-name \EFs{"TEC"}
 user-mail-address \EFs{"contact@tecosaur.net"})
\end{Verbatim}
\end{Code}
Apparently this is used by \texttt{GPG}, and all sorts of other things.

Speaking of \texttt{GPG}, I want to use \verb,~/.authinfo.gpg, instead of the default in
\verb,~/.config/emacs,. Why? Because my home directory is already cluttered, so this won't
make a difference, and I don't want to accidentally purge this file (I have done
. I also want to cache as much as possible, as
my home machine is pretty safe, and my laptop is shutdown a lot.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} auth-sources '(\EFs{"\char126{}/.authinfo.gpg"})
 auth-source-cache-expiry nil) \EFcd{;} \EFc{default is 7200 (2h)}
\end{Verbatim}
\end{Code}
\section{Better defaults}
\label{sec:org382608d}

\subsection{Simple settings}
\label{sec:orgd3ca493}

Inspired by a few sources of modified defaults (such as \href{https://github.com/angrybacon/dotemacs/blob/master/dotemacs.org\#use-better-defaults}{angrybacon/dotemacs}) and
my own experiences, I've ended up with a small set of tweaks on top of the
changes Doom makes:

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq-default}
 delete-by-moving-to-trash t \EFcd{;} \EFc{Delete files to trash}
 window-combination-resize t \EFcd{;} \EFc{take new window space from all other windows (not just current)}
 x-stretch-cursor t) \EFcd{;} \EFc{Stretch cursor to the glyph width}

(\EFk{setq} undo-limit 80000000 \EFcd{;} \EFc{Raise undo-limit to 80Mb}
 evil-want-fine-undo t \EFcd{;} \EFc{By default while in insert all changes are one big blob. Be more granular}
 auto-save-default t \EFcd{;} \EFc{Nobody likes to loose work, I certainly don't}
 truncate-string-ellipsis \EFs{"â�¦"} \EFcd{;} \EFc{Unicode ellispis are nicer than "...", and also save /precious/ space}
 password-cache-expiry nil \EFcd{;} \EFc{I can trust my computers ... can't I?}
 \EFcd{;;} \EFc{scroll-preserve-screen-position 'always ; Don't have `}\textcolor[HTML]{b751b6}{point}\EFc{' jump around}
 scroll-margin 2 \EFcd{;} \EFc{It's nice to maintain a little margin}
 display-time-default-load-average nil) \EFcd{;} \EFc{I don't think I've ever found this useful}

(display-time-mode 1) \EFcd{;} \EFc{Enable time in the mode-line}
(global-subword-mode 1) \EFcd{;} \EFc{Iterate through CamelCase words}
\end{Verbatim}
\end{Code}

When using a device with a battery, it would be nice to display battery
 information. We can check for a battery during tangle via noweb, and only call
 \texttt{display-battery-mode} when relevant. From a look at the various status functions
 in \verb~battery.el~, it seems like the \texttt{?L} key is consistently \verb~N/A~ when there is no
 battery, so we'll test on that.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{require} '\EFo{battery})
(\EFk{if} (\EFk{and} battery-status-function
 (not (equal (alist-get ?L (funcall battery-status-function))
 \EFs{"N/A"})))
 (prin1-to-string `(display-battery-mode 1))
 \EFs{""})
\end{Verbatim}
\end{Code}

Now with noweb we' use the result.

\begin{Code}
\begin{Verbatim}
\color{EFD}<<battery-status-setup()>>
\end{Verbatim}
\end{Code}
\subsection{Frame sizing}
\label{sec:org62314d7}

It's nice to control the size of new frames, when launching Emacs that can be
done with . After the font size adjustment
during initialisation this works out to be \texttt{102x31}.

Thanks to hotkeys, it's easy for me to expand a frame to half/full-screen, so it
makes sense to be conservative with the sizing of new frames.

Then, for creating new frames within the same Emacs instance, we'll just set the
default to be something roughly 80\% of that size.

\begin{Code}
\begin{Verbatim}
\color{EFD}(add-to-list 'default-frame-alist '(height . 24))
(add-to-list 'default-frame-alist '(width . 80))
\end{Verbatim}
\end{Code}
\subsection{Auto-customisations}
\label{sec:org58eca73}

By default changes made via a customisation interface are added to \verb~init.el~.
I prefer the idea of using a separate file for this. We just need to change a
setting, and load it if it exists.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq-default} custom-file (expand-file-name \EFs{".custom.el"} doom-user-dir))
(\EFk{when} (file-exists-p custom-file)
 (load custom-file))
\end{Verbatim}
\end{Code}
\subsection{Windows}
\label{sec:org53990b5}

I find it rather handy to be asked which buffer I want to see after splitting
the window. Let's make that happen.

First, we'll enter the new window
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} evil-vsplit-window-right t
 evil-split-window-below t)
\end{Verbatim}
\end{Code}

Then, we'll pull up a buffer prompt.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defadvice!} prompt-for-buffer (\EFt{\&rest} _)
 \EFb{:after} '(evil-window-split evil-window-vsplit)
 (consult-buffer))
\end{Verbatim}
\end{Code}

Window rotation is nice, and can be found under \verb~SPC w r~ and \verb~SPC w R~.
\emph{Layout} rotation is also nice though. Let's stash this under \verb~SPC w SPC~, inspired
by Tmux's use of \verb~C-b SPC~ to rotate windows.

We could also do with adding the missing arrow-key variants of the window
navigation/swapping commands.
\begin{Code}
\begin{Verbatim}
\color{EFD}(map! \EFb{:map} evil-window-map
 \EFs{"SPC"} \#'rotate-layout
 \EFcd{;;} \EFc{Navigation}
 \EFs{"<left>"} \#'evil-window-left
 \EFs{"<down>"} \#'evil-window-down
 \EFs{"<up>"} \#'evil-window-up
 \EFs{"<right>"} \#'evil-window-right
 \EFcd{;;} \EFc{Swapping windows}
 \EFs{"C-<left>"} \#'+evil/window-move-left
 \EFs{"C-<down>"} \#'+evil/window-move-down
 \EFs{"C-<up>"} \#'+evil/window-move-up
 \EFs{"C-<right>"} \#'+evil/window-move-right)
\end{Verbatim}
\end{Code}
\subsection{Hippie expand}
\label{sec:org011d4ac}

Completing text based on other availible content is a great idea, and so \texttt{dabbrev}
(dynamic abbreviations) is throughly useful. There's another similar tool that
Emacs comes with though, called \href{https://www.masteringemacs.org/article/text-expansion-hippie-expand}{hippie expand}, which is just a bit nicer yet,
and can be used as a swap-in upgrade to \texttt{dabbrev}.

\begin{Code}
\begin{Verbatim}
\color{EFD}(global-set-key [remap dabbrev-expand] \#'hippie-expand)
\end{Verbatim}
\end{Code}
\begin{enumerate}
\item Expansion prioritisation
\label{sec:org30e1990}

Hippie expand works by cycling through a series of expansion-generating
functions, listed in the variable \texttt{hippie-expand-try-functions-list}.

By default, it completes (in order):
\begin{itemize}
\item File names
\item Known abbreviations
\item Lists (i.e. bracketed regions)
\item Previous lines
\item Dabbrev (this buffer)
\item Dabbrev (all buffers)
\item Dabbrev (kill ring)
\item Known elisp symbols
\end{itemize}

I find that \texttt{try-expand-line} completions often appear when I actually want a
dabbrev completion, so let's deprioritise it somewhat. If I actually want to try
for a line expansion, it's fairly easy to deliberately trigger it --- just
invoke \texttt{hippie-expand} after typing a space and there will be no dabbrev
candidates.

Speaking of dabbrev, I do think of hippie-expand mostly as "a stangely named
dabbrev+", so let's prioritise the dabbrev-related expanders a bit. I'll also
toss in a nice non-default expansion generator as the first dabbrev candidate
function: \texttt{try-expand-dabbrev-visible}.

There's another cool source of multi-word expansion (actually multi-line) that
isn't used by default, \texttt{try-expand-dabbrev-from-kill}. I personally think this one
is quite neat, but don't want it to interfere with more common single-word
completions, and so will place it just above \texttt{try-expand-line}.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} hippie-expand-try-functions-list
 '(try-expand-list
 try-expand-dabbrev-visible
 try-expand-dabbrev
 try-expand-all-abbrevs
 try-expand-dabbrev-all-buffers
 try-complete-file-name-partially
 try-complete-file-name
 try-expand-dabbrev-from-kill
 try-expand-whole-kill
 try-expand-line
 try-complete-lisp-symbol-partially
 try-complete-lisp-symbol))
\end{Verbatim}
\end{Code}

Unfortunately there's one aspect of \texttt{try-expand-dabbrev-from-kill} that I find
lets me down a bit, which is that it fails to complete when the killed text
starts with a newline and the current line does not. I'll see if I can do
something about this in the future.
\item Suffix stripping
\label{sec:org636ed19}

I am occasionally annoyed by expansions that I make mid-line and cause a common
suffix in the completion to be repeated. For instance, say in an earlier line of
a file I have:

\begin{verbatim}
func foo(int x, int y, int z)
\end{verbatim}

where the \verb~int y~ argument has just been added. I move to another function that
should have the same adjustment and invoke hippie-expand (at \texttt{|}) to save me keystrokes:

\begin{verbatim}
func bar(int x,| int z)
\end{verbatim}

This invokes \texttt{try-expand-list} and completes to

\begin{verbatim}
func bar(int x, int y, int z) int z)
\end{verbatim}

Clearly, that's not what I want! I suspect that we can make it "just work" the
vast majority of the time by looking to see if there's a suffix in the
completion that's also a prefix of the remainder of the line, and stripping it.
In our example, this would be \verb~int z)~ which would turn the completed line into:

\begin{verbatim}
func bar(int x, int y, int z)
\end{verbatim}

Hippie-expand doesn't provide a good point to modify expansion behaviour like
this, however the insertion of the expansion is handled by the helper function
\texttt{he-substitute-strings}, which we can advise to behave as we wish.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{+he-subst-suffix-overlap} (ins rem)
 \EFd{"The longest suffix of the string INS that is a prefix of REM.}
\EFd{This is intended to be used when INS is a newly inserted string and REM is the}
\EFd{remainder of the line, to allow for handling potentially duplicated content."}
 (\EFk{let} ((len (min (length ins) (length rem))))
 (\EFk{while} (\EFk{and} (> len 0)
 (not (eq 't (compare-strings ins (- len) nil rem 0 len))))
 (\EFk{setq} len (1- len)))
 len))

(\EFk{defun} \EFf{+he-suffix-strip-a} (args)
 \EFd{"Filter ARG list for `}\textcolor[HTML]{b751b6}{\textit{he-substitute-string}}\EFd{', truncating duplicated suffix.}
\EFd{ARGS is the raw argument list (STRING \&optional TRANS-CASE)."}
 (\EFk{pcase-let*} ((`(,ins \EFt{\&optional} ,trans-case) args)
 (rem (\EFk{save-excursion}
 (goto-char (marker-position he-string-end))
 (buffer-substring-no-properties
 (point) (line-end-position))))
 (ov (+he-subst-suffix-overlap ins rem)))
 (\EFk{when} (>= ov 0)
 (\EFk{setq} ins (substring ins 0 (- (length ins) ov))))
 (list ins trans-case)))

(advice-add \#'he-substitute-string \EFb{:filter-args} \#'+he-suffix-strip-a)
\end{Verbatim}
\end{Code}
\end{enumerate}
\subsection{Buffer defaults}
\label{sec:orge362fc1}

I'd much rather have my new buffers in \texttt{org-mode} than \texttt{fundamental-mode}, hence
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{;;} \EFc{(setq-default major-mode 'org-mode)}
\end{Verbatim}
\end{Code}
For some reason this + the mixed pitch hook causes issues with hydra and so I'll
just need to resort to \verb~SPC b o~ for now.
\section{Doom configuration}
\label{sec:org53c0bb3}

\subsection{Modules}
\label{sec:orgc89b753}
Doom has this lovely \emph{modular configuration base} that takes a lot of work out of
configuring Emacs. Each module (when enabled) can provide a list of packages to
install (on \texttt{doom sync}) and configuration to be applied. The modules can also
have flags applied to tweak their behaviour.

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{;;;} \EFc{init.el -*- lexical-binding: t; -*-}

\EFcd{;;} \EFc{This file controls what Doom modules are enabled and what order they load in.}
\EFcd{;;} \EFc{Press '}\textcolor[HTML]{b751b6}{K}\EFc{' on a module to view its documentation, and '}\textcolor[HTML]{b751b6}{gd}\EFc{' to browse its directory.}

(\EFk{doom!} \EFb{:input}
 <<doom-input>>

 \EFb{:completion}
 <<doom-completion>>

 \EFb{:ui}
 <<doom-ui>>

 \EFb{:editor}
 <<doom-editor>>

 \EFb{:emacs}
 <<doom-emacs>>

 \EFb{:term}
 <<doom-term>>

 \EFb{:checkers}
 <<doom-checkers>>

 \EFb{:tools}
 <<doom-tools>>

 \EFb{:os}
 <<doom-os>>

 \EFb{:lang}
 <<doom-lang>>

 \EFb{:email}
 <<doom-email>>

 \EFb{:app}
 <<doom-app>>

 \EFb{:config}
 <<doom-config>>
)
\end{Verbatim}
\end{Code}
\begin{enumerate}
\item Structure
\label{sec:org8bc2576}

As you may have noticed by this point, this is a \href{https://en.wikipedia.org/wiki/Literate_programming}{literate} configuration. Doom
has good support for this which we access though the \texttt{literate} module.

While we're in the \Verb[commandchars=\\\{\},highlightcolor=white!95!black!80!blue,breaklines=true,breaksymbol=\color{white!60!black}\tiny\ensuremath{\hookrightarrow}]{\color{EFD}\EFb{:config}} section, we'll use Dooms nicer defaults,
along with the bindings and smartparens behaviour (the flags aren't documented,
but they exist).
\begin{Code}
\begin{Verbatim}
\color{EFD}literate
(default +bindings +smartparens)
\end{Verbatim}
\end{Code}
\item Interface
\label{sec:org56f4aba}

There's a lot that can be done to enhance Emacs' capabilities.
I reckon enabling half the modules Doom provides should do it.

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{;;} \EFc{company ; the ultimate code completion backend}
(corfu +orderless +dabbrev) \EFcd{;} \EFc{complete with cap(f), cape and a flying feather!}
\EFcd{;;}\EFc{helm ; the *other* search engine for love and life}
\EFcd{;;}\EFc{ido ; the other *other* search engine...}
\EFcd{;;} \EFc{(ivy ; a search engine for love and life}
\EFcd{;;} \EFc{+icons ; ... icons are nice}
\EFcd{;;} \EFc{+prescient) ; ... I know what I want(ed)}
(vertico +icons) \EFcd{;} \EFc{the search engine of the future}
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{;;}\EFc{deft ; notational velocity for Emacs}
doom \EFcd{;} \EFc{what makes DOOM look the way it does}
doom-dashboard \EFcd{;} \EFc{a nifty splash screen for Emacs}
doom-quit \EFcd{;} \EFc{DOOM quit-message prompts when you quit Emacs}
\EFcd{;;} \EFc{(emoji +unicode) ; ð���}
\EFcd{;;}\EFc{fill-column ; a `}\textcolor[HTML]{b751b6}{fill-column}\EFc{' indicator}
hl-todo \EFcd{;} \EFc{highlight TODO/FIXME/NOTE/DEPRECATED/HACK/REVIEW}
\EFcd{;;}\EFc{hydra ; quick documentation for related commands}
\EFcd{;;}\EFc{indent-guides ; highlighted indent columns, notoriously slow}
(ligatures +extra) \EFcd{;} \EFc{ligatures and symbols to make your code pretty again}
\EFcd{;;}\EFc{minimap ; show a map of the code on the side}
modeline \EFcd{;} \EFc{snazzy, Atom-inspired modeline, plus API}
nav-flash \EFcd{;} \EFc{blink the current line after jumping}
\EFcd{;;}\EFc{neotree ; a project drawer, like NERDTree for vim}
ophints \EFcd{;} \EFc{highlight the region an operation acts on}
(popup \EFcd{;} \EFc{tame sudden yet inevitable temporary windows}
 +all \EFcd{;} \EFc{catch all popups that start with an asterix}
 +defaults) \EFcd{;} \EFc{default popup rules}
\EFcd{;;}\EFc{(tabs ; an tab bar for Emacs}
\EFcd{;;} \EFc{+centaur-tabs) ; ... with prettier tabs}
treemacs \EFcd{;} \EFc{a project drawer, like neotree but cooler}
\EFcd{;;}\EFc{unicode ; extended unicode support for various languages}
(vc-gutter +pretty) \EFcd{;} \EFc{vcs diff in the fringe}
vi-tilde-fringe \EFcd{;} \EFc{fringe tildes to mark beyond EOB}
(window-select +numbers) \EFcd{;} \EFc{visually switch windows}
workspaces \EFcd{;} \EFc{tab emulation, persistence \& separate workspaces}
zen \EFcd{;} \EFc{distraction-free coding or writing}
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(evil +everywhere) \EFcd{;} \EFc{come to the dark side, we have cookies}
file-templates \EFcd{;} \EFc{auto-snippets for empty files}
fold \EFcd{;} \EFc{(nigh) universal code folding}
(format) \EFcd{;} \EFc{automated prettiness}
\EFcd{;;}\EFc{god ; run Emacs commands without modifier keys}
\EFcd{;;}\EFc{lispy ; vim for lisp, for people who don't like vim}
multiple-cursors \EFcd{;} \EFc{editing in many places at once}
\EFcd{;;}\EFc{objed ; text object editing for the innocent}
\EFcd{;;}\EFc{parinfer ; turn lisp into python, sort of}
rotate-text \EFcd{;} \EFc{cycle region at point between text candidates}
snippets \EFcd{;} \EFc{my elves. They type so I don't have to}
\EFcd{;;}\EFc{word-wrap ; soft wrapping with language-aware indent}
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(dired +icons) \EFcd{;} \EFc{making dired pretty [functional]}
electric \EFcd{;} \EFc{smarter, keyword-based electric-indent}
(ibuffer +icons) \EFcd{;} \EFc{interactive buffer management}
undo \EFcd{;} \EFc{persistent, smarter undo for your inevitable mistakes}
vc \EFcd{;} \EFc{version-control and Emacs, sitting in a tree}
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{;;}\EFc{eshell ; the elisp shell that works everywhere}
\EFcd{;;}\EFc{shell ; simple shell REPL for Emacs}
\EFcd{;;}\EFc{term ; basic terminal emulator for Emacs}
vterm \EFcd{;} \EFc{the best terminal emulation in Emacs}
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}syntax \EFcd{;} \EFc{tasing you for every semicolon you forget}
\EFcd{;;} \EFc{spell ; tasing you for misspelling mispelling}
grammar \EFcd{;} \EFc{tasing grammar mistake every you make}
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}ansible \EFcd{;} \EFc{a crucible for infrastructure as code}
biblio \EFcd{;} \EFc{Writes a PhD for you (citation needed)}
\EFcd{;;}\EFc{collab ; buffers with friends}
\EFcd{;;}\EFc{debugger ; FIXME stepping through code, to help you add bugs}
\EFcd{;;}\EFc{direnv ; be direct about your environment}
docker \EFcd{;} \EFc{port everything to containers}
\EFcd{;;}\EFc{editorconfig ; let someone else argue about tabs vs spaces}
\EFcd{;;}\EFc{ein ; tame Jupyter notebooks with emacs}
(eval +overlay) \EFcd{;} \EFc{run code, run (also, repls)}
\EFcd{;;}\EFc{gist ; interacting with github gists}
(lookup \EFcd{;} \EFc{helps you navigate your code and documentation}
 +dictionary \EFcd{;} \EFc{dictionary/thesaurus is nice}
 +docsets) \EFcd{;} \EFc{...or in Dash docsets locally}
lsp \EFcd{;} \EFc{Language Server Protocol}
(magit \EFcd{;} \EFc{a git porcelain for Emacs}
 +forge) \EFcd{;} \EFc{interface with git forges}
make \EFcd{;} \EFc{run make tasks from Emacs}
\EFcd{;;}\EFc{pass ; password manager for nerds}
pdf \EFcd{;} \EFc{pdf enhancements}
\EFcd{;;}\EFc{prodigy ; FIXME managing external services \& code builders}
\EFcd{;;}\EFc{terraform ; infrastructure as code}
\EFcd{;;}\EFc{tmux ; an API for interacting with tmux}
\EFcd{;;}\EFc{tree-sitter ; syntax and parsing, sitting in a tree...}
upload \EFcd{;} \EFc{map local to remote projects via ssh/ftp}
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFb{:if} (\EFk{featurep} \EFo{:system} 'macos) macos) \EFcd{;} \EFc{improve compatibility with macOS}
tty \EFcd{;} \EFc{improve the terminal Emacs experience}
\end{Verbatim}
\end{Code}
\item Language support
\label{sec:org0f29e70}

We can be rather liberal with enabling support for languages as the associated
packages/configuration are (usually) only loaded when first opening an
associated file.

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{;;}\EFc{agda ; types of types of types of types...}
\EFcd{;;}\EFc{beancount ; mind the GAAP}
\EFcd{;;}\EFc{(cc +lsp) ; C > C++ == 1}
\EFcd{;;}\EFc{clojure ; java with a lisp}
\EFcd{;;}\EFc{common-lisp ; if you've seen one lisp, you've seen them all}
\EFcd{;;}\EFc{coq ; proofs-as-programs}
\EFcd{;;}\EFc{crystal ; ruby at the speed of c}
\EFcd{;;}\EFc{csharp ; unity, .NET, and mono shenanigans}
data \EFcd{;} \EFc{config/data formats}
\EFcd{;;}\EFc{(dart +flutter) ; paint ui and not much else}
\EFcd{;;}\EFc{dhall ; JSON with FP sprinkles}
\EFcd{;;}\EFc{elixir ; erlang done right}
\EFcd{;;}\EFc{elm ; care for a cup of TEA?}
emacs-lisp \EFcd{;} \EFc{drown in parentheses}
\EFcd{;;}\EFc{erlang ; an elegant language for a more civilized age}
ess \EFcd{;} \EFc{emacs speaks statistics}
\EFcd{;;}\EFc{faust ; dsp, but you get to keep your soul}
\EFcd{;;}\EFc{fsharp ; ML stands for Microsoft's Language}
\EFcd{;;}\EFc{fstar ; (dependent) types and (monadic) effects and Z3}
\EFcd{;;}\EFc{gdscript ; the language you waited for}
\EFcd{;;}\EFc{(graphql +lsp) ; Give queries a REST}
(go +lsp) \EFcd{;} \EFc{the hipster dialect}
\EFcd{;;}\EFc{(haskell +lsp) ; a language that's lazier than I am}
\EFcd{;;}\EFc{hy ; readability of scheme w/ speed of python}
\EFcd{;;}\EFc{idris ;}
json \EFcd{;} \EFc{At least it ain't XML}
\EFcd{;;}\EFc{(java +lsp) ; the poster child for carpal tunnel syndrome}
(javascript +lsp) \EFcd{;} \EFc{all(hope(abandon(ye(who(enter(here))))))}
(julia +lsp) \EFcd{;} \EFc{Python, R, and MATLAB in a blender}
\EFcd{;;}\EFc{kotlin ; a better, slicker Java(Script)}
(latex \EFcd{;} \EFc{writing papers in Emacs has never been so fun}
 +latexmk \EFcd{;} \EFc{what else would you use?}
 +cdlatex \EFcd{;} \EFc{quick maths symbols}
 +fold) \EFcd{;} \EFc{fold the clutter away nicities}
\EFcd{;;}\EFc{lean ; proof that mathematicians need help}
\EFcd{;;}\EFc{factor ; for when scripts are stacked against you}
\EFcd{;;}\EFc{ledger ; an accounting system in Emacs}
lua \EFcd{;} \EFc{one-based indices? one-based indices}
markdown \EFcd{;} \EFc{writing docs for people to ignore}
\EFcd{;;}\EFc{nim ; python + lisp at the speed of c}
nix \EFcd{;} \EFc{I hereby declare "nix geht mehr!"}
\EFcd{;;}\EFc{ocaml ; an objective camel}
(org \EFcd{;} \EFc{organize your plain life in plain text}
 +dragndrop \EFcd{;} \EFc{drag \& drop files/images into org buffers}
 \EFcd{;;}\EFc{+hugo ; use Emacs for hugo blogging}
 +noter \EFcd{;} \EFc{enhanced PDF notetaking}
 +jupyter \EFcd{;} \EFc{ipython/jupyter support for babel}
 +pandoc \EFcd{;} \EFc{export-with-pandoc support}
 +gnuplot \EFcd{;} \EFc{who doesn't like pretty pictures}
 \EFcd{;;}\EFc{+pomodoro ; be fruitful with the tomato technique}
 +present \EFcd{;} \EFc{using org-mode for presentations}
 +roam2) \EFcd{;} \EFc{wander around notes}
\EFcd{;;}\EFc{php ; perl's insecure younger brother}
\EFcd{;;}\EFc{plantuml ; diagrams for confusing people more}
\EFcd{;;}\EFc{purescript ; javascript, but functional}
(python +lsp +pyright) \EFcd{;} \EFc{beautiful is better than ugly}
\EFcd{;;}\EFc{qt ; the '}\textcolor[HTML]{b751b6}{cutest}\EFc{' gui framework ever}
\EFcd{;;}\EFc{racket ; a DSL for DSLs}
\EFcd{;;}\EFc{raku ; the artist formerly known as perl6}
\EFcd{;;}\EFc{rest ; Emacs as a REST client}
\EFcd{;;}\EFc{rst ; ReST in peace}
\EFcd{;;}\EFc{(ruby +rails) ; 1.step \{|i| p "Ruby is \#\{i.even? ? '}\textcolor[HTML]{b751b6}{love}\EFc{' : '}\textcolor[HTML]{b751b6}{life}\EFc{'\}"\}}
(rust +lsp) \EFcd{;} \EFc{Fe2O3.unwrap().unwrap().unwrap().unwrap()}
\EFcd{;;}\EFc{scala ; java, but good}
scheme \EFcd{;} \EFc{a fully conniving family of lisps}
sh \EFcd{;} \EFc{she sells \{ba,z,fi\}sh shells on the C xor}
\EFcd{;;}\EFc{sml ; no, the /other/ ML}
\EFcd{;;}\EFc{solidity ; do you need a blockchain? No.}
\EFcd{;;}\EFc{swift ; who asked for emoji variables?}
\EFcd{;;}\EFc{terra ; Earth and Moon in alignment for performance.}
web \EFcd{;} \EFc{the tubes}
yaml \EFcd{;} \EFc{JSON, but readable}
zig \EFcd{;} \EFc{C, but simpler}
\end{Verbatim}
\end{Code}
\item Input
\label{sec:org389195a}

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{;;}\EFc{bidi ; (tfel ot) thgir etirw uoy gnipleh}
\EFcd{;;}\EFc{chinese}
\EFcd{;;}\EFc{japanese}
\EFcd{;;}\EFc{layout ; auie,ctsrnm is the superior home row}
\end{Verbatim}
\end{Code}
\item Everything in Emacs
\label{sec:org139b966}

It's just too convenient being able to have everything in Emacs.
I couldn't resist the Email and Feed modules.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFb{:if} (executable-find \EFs{"mu"}) (mu4e +org))
\EFcd{;;}\EFc{notmuch}
\EFcd{;;}\EFc{(wanderlust +gmail)}
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{;;}\EFc{calendar ; A dated approach to timetabling}
\EFcd{;;}\EFc{emms ; Multimedia in Emacs is music to my ears}
everywhere \EFcd{;} \EFc{*leave* Emacs!? You must be joking.}
irc \EFcd{;} \EFc{how neckbeards socialize}
(rss +org) \EFcd{;} \EFc{emacs as an RSS reader}
\EFcd{;;}\EFc{twitter ; twitter client https://twitter.com/vnought}
\end{Verbatim}
\end{Code}
\end{enumerate}
\subsection{Profiles}
\label{sec:orgc356863}

Doom has support for multiple configuration profiles. For general usage, this
isn't a particularly useful feature, but for niche use cases it's fantastic.

\begin{Code}
\begin{Verbatim}
\color{EFD}((orgdev (env (\EFs{"DOOMDIR"} . \EFs{"\char126{}/.config/doom.orgdev"}))))
\end{Verbatim}
\end{Code}
\begin{enumerate}
\item Org development profile
\label{sec:org9d16077}
For development purposes, it's handy to have a more minimal config without my
many customisations and interacting packages. Let's go ahead and create a
near-minimal new config:

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{;;;} \EFc{init.el -*- lexical-binding: t; -*-}
(\EFk{doom!} \EFb{:completion} vertico
 \EFb{:editor} evil
 \EFb{:config} (default +bindings))
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{unpin!} org) \EFcd{;} \EFc{there be bugs}
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{require} '\EFo{org})
(load-theme 'modus-operandi t)
\end{Verbatim}
\end{Code}
\end{enumerate}
\subsection{Visual Settings}
\label{sec:orgb4a94ec}
\begin{enumerate}
\item Font Face
\label{sec:org11a2148}
\begin{enumerate}
\item Setting fonts
\label{sec:org737200a}

'Fira Code' is nice, and 'Overpass' makes for a nice sans companion. We just need to
fiddle with the font sizes a tad so that they visually match. Just for fun I'm
trying out JetBrains Mono though. So far I have mixed feelings on it, some
aspects are nice, but on others I prefer Fira.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} doom-font (font-spec \EFb{:family} \EFs{"JetBrains Mono"} \EFb{:size} 24)
 doom-big-font (font-spec \EFb{:family} \EFs{"JetBrains Mono"} \EFb{:size} 36)
 doom-variable-pitch-font (font-spec \EFb{:family} \EFs{"Overpass"} \EFb{:size} 26)
 doom-symbol-font (font-spec \EFb{:family} \EFs{"JuliaMono"})
 doom-emoji-font (font-spec \EFb{:family} \EFs{"Twitter Color Emoji"}) \EFcd{;} \EFc{Just used by me}
 doom-serif-font (font-spec \EFb{:family} \EFs{"IBM Plex Mono"} \EFb{:size} 22 \EFb{:weight} 'light))
\end{Verbatim}
\end{Code}

\begin{center}
\includegraphics[width=.9\linewidth]{/tmp/org-persist-IRkN4n/97/c5d708-3be3-4b65-8190-90b5b9816002-225647e23d1f56c14ae4d8da34914aa2.png}
\end{center}

In addition to these fonts, Merriweather is used with \verb~nov.el~, and Alegreya as a
serifed proportional font used by \verb~mixed-pitch-mode~ for \verb~writeroom-mode~ with Org
files.
\item Emojis
\label{sec:org21fb08b}

Emacs (28+) has an \texttt{emoji} script table. We're about to use it, but before doing
so we're going to excise a few characters that I actually want rendered as
using the symbol font (not as emojis).

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{dolist} (char '(?â�© ?â�ª ?â��))
 (set-char-table-range char-script-table char 'symbol))
\end{Verbatim}
\end{Code}

To actually sort out emojis, all that's really needed here is to apply
\verb~doom-emoji-font~, which needs to be done \emph{here} because it's not \emph{actually} a Doom
font variable, but rather my own addition.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{add-hook!} 'after-setting-font-hook
 (\EFk{defun} \EFf{+emoji-set-font} ()
 (set-fontset-font t 'emoji doom-emoji-font nil 'prepend)))
\end{Verbatim}
\end{Code}

We might as well also construct a regexp to make identifying emojis if buffers
more convenient.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{+emoji-rx}
 (\EFk{let} (emojis)
 (map-char-table
 (\EFk{lambda} (char set)
 (\EFk{when} (eq set 'emoji)
 (\EFk{push} (copy-tree char) emojis)))
 char-script-table)
 (rx-to-string `(any ,@emojis)))
 \EFd{"A regexp to find all emoji-script characters."})
\end{Verbatim}
\end{Code}

For the sake of convenient insertion, we'll also register some emoji aliases
based on common usage.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} emoji-alternate-names
 '((\EFs{"ð���"} \EFs{":)"})
 (\EFs{"ð���"} \EFs{":D"})
 (\EFs{"ð���"} \EFs{";)"})
 (\EFs{"ð���"} \EFs{":("})
 (\EFs{"ð���"} \EFs{"laughing face"} \EFs{"xD"})
 (\EFs{"ð�¤£"} \EFs{"ROFL face"})
 (\EFs{"ð��¢"} \EFs{":'("})
 (\EFs{"ð�¥²"} \EFs{":')"})
 (\EFs{"ð��®"} \EFs{":o"})
 (\EFs{"ð���"} \EFs{":|"})
 (\EFs{"ð���"} \EFs{"cool face"})
 (\EFs{"ð�¤ª"} \EFs{"goofy face"})
 (\EFs{"ð�¤¥"} \EFs{"pinnochio face"} \EFs{"liar face"})
 (\EFs{"ð�� "} \EFs{">:("})
 (\EFs{"ð��¡"} \EFs{"angry+ face"})
 (\EFs{"ð�¤¬"} \EFs{"swearing face"})
 (\EFs{"ð�¤¢"} \EFs{"sick face"})
 (\EFs{"ð���"} \EFs{"smiling imp"})
 (\EFs{"ð��¿"} \EFs{"frowning imp"})
 (\EFs{"â�¤ï¸�"} \EFs{"<3"})
 (\EFs{"ð�«¡"} \EFs{"o7"})
 (\EFs{"ð���"} \EFs{"+1"})
 (\EFs{"ð���"} \EFs{"-1"})
 (\EFs{"ð���"} \EFs{"left"})
 (\EFs{"ð���"} \EFs{"right"})
 (\EFs{"ð���"} \EFs{"up"})
 (\EFs{"ð��¯"} \EFs{"100"})
 (\EFs{"ð��¸"} \EFs{"flying money"})))
\end{Verbatim}
\end{Code}

Lastly, when using Emacs 28+ it would be nice to open the nice emoji dispatch
with the leader key as well as \verb~C-x 8 e~. Since \verb~SPC e~ is unclaimed, let's just use
that until we have a better use for it (we could also split up the insertion and
querying commands in other parts of the map).

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{when} (>= emacs-major-version 29)
 (map! \EFb{:leader}
 (\EFb{:prefix} (\EFs{"e"} . \EFs{"Emoji"})
 \EFb{:desc} \EFs{"Search"} \EFs{"s"} \#'emoji-search
 \EFb{:desc} \EFs{"Recent"} \EFs{"r"} \#'emoji-recent
 \EFb{:desc} \EFs{"List"} \EFs{"l"} \#'emoji-list
 \EFb{:desc} \EFs{"Describe"} \EFs{"d"} \#'emoji-describe
 \EFb{:desc} \EFs{"Insert"} \EFs{"i"} \#'emoji-insert
 \EFb{:desc} \EFs{"Insert"} \EFs{"e"} \#'emoji-insert)))
\end{Verbatim}
\end{Code}
\item Checking the system
\label{sec:orgab961c4}

Because we care about how things look let's add a check to make sure we're told
if the system doesn't have any of those fonts. We can obtain a list of installed
fonts with either \texttt{(font-family-list)} or with the \texttt{fc-list} command.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} required-fonts '(\EFs{"JetBrains ?Mono.*"} \EFs{"Overpass"} \EFs{"JuliaMono"} \EFs{"IBM Plex Mono"}
 \EFs{"Merriweather"} \EFs{"Alegreya"} \EFs{"Twitter Color Emoji"}))

(\EFk{setq} available-fonts
 (delete-dups
 (\EFk{or} (font-family-list)
 (\EFk{and} (executable-find \EFs{"fc-list"})
 (\EFk{with-temp-buffer}
 (call-process \EFs{"fc-list"} nil t nil \EFs{":"} \EFs{"family"})
 (split-string (buffer-string) \EFs{"[,\char92{}n]"}))))))

(\EFk{setq} missing-fonts
 (delq nil (mapcar
 (\EFk{lambda} (font)
 (\EFk{unless} (delq nil (mapcar (\EFk{lambda} (f)
 (string-match-p (format \EFs{"\char94{}\%s\$"} font) f))
 available-fonts))
 font))
 required-fonts)))
\end{Verbatim}
\end{Code}

We can then use this to create a \verb~doctor~ check.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{let} (required-fonts available-fonts missing-fonts)
 (\EFk{setq} required-fonts '(\EFs{"JetBrains ?Mono.*"} \EFs{"Overpass"} \EFs{"JuliaMono"} \EFs{"IBM Plex Mono"}
 \EFs{"Merriweather"} \EFs{"Alegreya"} \EFs{"Twitter Color Emoji"}))

 (\EFk{setq} available-fonts
 (delete-dups
 (\EFk{or} (font-family-list)
 (\EFk{and} (executable-find \EFs{"fc-list"})
 (\EFk{with-temp-buffer}
 (call-process \EFs{"fc-list"} nil t nil \EFs{":"} \EFs{"family"})
 (split-string (buffer-string) \EFs{"[,\char92{}n]"}))))))

 (\EFk{setq} missing-fonts
 (delq nil (mapcar
 (\EFk{lambda} (font)
 (\EFk{unless} (delq nil (mapcar (\EFk{lambda} (f)
 (string-match-p (format \EFs{"\char94{}\%s\$"} font) f))
 available-fonts))
 font))
 required-fonts)))
 (\EFk{if} available-fonts
 (\EFk{dolist} (font missing-fonts)
 (warn! (format \EFs{"Missing font: \%s."} font)))
 (warn! \EFs{"Unable to check for missing fonts, is fc-list installed?"})))
\end{Verbatim}
\end{Code}

Furthermore, when fonts \emph{are} missing, it could be good to check the state of
affairs on startup.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} required-fonts '(\EFs{"JetBrains ?Mono.*"} \EFs{"Overpass"} \EFs{"JuliaMono"} \EFs{"IBM Plex Mono"}
 \EFs{"Merriweather"} \EFs{"Alegreya"} \EFs{"Twitter Color Emoji"}))

(\EFk{setq} available-fonts
 (delete-dups
 (\EFk{or} (font-family-list)
 (\EFk{and} (executable-find \EFs{"fc-list"})
 (\EFk{with-temp-buffer}
 (call-process \EFs{"fc-list"} nil t nil \EFs{":"} \EFs{"family"})
 (split-string (buffer-string) \EFs{"[,\char92{}n]"}))))))

(\EFk{setq} missing-fonts
 (delq nil (mapcar
 (\EFk{lambda} (font)
 (\EFk{unless} (delq nil (mapcar (\EFk{lambda} (f)
 (string-match-p (format \EFs{"\char94{}\%s\$"} font) f))
 available-fonts))
 font))
 required-fonts)))

(\EFk{if} missing-fonts
 (pp-to-string
 `(\EFk{unless} noninteractive
 (\EFk{add-hook!} 'doom-init-ui-hook
 (run-at-time nil nil
 (\EFk{lambda} ()
 (\EFk{let} (required-fonts available-fonts missing-fonts)
 (\EFk{setq} required-fonts '(\EFs{"JetBrains ?Mono.*"} \EFs{"Overpass"} \EFs{"JuliaMono"} \EFs{"IBM Plex Mono"}
 \EFs{"Merriweather"} \EFs{"Alegreya"} \EFs{"Twitter Color Emoji"}))

 (\EFk{setq} available-fonts
 (delete-dups
 (\EFk{or} (font-family-list)
 (\EFk{and} (executable-find \EFs{"fc-list"})
 (\EFk{with-temp-buffer}
 (call-process \EFs{"fc-list"} nil t nil \EFs{":"} \EFs{"family"})
 (split-string (buffer-string) \EFs{"[,\char92{}n]"}))))))

 (\EFk{setq} missing-fonts
 (delq nil (mapcar
 (\EFk{lambda} (font)
 (\EFk{unless} (delq nil (mapcar (\EFk{lambda} (f)
 (string-match-p (format \EFs{"\char94{}\%s\$"} font) f))
 available-fonts))
 font))
 required-fonts)))
 (message \EFs{"\%s missing the following fonts: \%s"}
 (propertize \EFs{"Warning!"} 'face '(bold warning))
 (mapconcat (\EFk{lambda} (font)
 (propertize font 'face 'font-lock-variable-name-face))
 ',missing-fonts
 \EFs{", "})))
 (sleep-for 0.5))))))
 \EFs{";; No missing fonts detected"})
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}<<warn-missing-fonts()>>
\end{Verbatim}
\end{Code}

This way whenever fonts are missing, after Doom's UI has initialised, a warning
listing the missing fonts should appear for at least half a second.
\end{enumerate}
\item Theme
\label{sec:orgac66571}

The \texttt{doom-one} theme is nice and all, but I find the \texttt{vibrant} variant nicer. With
the light themes, I rather like \texttt{doom-tomorrow-day}. I'd like to pick the default
from them based on the system theme. Thanks to the continued expansion of the
\verb~xdg-desktop-portal~ protocols, we can read this from D-Bus on most systems.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{let} ((light-theme 'doom-tomorrow-day)
 (dark-theme 'doom-vibrant)
 (system-theme
 (\EFk{or} (\EFk{and} (memq system-type '(gnu gnu/linux gnu/kfreebsd))
 (\EFk{require} '\EFo{dbus} nil t)
 (caar
 (\EFk{ignore-errors}
 (dbus-call-method
 \EFb{:session}
 \EFs{"org.freedesktop.portal.Desktop"} \EFs{"/org/freedesktop/portal/desktop"}
 \EFs{"org.freedesktop.portal.Settings"} \EFs{"Read"}
 \EFs{"org.freedesktop.appearance"} \EFs{"color-scheme"}))))
 0)))
 (\EFk{pcase} system-theme
 (1 dark-theme)
 (2 light-theme)
 (_ dark-theme)))
\end{Verbatim}
\end{Code}

We'll use the appropriate theme as the default, but let's also accept the theme
as an environment variable \verb~DOOM_THEME~ for fun.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} doom-theme \EFcd{;} \EFc{Set according to the env var or system-dependent default}
 (\EFk{let} ((env-theme (getenv \EFs{"DOOM_THEME"})))
 (\EFk{if} env-theme
 (intern env-theme) \EFcd{;} \EFc{Note: `}\textcolor[HTML]{b751b6}{intern-soft}\EFc{' doesn't work here}
 'nil)))
\end{Verbatim}
\end{Code}

Oh, and with the nice selection doom provides there's no reason for me to want
the defaults.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{delq!} t custom-theme-load-path)
\end{Verbatim}
\end{Code}

While the theme environment variable is nice for flexibility, when starting
Emacs in a terminal it doesn't help us set the right sort of theme
automatically. However, we can check if we're in a terminal and pick a default
theme colour accordingly.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{declare-function} 'xterm-query \EFs{"xterm"})

(\EFk{defvar} \EFv{term-background-rgb} nil
 \EFd{"A RGB triple corresponding to the current terminal background, if known."})

(\EFk{defun} \EFf{+interpret-term-bg} ()
 \EFd{"Examine an OSC color query response, and set `}\textcolor[HTML]{b751b6}{\textit{term-background-rgb}}\EFd{' accordingly."}
 (\EFk{let} ((str \EFs{""})
 chr)
 \EFcd{;;} \EFc{The reply should be: \char92{}e] 11 ; rgb: NUMBER1 / NUMBER2 / NUMBER3 \char92{}e \char92{}\char92{}}
 (\EFk{while} (\EFk{and} (\EFk{setq} chr (xterm--read-event-for-query)) (not (equal chr ?\char92{}\char92{})))
 (\EFk{setq} str (concat str (string chr))))
 (\EFk{when} (string-match
 \EFs{"rgb:}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[a-f0-9]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{/}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[a-f0-9]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{/}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[a-f0-9]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{"} str)
 (\EFk{let} ((r (string-to-number (match-string 1 str) 16))
 (g (string-to-number (match-string 2 str) 16))
 (b (string-to-number (match-string 3 str) 16)))
 (\EFk{setq} term-background-rgb (list r g b))))))

(\EFk{defun} \EFf{+doom-init-theme-termaware} ()
 \EFd{"Update `}\textcolor[HTML]{b751b6}{\textit{doom-theme}}\EFd{' if in a terminal, unless DOOM_THEME has been set."}
 (\EFk{let} (term-shade)
 (\EFk{when} (\EFk{and} (not (display-graphic-p (selected-frame)))
 (not (getenv \EFs{"DOOM_THEME"}))
 (\EFk{require} '\EFo{xterm} nil t))
 (message \EFs{"Querying terminal background color"})
 (xterm--query \EFs{"\char92{}e]11;?\char92{}e\char92{}\char92{}"} '((\EFs{"\char92{}e]11;"} . +interpret-term-bg)))
 (\EFk{when} term-background-rgb
 (\EFk{setq} term-shade (\EFk{if} (< (apply \#'+ term-background-rgb) (* 0.6 3 65535))
 'dark 'light))
 (\EFk{pcase} term-shade
 ('dark (\EFk{setq} doom-theme 'doom-vibrant))
 ('light (\EFk{setq} doom-theme 'doom-tomorrow-day)))))
 (doom-init-theme-h)))
\end{Verbatim}
\end{Code}

Lastly, I had some issues with theme race conditions, which seem to be resolved
by moving \verb~doom-init-theme-h~ around. Henrik attempted to help with this in May
2021 but we didn't manage to pin down the issue. It may be worth periodically
checking back and seeing if this is still needed. We might as well inject
\texttt{+doom-init-theme-termaware} while we're at it.

\begin{Code}
\begin{Verbatim}
\color{EFD}(remove-hook 'window-setup-hook \#'doom-init-theme-h)
(remove-hook 'after-init-hook \#'doom-init-theme-h)
(add-hook 'after-init-hook \#'+doom-init-theme-termaware 'append)
\end{Verbatim}
\end{Code}
\item Line numbers
\label{sec:orgf452743}

Relative line numbers are fantastic for knowing how far away line numbers are,
then \verb~ESC 12 <UP>~ gets you exactly where you think.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} display-line-numbers-type 'relative)
\end{Verbatim}
\end{Code}
\end{enumerate}
\subsection{Some helper macros}
\label{sec:orgb20bdf2}

There are a few handy macros added by doom, namely
\begin{itemize}
\item \texttt{load!} for loading external \texttt{.el} files relative to this one
\item \texttt{use-package!} for configuring packages
\item \texttt{add-load-path!} for adding directories to the \texttt{load-path} where \texttt{Emacs} looks when
you load packages with \texttt{require} or \texttt{use-package}
\item \texttt{map!} for binding new keys
\end{itemize}
\subsection{Allow babel execution in CLI actions}
\label{sec:org95a598d}

In this config I sometimes generate code to include in my config.
This works nicely, but for it to work with \verb~doom sync~ et. al. I need to make sure
that Org doesn't try to confirm that I want to allow evaluation (I do!).

Thankfully Doom supports \verb~$DOOMDIR/cli.el~ file which is sourced every time a CLI
command is run, so we can just enable evaluation by setting
\texttt{org-confirm-babel-evaluate} to \texttt{nil} there.
While we're at it, we should silence \texttt{org-babel-execute-src-block} to
avoid polluting the output.

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{;;;} \EFc{cli.el -*- lexical-binding: t; -*-}
(\EFk{setq} org-confirm-babel-evaluate nil)

(\EFk{defun} \EFf{doom-shut-up-a} (orig-fn \EFt{\&rest} args)
 (\EFk{quiet!} (apply orig-fn args)))

(advice-add 'org-babel-execute-src-block \EFb{:around} \#'doom-shut-up-a)
\end{Verbatim}
\end{Code}
\subsection{Elisp REPL}
\label{sec:org85ea117}

I think an elisp REPL sounds like a fun idea, even if not a particularly useful
one ð���. We can do this by adding a new command in \verb~cli.el~.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defcli!} repl ((in-rlwrap-p (\EFs{"--rl"}) \EFs{"For internal use only."}))
 \EFd{"Start an elisp REPL."}
 (\EFk{require} '\EFo{core-start})
 (\EFk{when} (\EFk{and} (executable-find \EFs{"rlwrap"}) (not in-rlwrap-p))
 \EFcd{;;} \EFc{For autocomplete}
 (\EFk{setq} autocomplete-file \EFs{"/tmp/doom_elisp_repl_symbols"})
 (\EFk{unless} (file-exists-p autocomplete-file)
 (princ \EFs{"\char92{}e[0;33mInitialising autocomplete list...\char92{}e[0m\char92{}n"})
 (\EFk{with-temp-buffer}
 (\EFk{cl-do-all-symbols} (s)
 (\EFk{let} ((sym (symbol-name s)))
 (\EFk{when} (string-match-p \EFs{"\char92{}\char92{}`[[:ascii:]][[:ascii:]]+\char92{}\char92{}'"} sym)
 (insert sym \EFs{"\char92{}n"}))))
 (write-region nil nil autocomplete-file)))
 (princ \EFs{"\char92{}e[F"})
 (exit! \EFs{"rlwrap"} \EFs{"-f"} autocomplete-file
 (concat doom-emacs-dir \EFs{"bin/doom"}) \EFs{"repl"} \EFs{"--rl"}))

 (doom-initialize-packages)
 (\EFk{require} '\EFo{engrave-faces-ansi})
 (\EFk{setq} engrave-faces-ansi-color-mode '3-bit)

 \EFcd{;;} \EFc{For some reason (require 'parent-mode) doesn't work :(}
 (\EFk{defun} \EFf{parent-mode-list} (mode)
 \EFd{"Return a list of MODE and all its parent modes.}

\EFd{The returned list starts with the parent-most mode and ends with MODE."}
 (\EFk{let} ((result ()))
 (parent-mode--worker mode (\EFk{lambda} (mode)
 (\EFk{push} mode result)))
 result))
 (\EFk{defun} \EFf{parent-mode--worker} (mode func)
 \EFd{"For MODE and all its parent modes, call FUNC.}

\EFd{FUNC is first called for MODE, then for its parent, then for the parent's}
\EFd{parent, and so on.}

\EFd{MODE shall be a symbol referring to a function.}
\EFd{FUNC shall be a function taking one argument."}
 (funcall func mode)
 (\EFk{when} (not (fboundp mode))
 (\EFwr{signal} 'void-function (list mode)))
 (\EFk{let} ((modefunc (symbol-function mode)))
 (\EFk{if} (symbolp modefunc)
 \EFcd{;;} \EFc{Hande all the modes that use (defalias 'foo-parent-mode (stuff)) as}
 \EFcd{;;} \EFc{their parent}
 (parent-mode--worker modefunc func)
 (\EFk{let} ((parentmode (get mode 'derived-mode-parent)))
 (\EFk{when} parentmode
 (parent-mode--worker parentmode func))))))
 (\EFk{provide} '\EFo{parent-mode})
 \EFcd{;;} \EFc{Some extra highlighting (needs parent-mode)}
 (\EFk{require} '\EFo{rainbow-delimiters})
 (\EFk{require} '\EFo{highlight-quoted})
 (\EFk{require} '\EFo{highlight-numbers})
 (\EFk{setq} emacs-lisp-mode-hook '(rainbow-delimiters-mode
 highlight-quoted-mode
 highlight-numbers-mode))
 \EFcd{;;} \EFc{Pretty print}
 (\EFk{defun} \EFf{pp-sexp} (sexp)
 (\EFk{with-temp-buffer}
 (cl-prettyprint sexp)
 (emacs-lisp-mode)
 (font-lock-ensure)
 (\EFk{with-current-buffer} (engrave-faces-ansi-buffer)
 (princ (string-trim (buffer-string)))
 (kill-buffer (current-buffer)))))
 \EFcd{;;} \EFc{Now do the REPL}
 (\EFk{defvar} \EFv{accumulated-input} nil)
 (\EFk{while} t
 (\EFk{condition-case} nil
 (\EFk{let} ((input (\EFk{if} accumulated-input
 (read-string \EFs{"\char92{}e[31m .\char92{}e[0m "})
 (read-string \EFs{"\char92{}e[31mÎ»:\char92{}e[0m "}))))
 (\EFk{setq} input (concat accumulated-input
 (\EFk{when} accumulated-input \EFs{"\char92{}n"})
 input))
 (\EFk{cond}
 ((string-match-p \EFs{"\char92{}\char92{}`[[:space:]]*\char92{}\char92{}'"} input)
 nil)
 ((string= input \EFs{"exit"})
 (princ \EFs{"\char92{}n"}) (kill-emacs 0))
 (t
 (\EFk{condition-case} err
 (\EFk{let} ((input-sexp (car (read-from-string input))))
 (\EFk{setq} accumulated-input nil)
 (pp-sexp (eval input-sexp))
 (princ \EFs{"\char92{}n"}))
 \EFcd{;;} \EFc{Caused when sexp in unbalanced}
 (end-of-file (\EFk{setq} accumulated-input input))
 (\EFwr{error}
 (\EFk{cl-destructuring-bind} (backtrace \EFt{\&optional} type data . _)
 (cons (doom-cli--backtrace) err)
 (princ (concat \EFs{"\char92{}e[1;31mERROR:\char92{}e[0m "} (get type 'error-message)))
 (princ \EFs{"\char92{}n "})
 (pp-sexp (cons type data))
 (\EFk{when} backtrace
 (\EFk{print!} (bold \EFs{"Backtrace:"}))
 (\EFk{print-group!}
 (\EFk{dolist} (frame (seq-take backtrace 10))
 (\EFk{print!}
 \EFs{"\%0.74s"} (replace-regexp-in-string
 \EFs{"[\char92{}n\char92{}r]"} \EFs{"\char92{}\char92{}\char92{}\char92{}n"}
 (format \EFs{"\%S"} frame))))))
 (princ \EFs{"\char92{}n"})))))))
 \EFcd{;;} \EFc{C-d causes an end-of-file error}
 (end-of-file (princ \EFs{"exit\char92{}n"}) (kill-emacs 0)))
 (\EFk{unless} accumulated-input (princ \EFs{"\char92{}n"}))))
\end{Verbatim}
\end{Code}
\subsection{Htmlize command}
\label{sec:orgfb970e1}

Why not have a command to htmlize files? This is basically a little test of my
engrave-faces package because it somehow seems to work without a GUI, while the
htmlize package doesn't.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defcli!} htmlize (file)
 \EFd{"Export a FILE buffer to HTML."}

 (\EFk{print!} \EFs{"Htmlizing \%s"} file)

 (doom-initialize)
 (\EFk{require} '\EFo{highlight-numbers})
 (\EFk{require} '\EFo{highlight-quoted})
 (\EFk{require} '\EFo{rainbow-delimiters})
 (\EFk{require} '\EFo{engrave-faces-html})

 \EFcd{;;} \EFc{Lighten org-mode}
 (\EFk{when} (string= \EFs{"org"} (file-name-extension file))
 (setcdr (assoc 'org after-load-alist) nil)
 (\EFk{setq} org-load-hook nil)
 (\EFk{require} '\EFo{org})
 (\EFk{setq} org-mode-hook nil)
 (add-hook 'engrave-faces-before-hook
 (\EFk{lambda} () (\EFk{if} (eq major-mode 'org-mode)
 (org-show-all)))))

 (engrave-faces-html-file file))
\end{Verbatim}
\end{Code}
\subsection{Org buffer creation}
\label{sec:org09fdc79}

Let's make creating an Org buffer just that little bit easier.

\begin{Code}
\begin{Verbatim}
\color{EFD}(evil-define-command +evil-buffer-org-new (_count file)
 \EFs{"Creates a new ORG buffer replacing the current window, optionally}
 \EFs{editing a certain FILE"}
 \EFb{:repeat} nil
 (\EFk{interactive} \EFs{"P<f>"})
 (\EFk{if} file
 (evil-edit file)
 (\EFk{let} ((buffer (generate-new-buffer \EFs{"*new org*"})))
 (set-window-buffer nil buffer)
 (\EFk{with-current-buffer} buffer
 (org-mode)
 (\EFk{setq-local} doom-real-buffer-p t)))))

(map! \EFb{:leader}
 (\EFb{:prefix} \EFs{"b"}
 \EFb{:desc} \EFs{"New empty Org buffer"} \EFs{"o"} \#'+evil-buffer-org-new))
\end{Verbatim}
\end{Code}
\subsection{Dashboard}
\label{sec:org83671ee}

\begin{enumerate}
\item A fancy splash screen
\label{sec:org7938201}

Emacs can render an image as the splash screen, but I think we can do better
than just a completely static image. Since, SVG images in particular are
supported, we can use them as the basis for a fancier splash screen image setup
--- with themeable, resizing images.

With the effort I'm putting into this, it would be nice to have a good image,
and \href{https://github.com/MarioRicalde}{@MarioRicalde} came up with a cracker! He's also provided me with a nice
Emacs-style \emph{E}. I was using the black-hole image, but when I stripped down the
splash screen to something more minimal I switched to just using the \emph{E}.

\begin{center}
\includesvg[width=0.2\linewidth]{misc/splash-images/emacs-e-template}
\end{center}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{fancy-splash-image-directory}
 (expand-file-name \EFs{"misc/splash-images/"} doom-user-dir)
 \EFd{"Directory in which to look for splash image templates."})

(\EFk{defvar} \EFv{fancy-splash-image-template}
 (expand-file-name \EFs{"emacs-e-template.svg"} fancy-splash-image-directory)
 \EFd{"Default template svg used for the splash image.}
\EFd{Colours are substituted as per `}\textcolor[HTML]{b751b6}{\textit{fancy-splash-template-colours}}\EFd{'."})
\end{Verbatim}
\end{Code}

Special named colours can be used as the basis for theming, with a simple
replacement system.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{fancy-splash-template-colours}
 '((\EFs{"\#111112"} \EFb{:face} default \EFb{:attr} \EFb{:foreground})
 (\EFs{"\#8b8c8d"} \EFb{:face} shadow)
 (\EFs{"\#eeeeef"} \EFb{:face} default \EFb{:attr} \EFb{:background})
 (\EFs{"\#e66100"} \EFb{:face} highlight \EFb{:attr} \EFb{:background})
 (\EFs{"\#1c71d8"} \EFb{:face} font-lock-keyword-face)
 (\EFs{"\#f5c211"} \EFb{:face} font-lock-type-face)
 (\EFs{"\#813d9c"} \EFb{:face} font-lock-constant-face)
 (\EFs{"\#865e3c"} \EFb{:face} font-lock-function-name-face)
 (\EFs{"\#2ec27e"} \EFb{:face} font-lock-string-face)
 (\EFs{"\#c01c28"} \EFb{:face} error)
 (\EFs{"\#000001"} \EFb{:face} ansi-color-black)
 (\EFs{"\#ff0000"} \EFb{:face} ansi-color-red)
 (\EFs{"\#ff00ff"} \EFb{:face} ansi-color-magenta)
 (\EFs{"\#00ff00"} \EFb{:face} ansi-color-green)
 (\EFs{"\#ffff00"} \EFb{:face} ansi-color-yellow)
 (\EFs{"\#0000ff"} \EFb{:face} ansi-color-blue)
 (\EFs{"\#00ffff"} \EFb{:face} ansi-color-cyan)
 (\EFs{"\#fffffe"} \EFb{:face} ansi-color-white))
 \EFd{"Alist of colour-replacement plists.}
\EFd{Each plist is of the form (\char92{}"\$placeholder\char92{}" :doom-color 'key :face 'face).}
\EFd{If the current theme is a doom theme :doom-color will be used,}
\EFd{otherwise the colour will be face foreground."})
\end{Verbatim}
\end{Code}

If we want to make sure an image is themed, we can look for unrecognised hex
strings that are not greyscale (as greyscale can be expected in the form of a
transparent overlay).

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{fancy-splash-check-buffer} ()
 \EFd{"Check the current SVG buffer for bad colours."}
 (\EFk{interactive})
 (\EFk{when} (eq major-mode 'image-mode)
 (xml-mode))
 (\EFk{when} (\EFk{and} (\EFk{featurep} '\EFo{rainbow-mode})
 (not (\EFk{bound-and-true-p} rainbow-mode)))
 (rainbow-mode 1))
 (\EFk{let*} ((colours (mapcar \#'car fancy-splash-template-colours))
 (colourise-hex
 (\EFk{lambda} (hex)
 (propertize
 hex
 'face `((\EFb{:foreground}
 ,(\EFk{if} (< 0.5
 (\EFk{cl-destructuring-bind} (r g b) (x-color-values hex)
 \EFcd{;;} \EFc{Values taken from `}\textcolor[HTML]{b751b6}{rainbow-color-luminance}\EFc{'}
 (/ (+ (* .2126 r) (* .7152 g) (* .0722 b))
 (* 256 255 1.0))))
 \EFs{"white"} \EFs{"black"})
 (\EFb{:background} ,hex))))))
 (cn 96)
 (colour-menu-entries
 (mapcar
 (\EFk{lambda} (colour)
 (\EFk{cl-incf} cn)
 (cons cn
 (cons
 (substring-no-properties colour)
 (format \EFs{" (\%s) \%s \%s"}
 (propertize (char-to-string cn)
 'face 'font-lock-keyword-face)
 (funcall colourise-hex colour)
 (propertize
 (symbol-name
 (plist-get
 (cdr (assoc colour fancy-splash-template-colours))
 \EFb{:face}))
 'face 'shadow)))))
 colours))
 (colour-menu-template
 (format
 \EFs{"Colour \%\%s is unexpected! Should this be one of the following?\char92{}n}
\EFs{\%s}
 \EFs{\%s to ignore}
 \EFs{\%s to quit"}
 (mapconcat
 \#'cddr
 colour-menu-entries
 \EFs{"\char92{}n"})
 (propertize \EFs{"SPC"} 'face 'font-lock-keyword-face)
 (propertize \EFs{"ESC"} 'face 'font-lock-keyword-face)))
 (colour-menu-choice-keys
 (append (mapcar \#'car colour-menu-entries)
 (list ?\char92{}s)))
 (buf (get-buffer-create \EFs{"*fancy-splash-lint-colours-popup*"}))
 (good-colour-p
 (\EFk{lambda} (colour)
 (\EFk{or} (assoc colour fancy-splash-template-colours)
 \EFcd{;;} \EFc{Check if greyscale}
 (\EFk{or} (\EFk{and} (= (length colour) 4)
 (= (aref colour 1) \EFcd{;} \EFc{r}
 (aref colour 2) \EFcd{;} \EFc{g}
 (aref colour 3))) \EFcd{;} \EFc{b}
 (\EFk{and} (= (length colour) 7)
 (string= (substring colour 1 3) \EFcd{;} \EFc{rr =}
 (substring colour 3 5)) \EFcd{;} \EFc{gg}
 (string= (substring colour 3 5) \EFcd{;} \EFc{gg =}
 (substring colour 5 7))))))) \EFcd{;} \EFc{bb}
 (prompt-to-replace
 (\EFk{lambda} (target)
 (\EFk{with-current-buffer} buf
 (erase-buffer)
 (insert (format colour-menu-template
 (funcall colourise-hex target)))
 (\EFk{setq-local} cursor-type nil)
 (set-buffer-modified-p nil)
 (goto-char (point-min)))
 (\EFk{save-window-excursion}
 (pop-to-buffer buf)
 (fit-window-to-buffer (get-buffer-window buf))
 (car (alist-get
 (read-char-choice
 (format \EFs{"Select replacement, \%s-\%s or SPC: "}
 (char-to-string (caar colour-menu-entries))
 (char-to-string (caar (last colour-menu-entries))))
 colour-menu-choice-keys)
 colour-menu-entries))))))
 (\EFk{save-excursion}
 (goto-char (point-min))
 (\EFk{while} (re-search-forward \EFs{"\#[0-9A-Fa-f]\char92{}\char92{}\{}\textcolor[HTML]{6a1868}{6\char92{}\char92{}}\EFs{\}}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{\#[0-9A-Fa-f]\char92{}\char92{}\{}\textcolor[HTML]{6a1868}{3\char92{}\char92{}}\EFs{\}"} nil t)
 (recenter)
 (\EFk{let*} ((colour (match-string 0))
 (replacement (\EFk{and} (not (funcall good-colour-p colour))
 (funcall prompt-to-replace colour))))
 (\EFk{when} replacement
 (replace-match replacement t t))))
 (message \EFs{"Done"}))))
\end{Verbatim}
\end{Code}

To make it easier to produce themeable images, we can also provide an Inkscape
colour palette.

\begin{Code}
\begin{Verbatim}
\color{EFD}GIMP Palette
Name: Emacs Fancy Splash Template
\#
 17 17 18 \#111112 Foreground
139 140 141 \#8b8c8d Shadow
238 238 239 \#eeeeef Background
230 97 0 \#e66100 Colour 1 (Highlight)
 28 113 216 \#1c71d8 Colour 2 (Keyword)
245 194 17 \#f5c211 Colour 3 (Type)
129 61 156 \#813d9c Colour 4 (Constant)
134 94 60 \#865e3c Colour 5 (Function)
 46 194 126 \#2ec27e Colour 6 (String)
192 28 40 \#c01c28 Colour 7 (Error)
 0 0 1 \#000001 Black
255 0 0 \#ff0000 Red
255 0 255 \#ff00ff Magenta
 0 255 0 \#00ff00 Green
255 255 0 \#ffff00 Yellow
 0 0 255 \#0000ff Blue
 0 255 255 \#00ffff Cyan
255 255 254 \#fffffe White
\end{Verbatim}
\end{Code}

Since we're going to be generating theme-specific versions of splash images, it
would be good to have a cache directory.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{fancy-splash-cache-dir} (expand-file-name \EFs{"theme-splashes/"} doom-cache-dir))
\end{Verbatim}
\end{Code}

To set up dynamic resizing, we'll use a list specifying the image height at
various frame-height thresholds, with a few extra bells and whistles (such as
the ability to change image too).

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{fancy-splash-sizes}
 `((\EFb{:height} 300 \EFb{:min-height} 50 \EFb{:padding} (0 . 2))
 (\EFb{:height} 250 \EFb{:min-height} 42 \EFb{:padding} (2 . 4))
 (\EFb{:height} 200 \EFb{:min-height} 35 \EFb{:padding} (3 . 3))
 (\EFb{:height} 150 \EFb{:min-height} 28 \EFb{:padding} (3 . 3))
 (\EFb{:height} 100 \EFb{:min-height} 20 \EFb{:padding} (2 . 2))
 (\EFb{:height} 75 \EFb{:min-height} 15 \EFb{:padding} (2 . 1))
 (\EFb{:height} 50 \EFb{:min-height} 10 \EFb{:padding} (1 . 0))
 (\EFb{:height} 1 \EFb{:min-height} 0 \EFb{:padding} (0 . 0)))
 \EFd{"List of plists specifying image sizing states.}
\EFd{Each plist should have the following properties:}
\EFd{- :height, the height of the image}
\EFd{- :min-height, the minimum `}\textcolor[HTML]{b751b6}{\textit{frame-height}}\EFd{' for image}
\EFd{- :padding, a `}\textcolor[HTML]{b751b6}{\textit{+doom-dashboard-banner-padding}}\EFd{' (top . bottom) padding}
 \EFd{specification to apply}
\EFd{Optionally, each plist may set the following two properties:}
\EFd{- :template, a non-default template file}
\EFd{- :file, a file to use instead of template"})
\end{Verbatim}
\end{Code}

Now that's we've set up the customisation approach, we need to work out the
mechanics for actually implementing this. To start with, a basic utility
function to get the relevant file path.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{fancy-splash-filename} (theme template height)
 \EFd{"Get the file name for the splash image with THEME and of HEIGHT."}
 (expand-file-name (format \EFs{"\%s-\%s-\%d.svg"} theme (file-name-base template) height) fancy-splash-cache-dir))
\end{Verbatim}
\end{Code}

Now to go about actually generating the images. To adjust the sizing on demand,
we will offer two mechanisms:
\begin{enumerate}
\item A special \verb~$height~ token which is replaced with the desired height
\item Recognition of \verb~height=100~, in which case \verb~100~ will be replaced with the
desired height and any \verb~width~ property will be removed.
\end{enumerate}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{fancy-splash-generate-image} (template height)
 \EFd{"Create a themed image from TEMPLATE of HEIGHT.}
\EFd{The theming is performed using `}\textcolor[HTML]{b751b6}{\textit{fancy-splash-template-colours}}\EFd{'}
\EFd{and the current theme."}
 (\EFk{with-temp-buffer}
 (insert-file-contents template)
 (goto-char (point-min))
 (\EFk{if} (re-search-forward \EFs{"\$height"} nil t)
 (replace-match (number-to-string height) t t)
 (\EFk{if} (re-search-forward \EFs{"height=\char92{}"100}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(?:}}\EFs{\char92{}\char92{}.0[0-9]*}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{?\char92{}""} nil t)
 (\EFk{progn}
 (replace-match (format \EFs{"height=\char92{}"\%s\char92{}""} height) t t)
 (goto-char (point-min))
 (\EFk{when} (re-search-forward \EFs{"}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[\char92{}t\char92{}n]}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{width=\char92{}"[\char92{}\char92{}.0-9]+\char92{}"[\char92{}t\char92{}n]*"} nil t)
 (replace-match \EFs{"\char92{}\char92{}1"})))
 (\EFwr{warn} \EFs{"Warning! fancy splash template: neither \$height nor height=100 not found in \%s"} template)))
 (\EFk{dolist} (substitution fancy-splash-template-colours)
 (goto-char (point-min))
 (\EFk{let*} ((replacement-colour
 (face-attribute (plist-get (cdr substitution) \EFb{:face})
 (\EFk{or} (plist-get (cdr substitution) \EFb{:attr}) \EFb{:foreground})
 nil 'default))
 (replacement-hex
 (\EFk{if} (string-prefix-p \EFs{"\#"} replacement-colour)
 replacement-colour
 (apply 'format \EFs{"\#\%02x\%02x\%02x"}
 (mapcar (\EFk{lambda} (c) (ash c -8))
 (color-values replacement-colour))))))
 (\EFk{while} (search-forward (car substitution) nil t)
 (replace-match replacement-hex nil nil))))
 (\EFk{unless} (file-exists-p fancy-splash-cache-dir)
 (make-directory fancy-splash-cache-dir t))
 (\EFk{let} ((inhibit-message t))
 (write-region nil nil (fancy-splash-filename (car custom-enabled-themes) template height)))))
\end{Verbatim}
\end{Code}

We may as well generate each theme's appropriate images in bunk.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{fancy-splash-generate-all-images} ()
 \EFd{"Perform `}\textcolor[HTML]{b751b6}{\textit{fancy-splash-generate-image}}\EFd{' in bulk."}
 (\EFk{dolist} (size fancy-splash-sizes)
 (\EFk{unless} (plist-get size \EFb{:file})
 (fancy-splash-generate-image
 (\EFk{or} (plist-get size \EFb{:template})
 fancy-splash-image-template)
 (plist-get size \EFb{:height})))))
\end{Verbatim}
\end{Code}

It would be nice to have a simple check function which will just generate the
set of relevant images if needed, and do nothing if they already exist.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{fancy-splash-ensure-theme-images-exist} (\EFt{\&optional} height)
 \EFd{"Ensure that the relevant images exist.}
\EFd{Use the image of HEIGHT to check, defaulting to the height of the first}
\EFd{specification in `}\textcolor[HTML]{b751b6}{\textit{fancy-splash-sizes}}\EFd{'. If that file does not exist for}
\EFd{the current theme, `}\textcolor[HTML]{b751b6}{\textit{fancy-splash-generate-all-images}}\EFd{' is called. "}
 (\EFk{unless} (file-exists-p
 (fancy-splash-filename
 (car custom-enabled-themes)
 fancy-splash-image-template
 (\EFk{or} height (plist-get (car fancy-splash-sizes) \EFb{:height}))))
 (fancy-splash-generate-all-images)))
\end{Verbatim}
\end{Code}

In case we switch out the images used (or something else goes wrong), it would
be good to have a convenient method to clear this cache.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{fancy-splash-clear-cache} (\EFt{\&optional} delete-files)
 \EFd{"Clear all cached fancy splash images.}
\EFd{Optionally delete all cache files and regenerate the currently relevant set."}
 (\EFk{interactive} (list t))
 (\EFk{dolist} (size fancy-splash-sizes)
 (\EFk{unless} (plist-get size \EFb{:file})
 (\EFk{let} ((image-file
 (fancy-splash-filename
 (car custom-enabled-themes)
 (\EFk{or} (plist-get size \EFb{:template})
 fancy-splash-image-template)
 (plist-get size \EFb{:height}))))
 (image-flush (create-image image-file) t))))
 (message \EFs{"Fancy splash image cache cleared!"})
 (\EFk{when} delete-files
 (delete-directory fancy-splash-cache-dir t)
 (fancy-splash-generate-all-images)
 (message \EFs{"Fancy splash images cache deleted!"})))
\end{Verbatim}
\end{Code}

In a similar way, it could be fun to allow for switching the template used. We
can support this by looking for files ending in \verb~-template.svg~ and running
\texttt{image-flush} via \texttt{fancy-splash-clear-cache}.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{fancy-splash-switch-template} ()
 \EFd{"Switch the template used for the fancy splash image."}
 (\EFk{interactive})
 (\EFk{let} ((new (completing-read
 \EFs{"Splash template: "}
 (mapcar
 (\EFk{lambda} (template)
 (replace-regexp-in-string \EFs{"-template\char92{}\char92{}.svg\$"} \EFs{""} template))
 (directory-files fancy-splash-image-directory nil \EFs{"-template\char92{}\char92{}.svg\char92{}\char92{}'"}))
 nil t)))
 (\EFk{setq} fancy-splash-image-template
 (expand-file-name (concat new \EFs{"-template.svg"}) fancy-splash-image-directory))
 (fancy-splash-clear-cache)
 (message \EFs{""}) \EFcd{;} \EFc{Clear message from `}\textcolor[HTML]{b751b6}{fancy-splash-clear-cache}\EFc{'.}
 (\EFk{setq} fancy-splash--last-size nil)
 (fancy-splash-apply-appropriate-image)))
\end{Verbatim}
\end{Code}

Now we can ensure that the desired images exist, we need to work out which
particular one we want. This is really just a matter of comparing the frame
height to the set of presets.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{fancy-splash-get-appropriate-size} ()
 \EFd{"Find the firt `}\textcolor[HTML]{b751b6}{\textit{fancy-splash-sizes}}\EFd{' with min-height of at least frame height."}
 (\EFk{let} ((height (frame-height)))
 (cl-some (\EFk{lambda} (size) (\EFk{when} (>= height (plist-get size \EFb{:min-height})) size))
 fancy-splash-sizes)))
\end{Verbatim}
\end{Code}

We now want to apply the appropriate image to the dashboard. At the same time,
we don't want to do so needlessly, so we may as well record the size and theme
to determine when a refresh is actually needed.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} fancy-splash--last-size nil)
(\EFk{setq} fancy-splash--last-theme nil)

(\EFk{defun} \EFf{fancy-splash-apply-appropriate-image} (\EFt{\&rest} _)
 \EFd{"Ensure the appropriate splash image is applied to the dashboard.}
\EFd{This function's signature is \char92{}"\&rest _\char92{}" to allow it to be used}
\EFd{in hooks that call functions with arguments."}
 (\EFk{let} ((appropriate-size (fancy-splash-get-appropriate-size)))
 (\EFk{unless} (\EFk{and} (equal appropriate-size fancy-splash--last-size)
 (equal (car custom-enabled-themes) fancy-splash--last-theme))
 (\EFk{unless} (plist-get appropriate-size \EFb{:file})
 (fancy-splash-ensure-theme-images-exist (plist-get appropriate-size \EFb{:height})))
 (\EFk{setq} fancy-splash-image
 (\EFk{or} (plist-get appropriate-size \EFb{:file})
 (fancy-splash-filename (car custom-enabled-themes)
 fancy-splash-image-template
 (plist-get appropriate-size \EFb{:height})))
 +doom-dashboard-banner-padding (plist-get appropriate-size \EFb{:padding})
 fancy-splash--last-size appropriate-size
 fancy-splash--last-theme (car custom-enabled-themes))
 (+doom-dashboard-reload))))
\end{Verbatim}
\end{Code}
\item ASCII banner
\label{sec:org59b5976}

If we're operating in a terminal (or \verb~emacclient~) we see an ASCII banner instead
of the graphical one. I'd also like to use something simple for this.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{doom-dashboard-draw-ascii-emacs-banner-fn} ()
 (\EFk{let*} ((banner
 '(\EFs{",---.,-.-.,---.,---.,---."}
 \EFs{"|---'| | |,---|| `---."}
 \EFs{"`}\textcolor[HTML]{b751b6}{---}\EFs{'` ' '`---\char94{}`}\textcolor[HTML]{b751b6}{---}\EFs{'`}\textcolor[HTML]{b751b6}{---}\EFs{'"}))
 (longest-line (apply \#'max (mapcar \#'length banner))))
 (put-text-property
 (point)
 (\EFk{dolist} (line banner (point))
 (insert (+doom-dashboard--center
 +doom-dashboard--width
 (concat
 line (make-string (max 0 (- longest-line (length line)))
 32)))
 \EFs{"\char92{}n"}))
 'face 'doom-dashboard-banner)))
\end{Verbatim}
\end{Code}

Now we just need this as Doom's ASCII banner function.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{unless} (display-graphic-p) \EFcd{;} \EFc{for some reason this messes up the graphical splash screen atm}
 (\EFk{setq} +doom-dashboard-ascii-banner-fn \#'doom-dashboard-draw-ascii-emacs-banner-fn))
\end{Verbatim}
\end{Code}
\item Splash phrases
\label{sec:org690be16}

Having an aesthetically pleasing image is all very well and good, but I'm aiming
for minimal, not clinical --- it would be good to inject some fun into the
dashboard. After trawling around the internet for a bit, I've found three
sources of fun phrases, namely:
\begin{itemize}
\item a nonsense corporate jargon generator,
\item a selection of random developer excuses, and
\item a collection of fun but rather useless facts.
\end{itemize}

I used to have a fancy method that used web APIs for these and inserted an
invisible placeholder into the dashboard which was asynchronously replaced on
the result of (debounced) requests to the APIs. While that actually worked quite
well, I realised that it would be much better and simpler if I simply copied the
phrases sources to local files and did the random selection / generation in
elisp.

Let's start off by setting the local folder to put the phrase source files in.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{splash-phrase-source-folder}
 (expand-file-name \EFs{"misc/splash-phrases"} doom-user-dir)
 \EFd{"A folder of text files with a fun phrase on each line."})
\end{Verbatim}
\end{Code}

Now we want to support two "phrase systems"
\begin{enumerate}
\item A complete file of phrases, one phrase per line
\item A collection of phrase-components, put together to form a phrase
\end{enumerate}

It would be good to specify/detect which of the two cases apply based on the
file name alone. I've done this by setting the simple check that if the file
name contains \verb~-N-~ (where \verb~N~ is some number) then it is taken as the \verb~N~â��th phrase
component, with everything preceding the \verb~-N-~ token taken as the collection
identifier, and everything after \verb~-N-~ ignored.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{splash-phrase-sources}
 (\EFk{let*} ((files (directory-files splash-phrase-source-folder nil \EFs{"\char92{}\char92{}.txt\char92{}\char92{}'"}))
 (sets (delete-dups (mapcar
 (\EFk{lambda} (file)
 (replace-regexp-in-string \EFs{"}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(?:}}\EFs{-[0-9]+-\char92{}\char92{}w+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{?\char92{}\char92{}.txt"} \EFs{""} file))
 files))))
 (mapcar (\EFk{lambda} (sset)
 (cons sset
 (delq nil (mapcar
 (\EFk{lambda} (file)
 (\EFk{when} (string-match-p (regexp-quote sset) file)
 file))
 files))))
 sets))
 \EFd{"A list of cons giving the phrase set name, and a list of files which contain phrase components."})
\end{Verbatim}
\end{Code}

Let's fix the phrase set in use, and pick a random phrase source on startup.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{splash-phrase-set}
 (nth (random (length splash-phrase-sources)) (mapcar \#'car splash-phrase-sources))
 \EFd{"The default phrase set. See `}\textcolor[HTML]{b751b6}{\textit{splash-phrase-sources}}\EFd{'."})
\end{Verbatim}
\end{Code}

While having a random set of phrases is fantastic the vast majority of the time,
I expect that occasionally I'll feel in the mood to change the phrase set or
pick a particular one, so some functions for that would be nice.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{splash-phrase-set-random-set} ()
 \EFd{"Set a new random splash phrase set."}
 (\EFk{interactive})
 (\EFk{setq} splash-phrase-set
 (nth (random (1- (length splash-phrase-sources)))
 (cl-set-difference (mapcar \#'car splash-phrase-sources) (list splash-phrase-set))))
 (+doom-dashboard-reload t))

(\EFk{defun} \EFf{splash-phrase-select-set} ()
 \EFd{"Select a specific splash phrase set."}
 (\EFk{interactive})
 (\EFk{setq} splash-phrase-set (completing-read \EFs{"Phrase set: "} (mapcar \#'car splash-phrase-sources)))
 (+doom-dashboard-reload t))
\end{Verbatim}
\end{Code}

If we're going to be selecting phrases from a large list of lines, it could be
worth caching the list of lines.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{splash-phrase--cached-lines} nil)
\end{Verbatim}
\end{Code}

Now let's write a function that will pick a random line from a file, using
\texttt{splash-phrase-{}-{}cached-lines} if possible.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{splash-phrase-get-from-file} (file)
 \EFd{"Fetch a random line from FILE."}
 (\EFk{let} ((lines (\EFk{or} (cdr (assoc file splash-phrase--cached-lines))
 (cdar (\EFk{push} (cons file
 (\EFk{with-temp-buffer}
 (insert-file-contents (expand-file-name file splash-phrase-source-folder))
 (split-string (string-trim (buffer-string)) \EFs{"\char92{}n"})))
 splash-phrase--cached-lines)))))
 (nth (random (length lines)) lines)))
\end{Verbatim}
\end{Code}

With this, we now have enough to generate random phrases on demand.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{splash-phrase} (\EFt{\&optional} set)
 \EFd{"Construct a splash phrase from SET. See `}\textcolor[HTML]{b751b6}{\textit{splash-phrase-sources}}\EFd{'."}
 (mapconcat
 \#'splash-phrase-get-from-file
 (cdr (assoc (\EFk{or} set splash-phrase-set) splash-phrase-sources))
 \EFs{" "}))
\end{Verbatim}
\end{Code}

I originally thought this might be enough, but some phrases are a tad long, and
this isn't exactly doom-dashboard appropriate. In such cases we need to split
lines, re-centre them, and add some whitespace. While we're at it, we may as
well make it that you can click on the phrase to replace it with new one.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{splash-phrase-dashboard-formatted} ()
 \EFd{"Get a splash phrase, flow it over multiple lines as needed, and fontify it."}
 (mapconcat
 (\EFk{lambda} (line)
 (+doom-dashboard--center
 +doom-dashboard--width
 (\EFk{with-temp-buffer}
 (insert-text-button
 line
 'action
 (\EFk{lambda} (_) (+doom-dashboard-reload t))
 'face 'doom-dashboard-menu-title
 'mouse-face 'doom-dashboard-menu-title
 'help-echo \EFs{"Random phrase"}
 'follow-link t)
 (buffer-string))))
 (split-string
 (\EFk{with-temp-buffer}
 (insert (splash-phrase))
 (\EFk{setq} fill-column (min 70 (/ (* 2 (window-width)) 3)))
 (fill-region (point-min) (point-max))
 (buffer-string))
 \EFs{"\char92{}n"})
 \EFs{"\char92{}n"}))
\end{Verbatim}
\end{Code}

Almost there now, this just needs some centreing and newlines.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{splash-phrase-dashboard-insert} ()
 \EFd{"Insert the splash phrase surrounded by newlines."}
 (insert \EFs{"\char92{}n"} (splash-phrase-dashboard-formatted) \EFs{"\char92{}n"}))
\end{Verbatim}
\end{Code}
\item Quick actions
\label{sec:orgbe5b96f}

When using the dashboard, there are often a small number of actions I will take.
As the dashboard is it's own major mode, there is no need to suffer the tyranny
of unnecessary keystrokes --- we can simply bind common actions to a single key!

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{+doom-dashboard-setup-modified-keymap} ()
 (\EFk{setq} +doom-dashboard-mode-map (make-sparse-keymap))
 (map! \EFb{:map} +doom-dashboard-mode-map
 \EFb{:desc} \EFs{"Find file"} \EFb{:ng} \EFs{"f"} \#'find-file
 \EFb{:desc} \EFs{"Recent files"} \EFb{:ng} \EFs{"r"} \#'consult-recent-file
 \EFb{:desc} \EFs{"Config dir"} \EFb{:ng} \EFs{"C"} \#'doom/open-private-config
 \EFb{:desc} \EFs{"Open config.org"} \EFb{:ng} \EFs{"c"} (\EFk{cmd!} (find-file (expand-file-name \EFs{"config.org"} doom-user-dir)))
 \EFb{:desc} \EFs{"Open org-mode root"} \EFb{:ng} \EFs{"O"} (\EFk{cmd!} (find-file (expand-file-name \EFs{"lisp/org/"} doom-user-dir)))
 \EFb{:desc} \EFs{"Open dotfile"} \EFb{:ng} \EFs{"."} (\EFk{cmd!} (doom-project-find-file \EFs{"\char126{}/.config/"}))
 \EFb{:desc} \EFs{"Notes (roam)"} \EFb{:ng} \EFs{"n"} \#'org-roam-node-find
 \EFb{:desc} \EFs{"Switch buffer"} \EFb{:ng} \EFs{"b"} \#'+vertico/switch-workspace-buffer
 \EFb{:desc} \EFs{"Switch buffers (all)"} \EFb{:ng} \EFs{"B"} \#'consult-buffer
 \EFb{:desc} \EFs{"IBuffer"} \EFb{:ng} \EFs{"i"} \#'ibuffer
 \EFb{:desc} \EFs{"Previous buffer"} \EFb{:ng} \EFs{"p"} \#'previous-buffer
 \EFb{:desc} \EFs{"Set theme"} \EFb{:ng} \EFs{"t"} \#'consult-theme
 \EFb{:desc} \EFs{"Quit"} \EFb{:ng} \EFs{"Q"} \#'save-buffers-kill-terminal
 \EFb{:desc} \EFs{"Show keybindings"} \EFb{:ng} \EFs{"h"} (\EFk{cmd!} (which-key-show-keymap '+doom-dashboard-mode-map))))

(\EFk{add-transient-hook!} \#'+doom-dashboard-mode (+doom-dashboard-setup-modified-keymap))
(\EFk{add-transient-hook!} \#'+doom-dashboard-mode \EFb{:append} (+doom-dashboard-setup-modified-keymap))
(\EFk{add-hook!} 'doom-init-ui-hook \EFb{:append} (+doom-dashboard-setup-modified-keymap))
\end{Verbatim}
\end{Code}

Unfortunately the show keybindings help doesn't currently work as intended, but
this is still quite nice overall.

Now that the dashboard is so convenient, I'll want to make it easier to get to.
\begin{Code}
\begin{Verbatim}
\color{EFD}(map! \EFb{:leader} \EFb{:desc} \EFs{"Dashboard"} \EFs{"d"} \#'+doom-dashboard/open)
\end{Verbatim}
\end{Code}
\item Putting it all together
\label{sec:org19e6845}

With the splash image and phrase generation worked out, we can almost put
together the desired dashboard from scratch, we just need to re-create the
benchmark information by itself.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{+doom-dashboard-benchmark-line} ()
 \EFd{"Insert the load time line."}
 (\EFk{when} doom-init-time
 (insert
 \EFs{"\char92{}n\char92{}n"}
 (propertize
 (+doom-dashboard--center
 +doom-dashboard--width
 (doom-display-benchmark-h 'return))
 'face 'doom-dashboard-loaded))))
\end{Verbatim}
\end{Code}

With \texttt{doom-display-benchmark-h} displayed here, I don't see the need for it to be
shown in the minibuffer as well.

\begin{Code}
\begin{Verbatim}
\color{EFD}(remove-hook 'doom-after-init-hook \#'doom-display-benchmark-h)
\end{Verbatim}
\end{Code}

Now we can create the desired dashboard by setting \texttt{+doom-dashboard-functions} to
just have:
\begin{itemize}
\item The "widget banner" (splash image)
\item The benchmark line
\item A random phrase
\end{itemize}
This gets rid of two segments I'm not particularly interested in seeing
\begin{itemize}
\item The shortmenu
\item The footer (github link)
\end{itemize}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} +doom-dashboard-functions
 (list \#'doom-dashboard-widget-banner
 \#'+doom-dashboard-benchmark-line
 \#'splash-phrase-dashboard-insert))
\end{Verbatim}
\end{Code}

At this point there are just a few minor tweaks I'd still like to make to the
dashboard.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{+doom-dashboard-tweak} (\EFt{\&optional} _)
 (\EFk{with-current-buffer} (get-buffer +doom-dashboard-name)
 (\EFk{setq-local} line-spacing 0.2
 mode-line-format nil
 mode-name \EFs{""}
 evil-normal-state-cursor (list nil))))
\end{Verbatim}
\end{Code}

Now we can just add this as a mode hook.

\begin{Code}
\begin{Verbatim}
\color{EFD}(add-hook '+doom-dashboard-mode-hook \#'+doom-dashboard-tweak)
\end{Verbatim}
\end{Code}

Unfortunately, the initialisation of \verb~doom-modeline~ interferes with the set
\texttt{mode-line-format} value. To get around this, we can re-apply
\texttt{+doom-dashboard-tweak} as a slightly late init hook, after \verb~doom-modeline~ has been
loaded.

\begin{Code}
\begin{Verbatim}
\color{EFD}(add-hook 'doom-after-init-hook \#'+doom-dashboard-tweak 1)
\end{Verbatim}
\end{Code}

Lastly, with the buffer name being shown in the frame title thanks to some \hyperref[sec:org1f83c1c]{other
configuration}, we might as well display something a bit prettier than \verb~*doom*~.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} +doom-dashboard-name \EFs{"â�º Doom"}
 doom-fallback-buffer-name +doom-dashboard-name)
\end{Verbatim}
\end{Code}

The end result is a minimal but rather nice splash screen.

\begin{center}
\includegraphics[width=.9\linewidth]{/tmp/org-persist-IRkN4n/31/592d15-0822-44c0-8520-c10512986088-f40af26c4ac1c91f39f1755f5d74301e.png}
\end{center}

To keep the splash image up to date, we just need to check it every time the
frame size or theme is changed.

\begin{Code}
\begin{Verbatim}
\color{EFD}(add-hook 'window-size-change-functions \#'fancy-splash-apply-appropriate-image)
(add-hook 'doom-load-theme-hook \#'fancy-splash-apply-appropriate-image)
\end{Verbatim}
\end{Code}
\end{enumerate}
\subsection{Config doctor}
\label{sec:org00e66b3}

We can collect checks throughout this config and put them in a \verb~doctor.el~ file
that will be run as part of \verb~doom doctor~. This will complement the \verb~setup.sh~
approach.

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{;;;} \EFc{doctor.el -*- lexical-binding: t; no-byte-compile: t; -*-}

(\EFk{let} (required-fonts available-fonts missing-fonts)
 (\EFk{setq} required-fonts '(\EFs{"JetBrains ?Mono.*"} \EFs{"Overpass"} \EFs{"JuliaMono"} \EFs{"IBM Plex Mono"}
 \EFs{"Merriweather"} \EFs{"Alegreya"} \EFs{"Twitter Color Emoji"}))

 (\EFk{setq} available-fonts
 (delete-dups
 (\EFk{or} (font-family-list)
 (\EFk{and} (executable-find \EFs{"fc-list"})
 (\EFk{with-temp-buffer}
 (call-process \EFs{"fc-list"} nil t nil \EFs{":"} \EFs{"family"})
 (split-string (buffer-string) \EFs{"[,\char92{}n]"}))))))

 (\EFk{setq} missing-fonts
 (delq nil (mapcar
 (\EFk{lambda} (font)
 (\EFk{unless} (delq nil (mapcar (\EFk{lambda} (f)
 (string-match-p (format \EFs{"\char94{}\%s\$"} font) f))
 available-fonts))
 font))
 required-fonts)))
 (\EFk{if} available-fonts
 (\EFk{dolist} (font missing-fonts)
 (warn! (format \EFs{"Missing font: \%s."} font)))
 (warn! \EFs{"Unable to check for missing fonts, is fc-list installed?"})))
(\EFk{unless} (string= \EFs{"enabled\char92{}n"} (shell-command-to-string \EFs{"systemctl --user is-enabled emacs.service"}))
 (warn! \EFs{"Emacsclient service is not enabled."}))
(\EFk{unless} (executable-find \EFs{"hunspell"})
 (warn! \EFs{"Couldn't find hunspell executable."}))
(\EFk{unless} (file-exists-p \EFs{"\char126{}/.local/share/hunspell/en-custom.dic"})
 (warn! \EFs{"Custom hunspell dictionary is not present."}))
(\EFk{unless} (executable-find \EFs{"aspell"})
 (warn! \EFs{"Couldn't find aspell executable."}))
(\EFk{unless} (file-exists-p \EFs{"\char126{}/.config/enchant/aspell/en-custom.multi"})
 (warn! \EFs{"Custom aspell dictionary is not present."}))
(\EFk{unless} (executable-find \EFs{"wal"})
 (warn! \EFs{"Couldn't find the pywal executable (wal), theme-magic will not function."}))
(\EFk{if} (executable-find \EFs{"sdcv"})
 (\EFk{let} ((dict-root (concat (\EFk{or} (getenv \EFs{"STARDICT_DATA_DIR"})
 (concat (\EFk{or} \EFs{"\char126{}/.local/share"}
 (getenv \EFs{"XDG_DATA_HOME"}))
 \EFs{"/stardict"}))
 \EFs{"/dic"}))
 (dicts '(\EFs{"webster"} \EFs{"synonyms"} \EFs{"etymology"} \EFs{"en-to-latin"} \EFs{"hitchcock"} \EFs{"elements"})))
 (\EFk{if} (file-exists-p dict-root)
 (\EFk{dolist} (dict dicts)
 (\EFk{unless} (file-exists-p (file-name-concat dict-root dict))
 (warn! (format \EFs{"Absent sdcv dictionary: \%s."} dict))))
 (warn! \EFs{"Couldn't find any stcv dictionaries, lexic will not function"})))
 (warn! \EFs{"Couldn't find sdcv executable, lexic will be disabled"}))
(\EFk{when} (file-exists-p \EFs{"\char126{}/.mail"}) \EFcd{;} \EFc{We care about mail when the mail folder exists}
 (\EFk{unless} (executable-find \EFs{"mu"})
 (error! \EFs{"Couldn't find mail dependency mu."}))
 (\EFk{unless} (executable-find \EFs{"mbsync"})
 (error! \EFs{"Couldn't find mail dependency mbsync."}))
 (\EFk{unless} (executable-find \EFs{"msmtp"})
 (error! \EFs{"Couldn't find mail dependency msmtp."}))
 (\EFk{unless} (executable-find \EFs{"goimapnotify"})
 (warn! \EFs{"Couldn't find mail helper goimapnotify, mail syncs will be slower."})))
(\EFk{when} (\EFk{and} (executable-find \EFs{"goimapnotify"})
 (not (file-exists-p \EFs{"\char126{}/.config/imapnotify"})))
 (warn! \EFs{"goimapnotify is installed but not configured."}))
(\EFk{when} (executable-find \EFs{"mbsync"})
 (\EFk{unless} (string= \EFs{"enabled\char92{}n"} (shell-command-to-string \EFs{"systemctl --user is-enabled mbsync.timer"}))
 (warn! \EFs{"The mbsync timer is not enabled."})))
(\EFk{when} (\EFk{and} (executable-find \EFs{"mu"})
 (not (string= (shell-command-to-string \EFs{"xdg-mime query default x-scheme-handler/mailto"})
 \EFs{"emacsmail.desktop\char92{}n"})))
 (warn! \EFs{"Emacs is not registered as a mailto handler."}))
(\EFk{if} (string= (shell-command-to-string \EFs{"xdg-mime query default text/org"}) \EFs{""})
 (warn! \EFs{"text/org is not a registered mime type."})
 (\EFk{unless} (string= (shell-command-to-string \EFs{"xdg-mime query default text/org"}) \EFs{"emacs-client.desktop\char92{}n"})
 (warn! \EFs{"Emacs(client) is not set up as the text/org handler."})))
(\EFk{unless} (executable-find \EFs{"latex2text"})
 (warn! \EFs{"Couldn't find latex2text executable (from pylatexenc), will be unable to render LaTeX fragments in orgâ��text exports."}))
\end{Verbatim}
\end{Code}
\section{Other things}
\label{sec:orga6aa739}

\subsection{Editor interaction}
\label{sec:org17c689f}
\begin{enumerate}
\item Mouse buttons
\label{sec:orga04863e}

\begin{Code}
\begin{Verbatim}
\color{EFD}(map! \EFb{:n} [mouse-8] \#'better-jumper-jump-backward
 \EFb{:n} [mouse-9] \#'better-jumper-jump-forward)
\end{Verbatim}
\end{Code}
\end{enumerate}
\subsection{Window title}
\label{sec:org1f83c1c}

I'd like to have just the buffer name, then if applicable the project folder
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} frame-title-format
 '(\EFs{""}
 (\EFb{:eval}
 (\EFk{if} (string-match-p (regexp-quote (\EFk{or} (\EFk{bound-and-true-p} org-roam-directory) \EFs{"\char92{}u0000"}))
 (\EFk{or} buffer-file-name \EFs{""}))
 (replace-regexp-in-string
 \EFs{".*/[0-9]*-?"} \EFs{"â�° "}
 (subst-char-in-string ?_ ?\char92{}s buffer-file-name))
 \EFs{"\%b"}))
 (\EFb{:eval}
 (\EFk{when-let} ((project-name (\EFk{and} (\EFk{featurep} '\EFo{projectile}) (projectile-project-name))))
 (\EFk{unless} (string= \EFs{"-"} project-name)
 (format (\EFk{if} (buffer-modified-p) \EFs{" â�� \%s"} \EFs{" â��â��â�� \%s"}) project-name))))))
\end{Verbatim}
\end{Code}

For example when I open my config file it the window will be titled \verb~config.org â�� doom~ then as soon as I make a change it will become \verb~config.org â�� doom~.
\subsection{Systemd daemon}
\label{sec:org242ed4a}

For running a systemd service for a Emacs server I have the following. \verb~zsh -c~ is
used to ensure that \verb~.zshenv~ is loaded.

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFt{[Unit]}
\EFk{Description}=Emacs server daemon
\EFk{Documentation}=info:emacs man:emacs(1) https://gnu.org/software/emacs/
\EFk{Wants}=gpg-agent.service

\EFt{[Service]}
\EFk{Type}=\EFb{forking}
\EFk{ExecStart}=zsh -c \EFs{'emacs --daemon \&\& emacsclient -c --eval "(delete-frame)"'}
\EFk{ExecStop}=/usr/bin/emacsclient --no-wait --eval \EFs{"(progn (setq kill-emacs-hook nil) (kill emacs))"}
\EFk{Environment}=COLORTERM=truecolor
\EFk{Restart}=\EFb{on-failure}

\EFt{[Install]}
\EFk{WantedBy}=default.target
\end{Verbatim}
\end{Code}

which is then enabled by
\begin{Code}
\begin{Verbatim}
\color{EFD}systemctl --user enable emacs.service
\end{Verbatim}
\end{Code}

We can also add a \verb~doctor~ warning should this not be enabled.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{unless} (string= \EFs{"enabled\char92{}n"} (shell-command-to-string \EFs{"systemctl --user is-enabled emacs.service"}))
 (warn! \EFs{"Emacsclient service is not enabled."}))
\end{Verbatim}
\end{Code}

For some reason if a frame isn't opened early in the initialisation process, the
daemon doesn't seem to like opening frames later --- hence the \texttt{\&\& emacsclient}
part of the \verb~ExecStart~ value.

It can now be nice to use this as a 'default app' for opening files. If we add
an appropriate desktop entry, and enable it in the desktop environment.

\begin{Code}
\begin{Verbatim}
\color{EFD}[\EFt{Desktop Entry}]
\EFv{Name}=Emacs client
\EFv{GenericName}=Text Editor
\EFv{Comment}=A flexible platform for end-user applications
\EFv{MimeType}=text/english;text/plain;text/x-makefile;text/x-c++hdr;text/x-c++src;text/x-chdr;text/x-csrc;text/x-java;text/x-moc;text/x-pascal;text/x-tcl;text/x-tex;application/x-shellscript;text/x-c;text/x-c++;
\EFv{Exec}=emacsclient -create-frame --alternate-editor=\EFs{""} --no-wait \%F
\EFv{Icon}=emacs
\EFv{Type}=Application
\EFv{Terminal}=false
\EFv{Categories}=TextEditor;Utility;
\EFv{StartupWMClass}=Emacs
\EFv{Keywords}=Text;Editor;
\EFv{X-KDE-StartupNotify}=false
\end{Verbatim}
\end{Code}

When the daemon is running, I almost always want to do a few particular things
with it, so I may as well eat the load time at startup. We also want to keep
\verb~mu4e~ running.

It would be good to start the IRC client (\verb~circe~) too, but that seems to have
issues when started in a non-graphical session.

Lastly, while I'm not sure quite why it happens, but after a bit it seems that
new Emacsclient frames start on the \verb~*scratch*~ buffer instead of the dashboard.
I prefer the dashboard, so let's ensure that's always switched to in new frames.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{greedily-do-daemon-setup} ()
 (\EFk{require} '\EFo{org})
 (\EFk{when} (\EFk{require} '\EFo{mu4e} nil t)
 (\EFk{setq} mu4e-confirm-quit t)
 (\EFk{setq} +mu4e-lock-greedy t)
 (\EFk{setq} +mu4e-lock-relaxed t)
 (\EFk{when} (+mu4e-lock-available t)
 (mu4e--start)))
 (\EFk{when} (\EFk{require} '\EFo{elfeed} nil t)
 (run-at-time nil (* 8 60 60) \#'elfeed-update)))

(\EFk{when} (daemonp)
 (add-hook 'emacs-startup-hook \#'greedily-do-daemon-setup)
 (\EFk{add-hook!} 'server-after-make-frame-hook
 (\EFk{unless} (string-match-p \EFs{"\char92{}\char92{}*draft}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{\char92{}\char92{}*stdin}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{emacs-everywhere"} (buffer-name))
 (switch-to-buffer +doom-dashboard-name))))
\end{Verbatim}
\end{Code}
\subsection{Emacs client wrapper}
\label{sec:org5f2e8af}

I frequently want to make use of Emacs while in a terminal emulator. To make
this easier, I can construct a few handy aliases.

However, a little convenience script in \verb,~/.local/bin, can have the same effect,
be available beyond the specific shell I plop the alias in, then also allow me
to add a few bells and whistles --- namely:
\begin{itemize}
\item Accepting stdin by putting it in a temporary file and immediately opening it.
\item Guessing that the \verb~tty~ is a good idea when \texttt{\$DISPLAY} is unset (relevant with SSH
sessions, among other things).
\item With a whiff of 24-bit colour support, sets \texttt{TERM} variable to a \verb~terminfo~ that
(probably) announces 24-bit colour support.
\item Changes GUI \verb~emacsclient~ instances to be non-blocking by default (\texttt{-{}-{}no-wait}),
and instead take a flag to suppress this behaviour (\texttt{-w}).
\end{itemize}

I would use \verb~sh~, but using arrays for argument manipulation is just too
convenient, so I'll raise the requirement to \verb~bash~. Since arrays are the only
'extra' compared to \verb~sh~, other shells like \verb~ksh~ etc.\ should work too.

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{\#}\EFc{!/usr/bin/}\EFk{env} \EFc{bash}
\EFv{force_tty}=false
\EFv{force_wait}=false
\EFv{stdin_mode}=\EFs{""}

\EFv{args}=()

\EFk{while} :; \EFk{do}
 \EFk{case} \EFs{"\$1"} \EFk{in}
 -t | -nw | --tty)
 \EFv{force_tty}=true
 \EFb{shift} ;;
 -w | --wait)
 \EFv{force_wait}=true
 \EFb{shift} ;;
 -m | --mode)
 \EFv{stdin_mode}=\EFs{" (\$2-mode)"}
 \EFb{shift} 2 ;;
 -h | --help)
 \EFb{echo} -e \EFs{"\char92{}033[1mUsage: e [-t] [-m MODE] [OPTIONS] FILE [-]\char92{}033[0m}

\EFs{Emacs client convenience wrapper.}

\EFs{\char92{}033[1mOptions:\char92{}033[0m}
\EFs{\char92{}033[0;34m-h, --help\char92{}033[0m Show this message}
\EFs{\char92{}033[0;34m-t, -nw, --tty\char92{}033[0m Force terminal mode}
\EFs{\char92{}033[0;34m-w, --wait\char92{}033[0m Don't supply \char92{}033[0;34m--no-wait\char92{}033[0m to graphical emacsclient}
\EFs{\char92{}033[0;34m-\char92{}033[0m Take \char92{}033[0;33mstdin\char92{}033[0m (when last argument)}
\EFs{\char92{}033[0;34m-m MODE, --mode MODE\char92{}033[0m Mode to open \char92{}033[0;33mstdin\char92{}033[0m with}

\EFs{Run \char92{}033[0;32memacsclient --help\char92{}033[0m to see help for the emacsclient."}
 \EFk{exit} 0 ;;
 --*=*)
 \EFb{set} -- \EFs{"\$@"} \EFs{"\$\{1\%\%=*\}"} \EFs{"\$\{1\#*=\}"}
 \EFb{shift} ;;
 *)
 \EFk{if} [\EFs{"\$\#"} = 0]; \EFk{then}
 \EFk{break}; \EFk{fi}
 \EFv{args}+=(\EFs{"\$1"})
 \EFb{shift} ;;
 \EFk{esac}
\EFk{done}

\EFk{if} [\EFnc{!} \EFs{"\$\{\#args[*]\}"} = 0] \&\& [\EFs{"\$\{args[-1]\}"} = \EFs{"-"}]; \EFk{then}
 \EFb{unset} \EFs{'args[-1]'}
 \EFv{TMP}=\EFs{"\$(}\textbf{mktemp /tmp/emacsstdin-XXX}\EFs{)"}
 cat > \EFs{"\$TMP"}
 \EFv{args}+=(--eval \EFs{"(let ((b (generate-new-buffer \char92{}"*stdin*\char92{}"))) (switch-to-buffer b) (insert-file-contents \char92{}"\$TMP\char92{}") (delete-file \char92{}"\$TMP\char92{}")\$\{stdin_mode\})"})
\EFk{fi}

\EFk{if} [-z \EFs{"\$DISPLAY"}] || \$\EFv{force_tty}; \EFk{then}
 \EFcd{\#} \EFc{detect terminals with sneaky 24-bit support}
 \EFk{if} \{ [\EFs{"\$COLORTERM"} = truecolor] || [\EFs{"\$COLORTERM"} = 24bit]; \} \textcolor[HTML]{50a14f}{\char92{}}
 \&\& [\EFs{"\$(}\textbf{tput colors 2>/dev/null}\EFs{)"} -lt 257]; \EFk{then}
 \EFk{if} \EFb{echo} \EFs{"\$TERM"} | grep -q \EFs{"\char94{}\char92{}w\char92{}+-[0-9]"}; \EFk{then}
 \EFv{termstub}=\EFs{"\$\{TERM\%\%-*\}"}; \EFk{else}
 \EFv{termstub}=\EFs{"\$\{TERM\#*-\}"}; \EFk{fi}
 \EFk{if} infocmp \EFs{"\$termstub-direct"} >/dev/null 2>\&1; \EFk{then}
 \EFv{TERM}=\EFs{"\$termstub-direct"}; \EFk{else}
 \EFv{TERM}=\EFs{"xterm-direct"}; \EFk{fi} \EFcd{\#} \EFc{should be fairly safe}
 \EFk{fi}
 emacsclient --tty -create-frame --alternate-editor=\EFs{"\$ALTERNATE_EDITOR"} \EFs{"\$\{args[@]\}"}
\EFk{else}
 \EFk{if} \EFnc{!} \$\EFv{force_wait}; \EFk{then}
 \EFv{args}+=(--no-wait); \EFk{fi}
 emacsclient -create-frame --alternate-editor=\EFs{"\$ALTERNATE_EDITOR"} \EFs{"\$\{args[@]\}"}
\EFk{fi}
\end{Verbatim}
\end{Code}

Now, to set an alias to use \verb~e~ with Magit, and then for maximum laziness we can
set aliases for the terminal-forced variants.
\begin{Code}
\begin{Verbatim}
\color{EFD}alias \EFv{m}=\EFs{'e --eval "(progn (magit-status) (delete-other-windows))"'}
alias \EFv{mt}=\EFs{"m -t"}
alias \EFv{et}=\EFs{"e -t"}
\end{Verbatim}
\end{Code}
\subsection{Prompt to run setup script}
\label{sec:orgd3cee1b}

At various points in this config, content is conditionally tangled to
\verb~./setup.sh~. It's no good just putting content there if it isn't run though.
To help remind me to run it when needed, let's add a little prompt when there's
anything to be run.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{if} (file-exists-p \EFs{"setup.sh"})
 (\EFk{if} (string-empty-p (string-trim (\EFk{with-temp-buffer} (insert-file-contents \EFs{"setup.sh"}) (buffer-string)) \EFs{"\#!/usr/bin/env bash"}))
 (message \EFs{";; Setup script is empty"})
 (message \EFs{";; Detected content in the setup script"})
 (pp-to-string
 `(\EFk{unless} noninteractive
 (\EFk{defun} \EFf{+config-run-setup} ()
 (\EFk{when-let} ((setup-file (expand-file-name \EFs{"setup.sh"} doom-user-dir))
 ((file-exists-p setup-file))
 (setup-content (string-trim (\EFk{with-temp-buffer} (insert-file-contents setup-file) (buffer-string))
 \EFs{"\#!/usr/bin/env bash"}))
 ((not (string-empty-p setup-content)))
 ((yes-or-no-p (format \EFs{"\%s The setup script has content. Check and run the script?"}
 (propertize \EFs{"Warning!"} 'face '(bold warning))))))
 (find-file setup-file)
 (\EFk{when} (yes-or-no-p \EFs{"Would you like to run this script?"})
 (async-shell-command \EFs{"./setup.sh"}))))
 (\EFk{add-hook!} 'doom-init-ui-hook
 (run-at-time nil nil \#'+config-run-setup)))))
 (message \EFs{";; setup.sh did not exist during tangle. Tangle again."})
 (pp-to-string
 `(\EFk{unless} noninteractive
 (\EFk{add-hook!} 'doom-init-ui-hook \#'+literate-tangle-async-h))))
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}<<run-setup()>>
\end{Verbatim}
\end{Code}
\subsection{Grabbing source block content as a string}
\label{sec:org54a9fd6}

In a few places in this configuration, it is desirable to grab a source block's
content as a string. We can use a noweb \verb~<<replacement>>~ form, however that
doesn't work with string escaping.

We can get around this by using noweb execution and write an name (unexported)
babel block that will grab the content of another named source block as a
string. Note that this does not currently expand nested noweb references.

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{;;} \EFc{Babel block: grab(name \&optional pre post)}
\EFcd{;;} \EFc{NAME is the name of the source block to grab.}
\EFcd{;;} \EFc{PRE is a string to prepend to the content of the block.}
\EFcd{;;} \EFc{POST is a string to append to the content of the block.}
(\EFk{if-let} ((block-pos (org-babel-find-named-block name))
 (\EFk{block} (org-element-at-point block-pos)))
 (format \EFs{"\%S"} (concat pre (string-trim (org-element-property \EFb{:value} block)) post))
 \EFcd{;;} \EFc{look for :noweb-ref matches}
 (\EFk{let} (block-contents)
 (org-element-cache-map
 (\EFk{lambda} (src)
 (\EFk{when} (\EFk{and} (not (org-in-commented-heading-p nil src))
 (not (org-in-archived-heading-p nil src))
 (\EFk{let*} ((lang (org-element-property \EFb{:language} src))
 (params
 (apply
 \#'org-babel-merge-params
 (append
 (\EFk{org-with-point-at} (org-element-property \EFb{:begin} src)
 (org-babel-params-from-properties lang t))
 (mapcar
 (\EFk{lambda} (h)
 (org-babel-parse-header-arguments h t))
 (cons (org-element-property \EFb{:parameters} src)
 (org-element-property \EFb{:header} src))))))
 (ref (alist-get \EFb{:noweb-ref} params)))
 (equal ref name)))
 (\EFk{push} (org-babel--normalize-body src)
 block-contents)))
 \EFb{:granularity} 'element
 \EFb{:restrict-elements} '(src-block))
 (\EFk{and} block-contents
 (format \EFs{"\%S"}
 (concat
 pre
 (mapconcat
 \#'identity
 (nreverse block-contents)
 \EFs{"\char92{}n\char92{}n"})
 post)))))
\end{Verbatim}
\end{Code}

There we go, that's all it takes! This can be used via the form \verb~<<grab("block-name")>>~.
\chapter{Packages}
\label{sec:org84d280b}
\section{Loading instructions}
\label{sec:orgf9a4a92}
This is where you install packages, by declaring them with the \texttt{package!} macro in
\verb~packages.el~, then running \texttt{doom refresh} on the command line.
This file shouldn't be byte compiled.
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{;;} \EFc{-*- no-byte-compile: t; -*-}
\end{Verbatim}
\end{Code}

You'll then need to restart Emacs for your changes to take effect! Or at least,
run \verb~M-x doom/reload~.

\textbf{Warning}: Don't disable core packages listed in \verb,~/.config/emacs/core/packages.el,.
Doom requires these, and disabling them may have terrible side effects.
\subsection{Packages in MELPA/ELPA/emacsmirror}
\label{sec:org74e30eb}

To install \texttt{some-package} from MELPA, ELPA or emacsmirror:
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} some-package)
\end{Verbatim}
\end{Code}
\subsection{Packages from git repositories}
\label{sec:orgf667d88}

To install a package directly from a particular repo, you'll need to specify
a \texttt{:recipe}. You'll find documentation on what \texttt{:recipe} accepts \href{https://github.com/raxod502/straight.el\#the-recipe-format}{here}:
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} another-package
 \EFb{:recipe} (\EFb{:host} github \EFb{:repo} \EFs{"username/repo"}))
\end{Verbatim}
\end{Code}

If the package you are trying to install does not contain a \texttt{PACKAGENAME.el}
file, or is located in a subdirectory of the repo, you'll need to specify
\texttt{:files} in the \texttt{:recipe}:
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} this-package
 \EFb{:recipe} (\EFb{:host} github \EFb{:repo} \EFs{"username/repo"}
 \EFb{:files} (\EFs{"some-file.el"} \EFs{"src/lisp/*.el"})))
\end{Verbatim}
\end{Code}
\subsection{Disabling built-in packages}
\label{sec:org8c07c19}

If you'd like to disable a package included with Doom, for whatever reason,
you can do so here with the \texttt{:disable} property:
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} builtin-package \EFb{:disable} t)
\end{Verbatim}
\end{Code}
You can override the recipe of a built in package without having to specify
all the properties for \texttt{:recipe}. These will inherit the rest of its recipe
from Doom or MELPA/ELPA/Emacsmirror:
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} builtin-package \EFb{:recipe} (\EFb{:nonrecursive} t))
(\EFk{package!} builtin-package-2 \EFb{:recipe} (\EFb{:repo} \EFs{"myfork/package"}))
\end{Verbatim}
\end{Code}

Specify a \texttt{:branch} to install a package from a particular branch or tag.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} builtin-package \EFb{:recipe} (\EFb{:branch} \EFs{"develop"}))
\end{Verbatim}
\end{Code}
\section{Convenience}
\label{sec:orgb97886a}
\subsection{Avy}
\label{sec:orgef3578d}

\begin{quote}
From the \verb~:config default~ module.
\end{quote}

What a wonderful way to jump to buffer positions, and it uses the QWERTY
home-row for jumping. Very convenient \ldots{} except I'm using Colemak.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} avy
 \EFcd{;;} \EFc{home row priorities: 8 6 4 5 - - 1 2 3 7}
 (\EFk{setq} avy-keys '(?n ?e ?i ?s ?t ?r ?i ?a)))
\end{Verbatim}
\end{Code}

Now let's just have this included when an ErgoDox is found via \verb~dmesg~.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{if} (= 0 (call-process \EFs{"sh"} nil nil nil \EFs{"-c"} \EFs{"dmesg | grep -q '}\textcolor[HTML]{b751b6}{ErgoDox}\EFs{'"}))
 (pp '<<avy-colemak-setup>>)
 \EFs{";; Avy: Colemak layout not detected (ErgoDox not mentioned in dmesg)."})
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}<<avy-detect-colemak()>>
\end{Verbatim}
\end{Code}
\subsection{Rotate (window management)}
\label{sec:orgfa8df12}

The \verb~rotate~ package just adds the ability to rotate window layouts, but that
sounds nice to me.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} rotate \EFb{:pin} \EFs{"4e9ac3ff800880bd9b705794ef0f7c99d72900a6"})
\end{Verbatim}
\end{Code}
\subsection{Emacs Everywhere}
\label{sec:orgfdf18e3}

The name says it all. It's loaded and set up (a bit) by \verb~:app everywhere~, however
as I develop this I want the unpinned version I have as a submodule.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} emacs-everywhere \EFb{:recipe} (\EFb{:local-repo} \EFs{"lisp/emacs-everywhere"}))
(\EFk{unpin!} emacs-everywhere)
\end{Verbatim}
\end{Code}

Additionally, I'm going to make some personal choices that aren't made in the
Doom module.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} emacs-everywhere
 \EFb{:if} (daemonp)
 \EFb{:config}
 (\EFk{require} '\EFo{spell-fu})
 (\EFk{setq} emacs-everywhere-major-mode-function \#'org-mode
 emacs-everywhere-frame-name-format \EFs{"Edit â�· \%s â�� \%s"})
 (\EFk{defadvice!} emacs-everywhere-raise-frame ()
 \EFb{:after} \#'emacs-everywhere-set-frame-name
 (\EFk{setq} emacs-everywhere-frame-name (format emacs-everywhere-frame-name-format
 (emacs-everywhere-app-class emacs-everywhere-current-app)
 (truncate-string-to-width
 (emacs-everywhere-app-title emacs-everywhere-current-app)
 45 nil nil \EFs{"â�¦"})))
 \EFcd{;;} \EFc{need to wait till frame refresh happen before really set}
 (run-with-timer 0.1 nil \#'emacs-everywhere-raise-frame-1))
 (\EFk{defun} \EFf{emacs-everywhere-raise-frame-1} ()
 (call-process \EFs{"wmctrl"} nil nil nil \EFs{"-a"} emacs-everywhere-frame-name)))
\end{Verbatim}
\end{Code}
\subsection{Which-key}
\label{sec:org36786fc}

\begin{quote}
From the \verb~:core packages~ module.
\end{quote}

Let's make this popup a bit faster
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} which-key-idle-delay 0.5) \EFcd{;;} \EFc{I need the help, I really do}
\end{Verbatim}
\end{Code}

I also think that having \verb~evil-~ appear in so many popups is a bit too verbose,
let's change that, and do a few other similar tweaks while we're at it.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} which-key-allow-multiple-replacements t)
(\EFk{after!} which-key
 (\EFk{pushnew!}
 which-key-replacement-alist
 '((\EFs{""} . \EFs{"\char92{}\char92{}`+?evil[-:]?}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(?:}}\EFs{a-}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{?}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{.*}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{"}) . (nil . \EFs{"â��\char92{}\char92{}1"}))
 '((\EFs{"\char92{}\char92{}`g s"} . \EFs{"\char92{}\char92{}`evilem--?motion-}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{.*}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{"}) . (nil . \EFs{"â��\char92{}\char92{}1"}))
))
\end{Verbatim}
\end{Code}

\begin{center}
\includegraphics[width=.9\linewidth]{/tmp/org-persist-IRkN4n/58/46e23f-924e-44c5-824d-cff224266876-1d505a43a3318847487019e13d74ed8b.png}
\end{center}
\section{Tools}
\label{sec:orgb031e1b}
\subsection{Abbrev}
\label{sec:org9e55923}

Abbrev mode is great, and something I make use of in multiple ways. As such, I
want it on by default.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq-default} abbrev-mode t)
\end{Verbatim}
\end{Code}

Abbrev-mode can save and load abbreviations from an "abbrev file", which I'd
like to locate in my Doom config folder.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} abbrev-file-name (expand-file-name \EFs{"abbrev.el"} doom-user-dir))
\end{Verbatim}
\end{Code}

I need to think more on how I want to manage abbrev changes in the current
session, but for now I'm going to be overly cautious and avoid any modifications
to the global abbrev file that I don't make myself.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} save-abbrevs nil)
\end{Verbatim}
\end{Code}
\subsection{Very large files}
\label{sec:orgd966cef}

The \emph{very large files} mode loads large files in chunks, allowing one to open
ridiculously large files.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} vlf \EFb{:recipe} (\EFb{:host} github \EFb{:repo} \EFs{"emacs-straight/vlf"} \EFb{:files} (\EFs{"*.el"}))
 \EFb{:pin} \EFs{"d500f39672b35bf8551fdfafa892c551626c8d54"})
\end{Verbatim}
\end{Code}

To make VLF available without delaying startup, we'll just load it in quiet moments.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} vlf-setup
 \EFb{:defer-incrementally} vlf-tune vlf-base vlf-write
 vlf-search vlf-occur vlf-follow vlf-ediff vlf
 \EFb{:commands} vlf vlf-mode
 \EFb{:init}
 (\EFk{defvar} \EFv{vlf-application} 'ask) \EFcd{;} \EFc{Avoid load-order issues}
 <<vlf-largefile-prompt>>
 \EFb{:config}
 (advice-remove 'abort-if-file-too-large \#'ad-Advice-abort-if-file-too-large)
 <<vlf-linenum-offset>>
 <<vlf-search-chunking>>)
\end{Verbatim}
\end{Code}

Now, there are one or two tweaks worth applying to VLF. For starters, it goes to
the liberty of advising \texttt{abort-if-file-too-large}, and in doing so removes the
option of opening files literally. I think that's a bit much, so we can remove
the advice and instead override \texttt{files-{}-{}ask-user-about-large-file} (the more
appropriate function, I think) as a simpler approach, just sacrificing the
original behaviour with \Verb[commandchars=\\\{\},highlightcolor=white!95!black!80!blue,breaklines=true,breaksymbol=\color{white!60!black}\tiny\ensuremath{\hookrightarrow}]{\color{EFD}(\EFk{setq} vlf-application 'always)} (which I can't
imagine using anyway).

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defadvice!} +files--ask-about-large-file-vlf (size op-type filename offer-raw)
 \EFd{"Like `}\textcolor[HTML]{b751b6}{\textit{files--ask-user-about-large-file}}\EFd{', but with support for `}\textcolor[HTML]{b751b6}{\textit{vlf}}\EFd{'."}
 \EFb{:override} \#'files--ask-user-about-large-file
 (\EFk{if} (eq vlf-application 'dont-ask)
 (\EFk{progn} (vlf filename) (\EFwr{error} \EFs{""}))
 (\EFk{let} ((prompt (format \EFs{"File \%s is large (\%s), really \%s?"}
 (file-name-nondirectory filename)
 (funcall byte-count-to-string-function size) op-type)))
 (\EFk{if} (not offer-raw)
 (\EFk{if} (y-or-n-p prompt) nil 'abort)
 (\EFk{let} ((choice
 (car
 (read-multiple-choice
 prompt '((?y \EFs{"yes"})
 (?n \EFs{"no"})
 (?l \EFs{"literally"})
 (?v \EFs{"vlf"}))
 (files--ask-user-about-large-file-help-text
 op-type (funcall byte-count-to-string-function size))))))
 (\EFk{cond} ((eq choice ?y) nil)
 ((eq choice ?l) 'raw)
 ((eq choice ?v)
 (vlf filename)
 (\EFwr{error} \EFs{""}))
 (t 'abort)))))))
\end{Verbatim}
\end{Code}

As you go from one chunk fetched by VLF to the next, the displayed line number
of the first line \emph{in each chunk} is unchanged. I think it's reasonable to hope
for an \emph{overall} line number, and by tracking chunk's cumulative line numbers we
can implement this behaviour fairly easily.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar-local} \EFv{+vlf-cumulative-linenum} '((0 . 0))
 \EFd{"An alist keeping track of the cumulative line number."})

(\EFk{defun} \EFf{+vlf-update-linum} ()
 \EFd{"Update the line number offset."}
 (\EFk{let} ((linenum-offset (alist-get vlf-start-pos +vlf-cumulative-linenum)))
 (\EFk{setq} display-line-numbers-offset (\EFk{or} linenum-offset 0))
 (\EFk{when} (\EFk{and} linenum-offset (not (assq vlf-end-pos +vlf-cumulative-linenum)))
 (\EFk{push} (cons vlf-end-pos (+ linenum-offset
 (count-lines (point-min) (point-max))))
 +vlf-cumulative-linenum))))

(add-hook 'vlf-after-chunk-update-hook \#'+vlf-update-linum)

\EFcd{;;} \EFc{Since this only works with absolute line numbers, let's make sure we use them.}
(\EFk{add-hook!} 'vlf-mode-hook (\EFk{setq-local} display-line-numbers t))
\end{Verbatim}
\end{Code}

The other thing that doesn't work too well with VLF is searching with anything
other than \verb~M-x occur~. This is because trying to go to the next match at the end
of a chunk usually wraps the point to the beginning of the chunk, instead of
moving to the next chunk.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{+vlf-next-chunk-or-start} ()
 (\EFk{if} (= vlf-file-size vlf-end-pos)
 (vlf-jump-to-chunk 1)
 (vlf-next-batch 1))
 (goto-char (point-min)))

(\EFk{defun} \EFf{+vlf-last-chunk-or-end} ()
 (\EFk{if} (= 0 vlf-start-pos)
 (vlf-end-of-file)
 (vlf-prev-batch 1))
 (goto-char (point-max)))

(\EFk{defun} \EFf{+vlf-isearch-wrap} ()
 (\EFk{if} isearch-forward
 (+vlf-next-chunk-or-start)
 (+vlf-last-chunk-or-end)))

(\EFk{add-hook!} 'vlf-mode-hook (\EFk{setq-local} isearch-wrap-function \#'+vlf-isearch-wrap))
\end{Verbatim}
\end{Code}

Unfortunately, since evil-search doesn't have an analogue to
\texttt{isearch-wrap-function}, we can't easily add support to it.
\subsection{Eros}
\label{sec:orgcd5a997}

\begin{quote}
From the \verb~:tools eval~ module.
\end{quote}

This package enables the very nice inline evaluation with \verb~gr~ and \verb~gR~. The prefix
could be slightly nicer though.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} eros-eval-result-prefix \EFs{"â�¹ "}) \EFcd{;} \EFc{default =>}
\end{Verbatim}
\end{Code}
\subsection{EVIL}
\label{sec:org6b68031}

\begin{quote}
From the \verb~:editor evil~ module.
\end{quote}

When I want to make a substitution, I want it to be global more often than not
--- so let's make that the default.

Now, EVIL cares a fair bit about keeping compatibility with Vim's default
behaviour. I don't. There are some particular settings that I'd rather be
something else, so let's change them.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} evil
 (\EFk{setq} evil-ex-substitute-global t \EFcd{;} \EFc{I like my s/../.. to by global by default}
 evil-move-cursor-back nil \EFcd{;} \EFc{Don't move the block cursor when toggling insert mode}
 evil-kill-on-visual-paste nil)) \EFcd{;} \EFc{Don't put overwritten text in the kill ring}
\end{Verbatim}
\end{Code}

I don't use \texttt{evil-escape-mode}, so I may as well turn it off, I've heard it
contributes a typing delay. I'm not sure it's much, but it is an extra
\texttt{pre-command-hook} that I don't benefit from, so\ldots{}
It seems that there's a dedicated package for this, so instead of just disabling
the mode on startup, let's prevent installation of the package.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} evil-escape \EFb{:disable} t)
\end{Verbatim}
\end{Code}
\subsection{GPTel}
\label{sec:org0b5309b}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} gptel \EFb{:pin} \EFs{"94bf19da93aee9a101429d7ecbfbb9c7c5b67216"})
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} gptel
 \EFb{:commands} gptel gptel-menu gptel-mode gptel-send
 \EFb{:config}
 (\EFk{let} ((groq-backend
 (gptel-make-openai \EFs{"Groq"}
 \EFb{:host} \EFs{"api.groq.com"}
 \EFb{:endpoint} \EFs{"/openai/v1/chat/completions"}
 \EFb{:stream} t
 \EFb{:key} (\EFk{lambda} () (\EFk{or} (secrets-get-secret \EFs{"Login"} \EFs{"groq"})
 (secrets-get-secret \EFs{"kdewallet"} \EFs{"groq"})))
 \EFb{:models} '(\EFs{"llama3-70b-8192"}
 \EFs{"llama3-8b-8192"}
 \EFs{"llama-3.1-70b-versatile"}
 \EFs{"llama-3.1-8b-instant"}
 \EFs{"llama-3.2-1b-preview"}
 \EFs{"deepseek-r1-distill-llama-70b"}
 \EFs{"mixtral-8x7b-32768"}
 \EFs{"gemma-7b-it"}
 \EFs{"gemma2-9b-it"})))
 (openai-backend
 (gptel-make-openai \EFs{"ChatGPT"}
 \EFb{:host} \EFs{"api.openai.com"}
 \EFb{:stream} t
 \EFb{:key} (\EFk{lambda} () (\EFk{or} (secrets-get-secret \EFs{"Login"} \EFs{"openai"})
 (secrets-get-secret \EFs{"kdewallet"} \EFs{"openai"})))
 \EFb{:models} '(\EFs{"gpt-4o"} \EFs{"gpt-4o-mini"} \EFs{"chatgpt-4o-latest"}
 \EFs{"o1"} \EFs{"o1-mini"})))
 (anthropic-backend
 (gptel-make-anthropic \EFs{"Claude"}
 \EFb{:stream} t
 \EFb{:key} (\EFk{lambda} () (\EFk{or} (secrets-get-secret \EFs{"Login"} \EFs{"anthropic"})
 (secrets-get-secret \EFs{"kdewallet"} \EFs{"anthropic"})))
 \EFb{:models} '(\EFs{"claude-3-5-sonnet-20240620"}
 \EFs{"claude-3-sonnet-20240229"}
 \EFs{"claude-3-haiku-20240307"})))
 (ollama-backend
 (\EFk{let} (ollama-models)
 (\EFk{when} (executable-find \EFs{"ollama"})
 (\EFk{with-temp-buffer}
 (call-process \EFs{"ollama"} nil t nil \EFs{"list"})
 (goto-char (point-min))
 (forward-line 1)
 (\EFk{while} (\EFk{and} (not (eobp)) (looking-at \EFs{"[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}} \EFs{\char92{}t]+"}))
 (\EFk{push} (match-string 0) ollama-models)
 (forward-line 1)))
 (gptel-make-ollama \EFs{"Ollama"} \EFb{:models} ollama-models \EFb{:stream} t)))))
 (\EFk{setq-default} gptel-model \EFs{"llama-3.1-70b-versatile"}
 gptel-backend groq-backend))
 (delete (assoc \EFs{"ChatGPT"} gptel--known-backends) gptel--known-backends)
 (\EFk{setq} gptel-default-mode \#'org-mode))
\end{Verbatim}
\end{Code}
\subsection{Headlice}
\label{sec:orgceea6fd}

Dealing with licenses and in particular license headers is frankly a bit of a
pain, and so I've written a package so that this just takes care of itself and I
don't have to think about it.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} headlice \EFb{:recipe} (\EFb{:local-repo} \EFs{"lisp/headlice"}
 \EFb{:files} (\EFb{:defaults} \EFs{"licenses"} \EFs{"headers"})))
\end{Verbatim}
\end{Code}

The author of this package has set some pretty good defaults, but as usual there
are some specific personal preferences I'd like to apply, and then there's the
minor matter of hooking it into Emacs/Doom.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} headlice
 \EFb{:hook} (prog-mode . headlice-auto-insert)
 \EFb{:config}
 (\EFk{setq} headlice-preferred-license 'mpl
 headlice-use-spdx-headers t
 headlice-ignored-licenses '(gpl-3)
 headlice-user-email \EFs{"contact@tecosaur.net"})
 (\EFk{defalias} '\EFf{+file-templates/insert-license} \#'headlice-create-license))
\end{Verbatim}
\end{Code}
\subsection{Consult}
\label{sec:org488f750}

\begin{quote}
From the \verb~:completion vertico~ module.
\end{quote}

Since we're using \cref{sec:orgedc7315} too, the separation between buffers and files is
already clear, and there's no need for a different face.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} consult
 (set-face-attribute 'consult-file nil \EFb{:inherit} 'consult-buffer)
 (\EFk{setf} (plist-get (alist-get 'perl consult-async-split-styles-alist) \EFb{:initial}) \EFs{";"}))
\end{Verbatim}
\end{Code}
\subsection{Magit}
\label{sec:org7187333}

\begin{quote}
From the \verb~:tools magit~ module.
\end{quote}

Magit is great as-is, thanks for making such a lovely package \href{https://github.com/tarsius}{Jonas}!

There's still a room for a little tweaking though\ldots{}

\begin{Code}
\begin{Verbatim}
\color{EFD}<<magit-toplevel>>
(\EFk{after!} magit
 <<magit-tweaks>>)
\end{Verbatim}
\end{Code}
\begin{enumerate}
\item Easier forge remotes
\label{sec:orgf099948}
When creating a new project, I often want the remote to be to my personal Forgejo
instance. Let's make that a bit more streamlined by introducing a quick-entry
"default forge" option.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{+magit-default-forge-remote} \EFs{"git@ssh.tecosaur.net:tec/\%s.git"}
 \EFd{"Format string that fills out to a remote from the repo name.}
\EFd{Set to nil to disable this functionality."})
\end{Verbatim}
\end{Code}

While we're at it, when creating a remote with the same name as my Github
username in a project where an HTTPS GitHub remote already exists, let's make
the pre-filled remote URL use ssh.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defadvice!} +magit-remote-add--streamline-forge-a (args)
 \EFd{"Prompt to setup a remote using `}\textcolor[HTML]{b751b6}{\textit{+magit-default-forge-remote}}\EFd{'."}
 \EFb{:filter-args} \#'magit-remote-add
 (\EFk{interactive}
 (\EFk{let} ((default-name
 (subst-char-in-string
 ?\char92{}s ?-
 (file-name-nondirectory
 (directory-file-name
 (\EFk{or} (doom-project-root) default-directory))))))
 (\EFk{or} (\EFk{and} +magit-default-forge-remote
 (not (magit-list-remotes))
 (eq (read-char-choice
 (format \EFs{"Setup \%s remote? [y/n]: "}
 (replace-regexp-in-string
 \EFs{"\char92{}\char92{}`}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(?:}}\EFs{[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{@]+@}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{https://}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{:/]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{[:/].*\char92{}\char92{}'"} \EFs{"\char92{}\char92{}1"}
 +magit-default-forge-remote))
 '(?y ?n))
 ?y)
 (\EFk{let} ((name (read-string \EFs{"Name: "} default-name)))
 (list \EFs{"origin"} (format +magit-default-forge-remote name)
 (transient-args 'magit-remote))))
 (\EFk{let} ((origin (magit-get \EFs{"remote.origin.url"}))
 (remote (magit-read-string-ns \EFs{"Remote name"}))
 (gh-user (magit-get \EFs{"github.user"})))
 (\EFk{and} (equal remote gh-user)
 (\EFk{if} origin
 (\EFk{and}
 (string-match \EFs{"\char92{}\char92{}`https://github\char92{}\char92{}.com/}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{/]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{/}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{/]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{\char92{}\char92{}.git\char92{}\char92{}'"}
 origin)
 (not (string= (match-string 1 origin) gh-user)))
 t)
 (\EFk{setq} origin
 (\EFk{if} origin
 (replace-regexp-in-string
 \EFs{"\char92{}\char92{}`https://github\char92{}\char92{}.com/"} \EFs{"git@github.com:"}
 origin)
 (format \EFs{"git@github.com:\%s/\%s"} gh-user (read-string \EFs{"GitHub repo Name: "} default-name)))))
 (list remote
 (magit-read-url
 \EFs{"Remote url"}
 (\EFk{and} origin
 (string-match \EFs{"}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{:/]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{/[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{/]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{\char92{}\char92{}.git}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{?\char92{}\char92{}'"} origin)
 (replace-match remote t t origin 1)))
 (transient-args 'magit-remote))))))
 args)
\end{Verbatim}
\end{Code}
\item Commit message templates
\label{sec:orgfbf24a6}
One little thing I want to add is some per-project commit message templates.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{+magit-project-commit-templates-alist} nil
 \EFd{"Alist of toplevel dirs and template hf strings/functions."})
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{+magit-fill-in-commit-template} ()
 \EFd{"Insert template from `}\textcolor[HTML]{b751b6}{\textit{+magit-fill-in-commit-template}}\EFd{' if applicable."}
 (\EFk{when-let} ((template (\EFk{and} (\EFk{save-excursion} (goto-char (point-min)) (string-match-p \EFs{"\char92{}\char92{}`\char92{}\char92{}s-*\$"} (thing-at-point 'line)))
 (cdr (assoc (file-name-base (directory-file-name (magit-toplevel)))
 +magit-project-commit-templates-alist)))))
 (goto-char (point-min))
 (insert (\EFk{if} (stringp template) template (funcall template)))
 (goto-char (point-min))
 (end-of-line)))
(add-hook 'git-commit-setup-hook \#'+magit-fill-in-commit-template 90)
\end{Verbatim}
\end{Code}

This is particularly useful when creating commits for Org, as they need to
follow \href{https://orgmode.org/worg/org-contribute.html\#commit-messages}{a certain format} and sometimes I forget elements (oops!).
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{+org-commit-message-template} ()
 \EFd{"Create a skeleton for an Org commit message based on the staged diff."}
 (\EFk{let} (change-data last-file file-changes temp-point)
 (\EFk{with-temp-buffer}
 (apply \#'call-process magit-git-executable
 nil t nil
 (append
 magit-git-global-arguments
 (list \EFs{"diff"} \EFs{"--cached"})))
 (goto-char (point-min))
 (\EFk{while} (re-search-forward \EFs{"\char94{}@@}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{\char94{}\char92{}\char92{}+\char92{}\char92{}+\char92{}\char92{}+ b/"} nil t)
 (\EFk{if} (looking-back \EFs{"\char94{}\char92{}\char92{}+\char92{}\char92{}+\char92{}\char92{}+ b/"} (line-beginning-position))
 (\EFk{progn}
 (\EFk{push} (list last-file file-changes) change-data)
 (\EFk{setq} last-file (buffer-substring-no-properties (point) (line-end-position))
 file-changes nil))
 (\EFk{setq} temp-point (line-beginning-position))
 (re-search-forward \EFs{"\char94{}\char92{}\char92{}+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{\char94{}-"} nil t)
 (end-of-line)
 (\EFk{cond}
 ((string-match-p \EFs{"\char92{}\char92{}.el\$"} last-file)
 (\EFk{when} (re-search-backward \EFs{"\char94{}}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(?:}}\EFs{[+-]? *}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{@@[+-\char92{}\char92{}d,]+@@} \textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{(}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(?:}}\EFs{cl-}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{?}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(?:}}\EFs{defun}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{defvar}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{defmacro}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{defcustom}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{"} temp-point t)
 (re-search-forward \EFs{"}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(?:}}\EFs{cl-}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{?}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(?:}}\EFs{defun}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{defvar}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{defmacro}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{defcustom}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}} \textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{[:space:]\char92{}n]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{"} nil t)
 (\EFk{push} (match-string 1) file-changes)))
 ((string-match-p \EFs{"\char92{}\char92{}.org\$"} last-file)
 (\EFk{when} (re-search-backward \EFs{"\char94{}[+-]\char92{}\char92{}*+} \textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{\char94{}@@[+-\char92{}\char92{}d,]+@@ \char92{}\char92{}*+ "} temp-point t)
 (re-search-forward \EFs{"@@ \char92{}\char92{}*+ "} nil t)
 (\EFk{push} (buffer-substring-no-properties (point) (line-end-position)) file-changes)))))))
 (\EFk{setq} file-changes (delete-dups file-changes))
 (\EFk{push} (list last-file file-changes) change-data)
 (\EFk{setq} change-data (delete '(nil nil) change-data))
 (concat
 (\EFk{if} (= 1 (length change-data))
 (replace-regexp-in-string \EFs{"\char94{}.*/}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{.[a-z]+\$"} \EFs{""} (caar change-data))
 \EFs{"?"})
 \EFs{": \char92{}n\char92{}n"}
 (mapconcat
 (\EFk{lambda} (file-changes)
 (\EFk{if} (cadr file-changes)
 (format \EFs{"* \%s (\%s): "}
 (car file-changes)
 (mapconcat \#'identity (cadr file-changes) \EFs{", "}))
 (format \EFs{"* \%s: "} (car file-changes))))
 change-data
 \EFs{"\char92{}n\char92{}n"}))))

(add-to-list '+magit-project-commit-templates-alist (cons \EFs{"org"} \#'+org-commit-message-template))
\end{Verbatim}
\end{Code}

This relies on two small entries in the git config files which improves the hunk
heading line selection for elisp and Org files.

\begin{Code}
\begin{Verbatim}
\color{EFD}[\EFt{diff} \EFf{"lisp"}]
 \EFv{xfuncname} = \EFs{"\char94{}(((;;;+)|\char92{}\char92{}(|([\char92{}t]+\char92{}\char92{}(((cl-|el-patch-)?def(un|var|macro|method|custom)|gb/))).*)\$"}

[\EFt{diff} \EFf{"org"}]
 \EFv{xfuncname} = \EFs{"\char94{}(\char92{}\char92{}*+ +.*)\$"}
\end{Verbatim}
\end{Code}
\item Magit delta
\label{sec:org86399c7}

\href{https://github.com/dandavison/delta/}{Delta} is a git diff syntax highlighter written in rust. The author also wrote a
package to hook this into the Magit diff view (which don't get any syntax
highlighting by default). This requires the \texttt{delta} binary. It's packaged on some
distributions, but most reliably installed through Rust's package manager cargo.

\begin{Code}
\begin{Verbatim}
\color{EFD}cargo install git-delta
\end{Verbatim}
\end{Code}

Now we can make use of the package for this.
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{;;} \EFc{(package! magit-delta :recipe (:host github :repo "dandavison/magit-delta") :pin "5fc7dbddcfacfe46d3fd876172ad02a9ab6ac616")}
\end{Verbatim}
\end{Code}

All that's left is to hook it into magit
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{;;} \EFc{(magit-delta-mode +1)}
\end{Verbatim}
\end{Code}
Unfortunately this currently seems to mess things up, which is something I'll
want to look into later.
\end{enumerate}
\subsection{MPRIS}
\label{sec:org661afb2}

It's nice to be able to interact with MPRIS players. This would just be a
dependency of \verb~org-music~ or \verb~doom-modeline-media-player~, but I haven't made it
available on any an elisp archives. Thankfully most Emacs package managers make
using Git repository URLs pretty easy these days.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} mpris \EFb{:recipe} (\EFb{:local-repo} \EFs{"lisp/mpris"}))
\end{Verbatim}
\end{Code}
\subsection{Smerge}
\label{sec:org5be7a80}

For repeated operations, a hydra would be helpful. But I prefer transient.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{smerge-repeatedly} ()
 \EFd{"Perform smerge actions again and again"}
 (\EFk{interactive})
 (smerge-mode 1)
 (smerge-transient))
(\EFk{after!} transient
 (transient-define-prefix smerge-transient ()
 [[\EFs{"Move"}
 (\EFs{"n"} \EFs{"next"} (\EFk{lambda} () (\EFk{interactive}) (\EFk{ignore-errors} (smerge-next)) (smerge-repeatedly)))
 (\EFs{"p"} \EFs{"previous"} (\EFk{lambda} () (\EFk{interactive}) (\EFk{ignore-errors} (smerge-prev)) (smerge-repeatedly)))]
 [\EFs{"Keep"}
 (\EFs{"b"} \EFs{"base"} (\EFk{lambda} () (\EFk{interactive}) (\EFk{ignore-errors} (smerge-keep-base)) (smerge-repeatedly)))
 (\EFs{"u"} \EFs{"upper"} (\EFk{lambda} () (\EFk{interactive}) (\EFk{ignore-errors} (smerge-keep-upper)) (smerge-repeatedly)))
 (\EFs{"l"} \EFs{"lower"} (\EFk{lambda} () (\EFk{interactive}) (\EFk{ignore-errors} (smerge-keep-lower)) (smerge-repeatedly)))
 (\EFs{"a"} \EFs{"all"} (\EFk{lambda} () (\EFk{interactive}) (\EFk{ignore-errors} (smerge-keep-all)) (smerge-repeatedly)))
 (\EFs{"RET"} \EFs{"current"} (\EFk{lambda} () (\EFk{interactive}) (\EFk{ignore-errors} (smerge-keep-current)) (smerge-repeatedly)))]
 [\EFs{"Diff"}
 (\EFs{"<"} \EFs{"upper/base"} (\EFk{lambda} () (\EFk{interactive}) (\EFk{ignore-errors} (smerge-diff-base-upper)) (smerge-repeatedly)))
 (\EFs{"="} \EFs{"upper/lower"} (\EFk{lambda} () (\EFk{interactive}) (\EFk{ignore-errors} (smerge-diff-upper-lower)) (smerge-repeatedly)))
 (\EFs{">"} \EFs{"base/lower"} (\EFk{lambda} () (\EFk{interactive}) (\EFk{ignore-errors} (smerge-diff-base-lower)) (smerge-repeatedly)))
 (\EFs{"R"} \EFs{"refine"} (\EFk{lambda} () (\EFk{interactive}) (\EFk{ignore-errors} (smerge-refine)) (smerge-repeatedly)))
 (\EFs{"E"} \EFs{"ediff"} (\EFk{lambda} () (\EFk{interactive}) (\EFk{ignore-errors} (smerge-ediff)) (smerge-repeatedly)))]
 [\EFs{"Other"}
 (\EFs{"c"} \EFs{"combine"} (\EFk{lambda} () (\EFk{interactive}) (\EFk{ignore-errors} (smerge-combine-with-next)) (smerge-repeatedly)))
 (\EFs{"r"} \EFs{"resolve"} (\EFk{lambda} () (\EFk{interactive}) (\EFk{ignore-errors} (smerge-resolve)) (smerge-repeatedly)))
 (\EFs{"k"} \EFs{"kill current"} (\EFk{lambda} () (\EFk{interactive}) (\EFk{ignore-errors} (smerge-kill-current)) (smerge-repeatedly)))
 (\EFs{"q"} \EFs{"quit"} (\EFk{lambda} () (\EFk{interactive}) (smerge-auto-leave)))]]))
\end{Verbatim}
\end{Code}
\subsection{Corfu}
\label{sec:org21ec1b8}

\begin{quote}
From the \verb~:completion corfu~ module.
\end{quote}

I like completion, but I don't like to feel spammed by it, so let's up the delay.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} corfu-auto-delay 0.5)
\end{Verbatim}
\end{Code}
\subsection{Projectile}
\label{sec:org654e80d}

\begin{quote}
From the \verb~:core packages~ module.
\end{quote}

Looking at documentation via \verb~SPC h f~ and \verb~SPC h v~ and looking at the source can
add package src directories to projectile. This isn't desirable in my opinion.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} projectile-ignored-projects
 (list \EFs{"\char126{}/"} \EFs{"/tmp"} (expand-file-name \EFs{"straight/repos"} doom-local-dir)))
(\EFk{defun} \EFf{projectile-ignored-project-function} (filepath)
 \EFd{"Return t if FILEPATH is within any of `}\textcolor[HTML]{b751b6}{\textit{projectile-ignored-projects}}\EFd{'"}
 (\EFk{or} (mapcar (\EFk{lambda} (p) (string-prefix-p p filepath)) projectile-ignored-projects)))
\end{Verbatim}
\end{Code}
\subsection{Jinx}
\label{sec:org115fec1}

Minad's Jinx spell-checker looks pretty nifty. When Henrik and I (or someone
else) have some more bandwidth, I think it would be good to incorporate with
Doom.

In the meantime, let's use it here.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} jinx)
\end{Verbatim}
\end{Code}
\begin{enumerate}
\item Configuration
\label{sec:orgabb55c0}

Jinx has some pretty lovely defaults out of the box, we'll just be making a few
tweaks.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} jinx
 \EFb{:defer} t
 \EFb{:init}
 (add-hook 'doom-init-ui-hook \#'global-jinx-mode)
 \EFb{:config}
 \EFcd{;;} \EFc{Use my custom dictionary}
 (\EFk{setq} jinx-languages \EFs{"en-custom"})
 \EFcd{;;} \EFc{Extra face(s) to ignore}
 (\EFk{push} 'org-inline-src-block
 (alist-get 'org-mode jinx-exclude-faces))
 \EFcd{;;} \EFc{Take over the relevant bindings.}
 (\EFk{after!} ispell
 (global-set-key [remap ispell-word] \#'jinx-correct))
 (\EFk{after!} evil-commands
 (global-set-key [remap evil-next-flyspell-error] \#'jinx-next)
 (global-set-key [remap evil-prev-flyspell-error] \#'jinx-previous))
 \EFcd{;;} \EFc{I prefer for `}\textcolor[HTML]{b751b6}{point}\EFc{' to end up at the start of the word,}
 \EFcd{;;} \EFc{not just after the end.}
 (advice-add 'jinx-next \EFb{:after} (\EFk{lambda} (_) (left-word))))
\end{Verbatim}
\end{Code}
\item Autocorrect
\label{sec:org5855b36}

I used to have a small collection of configuration here, but then it grew
larger, and now it's a package.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} autocorrect \EFb{:recipe} (\EFb{:local-repo} \EFs{"lisp/autocorrect"}))
\end{Verbatim}
\end{Code}

To integrate Jinx with the \verb~autocorrect~ package, we need to tell it:
\begin{itemize}
\item About corrections made with Jinx
\item How to tell if a word is spelled correctly with Jinx
\item When it's appropriate to make an autocorrection
\end{itemize}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} autocorrect
 \EFb{:after} jinx
 \EFb{:config}
 \EFcd{;;} \EFc{Integrate with Jinx}
 (\EFk{defun} \EFf{autocorrect-jinx-record-correction} (overlay corrected)
 \EFd{"Record that Jinx corrected the text in OVERLAY to CORRECTED."}
 (\EFk{let} ((text
 (buffer-substring-no-properties
 (overlay-start overlay)
 (overlay-end overlay))))
 (autocorrect-record-correction text corrected)))

 (\EFk{defun} \EFf{autocorrect-jinx-check-spelling} (word)
 \EFd{"Check if WORD is valid."}
 \EFcd{;;} \EFc{Mostly a copy of `}\textcolor[HTML]{b751b6}{jinx--word-valid-p}\EFc{', just without the buffer substring.}
 \EFcd{;;} \EFc{It would have been nice if `}\textcolor[HTML]{b751b6}{jinx--word-valid-p}\EFc{' implemented like this}
 \EFcd{;;} \EFc{with `}\textcolor[HTML]{b751b6}{jinx--this-word-valid-p}\EFc{' (or similar) as the at-point variant.}
 (\EFk{or} (member word jinx--session-words)
 \EFcd{;;} \EFc{Allow capitalized words}
 (\EFk{and} (string-match-p \EFs{"\char92{}\char92{}`[[:upper:]][[:lower:]]+\char92{}\char92{}'"} word)
 (\EFk{cl-loop}
 for w in jinx--session-words
 thereis (\EFk{and} (string-equal-ignore-case word w)
 (string-match-p \EFs{"\char92{}\char92{}`[[:lower:]]+\char92{}\char92{}'"} w))))
 (\EFk{cl-loop} for dict in jinx--dicts
 thereis (jinx--mod-check dict word))))

 (\EFk{defun} \EFf{autocorrect-jinx-appropriate} (pos)
 \EFd{"Return non-nil if it is appropriate to spellcheck at POS according to jinx."}
 (\EFk{and} (not (jinx--face-ignored-p pos))
 (not (jinx--regexp-ignored-p pos))))

 (\EFk{setq} autocorrect-check-spelling-function \#'autocorrect-jinx-check-spelling)
 (add-to-list 'autocorrect-predicates \#'autocorrect-jinx-appropriate)
 (advice-add 'jinx--correct-replace \EFb{:before} \#'autocorrect-jinx-record-correction)

 \EFcd{;;} \EFc{Run setup}
 (run-with-idle-timer 0.5 nil \#'autocorrect-setup)

 \EFcd{;;} \EFc{Make work with evil-mode}
 (evil-collection-set-readonly-bindings 'autocorrect-list-mode-map)
 (evil-collection-define-key 'normal 'autocorrect-list-mode-map
 (kbd \EFs{"a"}) \#'autocorrect-create-correction
 (kbd \EFs{"x"}) \#'autocorrect-remove-correction
 (kbd \EFs{"i"}) \#'autocorrect-ignore-word))
\end{Verbatim}
\end{Code}
\item Downloading dictionaries
\label{sec:org86cb80f}

Let's get a nice big dictionary from \href{http://app.aspell.net/create}{SCOWL Custom List/Dictionary Creator} with
the following configuration
\begin{description}
\item[{size}] 80 (huge)
\item[{spellings}] British(-ise) and Australian
\item[{spelling variants level}] 0
\item[{diacritics}] keep
\item[{extra lists}] hacker, roman numerals
\end{description}
\begin{enumerate}
\item Hunspell
\label{sec:orgf6eb54d}

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFb{cd} /tmp
\EFk{if} [\EFnc{!} -d hunspell-en-custom]; \EFk{then}
 curl -o \EFs{"hunspell-en-custom.zip"} \EFs{'http://app.aspell.net/create?max_size=80\&spelling=GBs\&spelling=AU\&max_variant=0\&diacritic=keep\&special=hacker\&special=roman-numerals\&encoding=utf-8\&format=inline\&download=hunspell'}
 unzip \EFs{"hunspell-en-custom.zip"} -d hunspell-en-custom
\EFk{fi}

\EFb{cd} hunspell-en-custom
\EFv{DESTDIR1}=\EFs{"\$HOME/.local/share/hunspell"}
\EFv{DESTDIR2}=\EFs{"\$HOME/.config/enchant/hunspell"}
mkdir -p \EFs{"\$DESTDIR1"}
mkdir -p \EFs{"\$DESTDIR2"}
cp en-custom.\{aff,dic\} \EFs{"\$DESTDIR1"}
cp en-custom.\{aff,dic\} \EFs{"\$DESTDIR2"}
\end{Verbatim}
\end{Code}

We will also add an accompanying \verb~doctor~ warning.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{unless} (executable-find \EFs{"hunspell"})
 (warn! \EFs{"Couldn't find hunspell executable."}))
(\EFk{unless} (file-exists-p \EFs{"\char126{}/.local/share/hunspell/en-custom.dic"})
 (warn! \EFs{"Custom hunspell dictionary is not present."}))
\end{Verbatim}
\end{Code}
\item Aspell
\label{sec:orgc0d671d}

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFb{cd} /tmp
\EFk{if} [\EFnc{!} -d aspell6-en-custom]; \EFk{then}
 curl -o \EFs{"aspell6-en-custom.tar.bz2"} \EFs{'http://app.aspell.net/create?max_size=80\&spelling=GBs\&spelling=AU\&max_variant=0\&diacritic=keep\&special=hacker\&special=roman-numerals\&encoding=utf-8\&format=inline\&download=aspell'}
 tar -xjf \EFs{"aspell6-en-custom.tar.bz2"}
\EFk{fi}

\EFb{cd} aspell6-en-custom
\EFv{DESTDIR}=\EFs{"\$HOME/.config/enchant/"} ./configure
sed -i \EFs{'s/dictdir = .*/dictdir = "aspell"/'} Makefile
sed -i \EFs{'s/datadir = .*/datadir = "aspell"/'} Makefile
make \&\& make install
\end{Verbatim}
\end{Code}

We will also add an accompanying \verb~doctor~ warning.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{unless} (executable-find \EFs{"aspell"})
 (warn! \EFs{"Couldn't find aspell executable."}))
(\EFk{unless} (file-exists-p \EFs{"\char126{}/.config/enchant/aspell/en-custom.multi"})
 (warn! \EFs{"Custom aspell dictionary is not present."}))
\end{Verbatim}
\end{Code}
\end{enumerate}
\end{enumerate}
\subsection{TRAMP}
\label{sec:org51aea29}

Another lovely Emacs feature, TRAMP stands for \emph{Transparent Remote Access,
Multiple Protocol}. In brief, it's a lovely way to wander around outside your
local filesystem.
\begin{enumerate}
\item Prompt recognition
\label{sec:orgcfd2bf4}

Unfortunately, when connecting to remote machines Tramp can be a wee pit picky
with the prompt format. Let's try to get Bash, and be a bit more permissive with
prompt recognition.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} tramp
 (setenv \EFs{"SHELL"} \EFs{"/bin/bash"})
 (\EFk{setq} tramp-shell-prompt-pattern \EFs{"}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(?:}}\EFs{\char94{}}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{\char92{}n}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{\char92{}x0d}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{]\#\$\%>\char92{}n]*\#?[]\#\$\%>î�°] *}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{\char92{}e\char92{}\char92{}[[0-9;]*[a-zA-Z] *}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{*"})) \EFcd{;;} \EFc{default + î�°}
\end{Verbatim}
\end{Code}
\item Troubleshooting
\label{sec:org74c1daa}

In case the remote shell is misbehaving, here are some things to try
\begin{enumerate}
\item Zsh
\label{sec:org1449b48}

There are some escape code you don't want, let's make it behave more considerately.
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFk{if} [[\EFs{"\$TERM"} == \EFs{"dumb"}]]; \EFk{then}
 \EFb{unset} zle_bracketed_paste
 \EFb{unset} zle
 \EFv{PS1}=\EFs{'\$ '}
 \EFk{return}
\EFk{fi}
\end{Verbatim}
\end{Code}
\end{enumerate}
\item Guix
\label{sec:orgbf466c5}

\href{https://guix.gnu.org/}{Guix} puts some binaries that TRAMP looks for in unexpected locations.
That's no problem though, we just need to help TRAMP find them.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} tramp
 (\EFk{appendq!} tramp-remote-path
 '(\EFs{"\char126{}/.guix-profile/bin"} \EFs{"\char126{}/.guix-profile/sbin"}
 \EFs{"/run/current-system/profile/bin"}
 \EFs{"/run/current-system/profile/sbin"})))
\end{Verbatim}
\end{Code}
\end{enumerate}
\subsection{Auto activating snippets}
\label{sec:org1e29111}

Sometimes pressing \verb~TAB~ is just too much.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} aas \EFb{:recipe} (\EFb{:host} github \EFb{:repo} \EFs{"ymarco/auto-activating-snippets"})
 \EFb{:pin} \EFs{"ddc2b7a58a2234477006af348b30e970f73bc2c1"})
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} aas
 \EFb{:commands} aas-mode)
\end{Verbatim}
\end{Code}
\subsection{Screenshot}
\label{sec:orgd79a476}

This makes it a breeze to take lovely screenshots.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} screenshot \EFb{:recipe} (\EFb{:local-repo} \EFs{"lisp/screenshot"}))
\end{Verbatim}
\end{Code}

\begin{center}
\includegraphics[width=.9\linewidth]{/tmp/org-persist-IRkN4n/b0/5f552c-cab9-45cc-a44c-a306a16cf051-bf1b7b0f81deeb8da0a133e099e43b51.png}
\end{center}

Some light configuring is all we need, so we can make use of the \href{https://github.com/Calinou/0x0}{0x0} wrapper
file uploading script (which I've renamed to \texttt{upload}).

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} screenshot
 \EFb{:defer} t
 \EFb{:config} (\EFk{setq} screenshot-upload-fn \EFs{"upload \%s 2>/dev/null"}))
\end{Verbatim}
\end{Code}
\subsection{Etrace}
\label{sec:orgc5e53b7}

The \emph{Emacs Lisp Profiler} (ELP) does a nice job recording information, but it
isn't the best for looking at results. \verb~etrace~ converts ELP's results to the
"Chromium Catapult Trace Event Format". This means that the output of \verb~etrace~ can
be loaded in something like the \href{https://www.speedscope.app/}{speedscope} webapp for easier profile
investigation.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} etrace \EFb{:recipe} (\EFb{:host} github \EFb{:repo} \EFs{"aspiers/etrace"})
 \EFb{:pin} \EFs{"2291ccf2f2ccc80a6aac4664e8ede736ceb672b7"})
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} etrace
 \EFb{:after} elp)
\end{Verbatim}
\end{Code}
\subsection{YASnippet}
\label{sec:org50442f6}

\begin{quote}
From the \verb~:editor snippets~ module.
\end{quote}

Nested snippets are good, so let's enable that.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} yas-triggers-in-field t)
\end{Verbatim}
\end{Code}
\subsection{String inflection}
\label{sec:org1832513}

For when you want to change the case pattern for a symbol.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} string-inflection \EFb{:pin} \EFs{"617df25e91351feffe6aff4d9e4724733449d608"})
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} string-inflection
 \EFb{:commands} (string-inflection-all-cycle
 string-inflection-toggle
 string-inflection-camelcase
 string-inflection-lower-camelcase
 string-inflection-kebab-case
 string-inflection-underscore
 string-inflection-capital-underscore
 string-inflection-upcase)
 \EFb{:init}
 (map! \EFb{:leader} \EFb{:prefix} (\EFs{"c\char126{}"} . \EFs{"naming convention"})
 \EFb{:desc} \EFs{"cycle"} \EFs{"\char126{}"} \#'string-inflection-all-cycle
 \EFb{:desc} \EFs{"toggle"} \EFs{"t"} \#'string-inflection-toggle
 \EFb{:desc} \EFs{"CamelCase"} \EFs{"c"} \#'string-inflection-camelcase
 \EFb{:desc} \EFs{"downCase"} \EFs{"d"} \#'string-inflection-lower-camelcase
 \EFb{:desc} \EFs{"kebab-case"} \EFs{"k"} \#'string-inflection-kebab-case
 \EFb{:desc} \EFs{"under_score"} \EFs{"_"} \#'string-inflection-underscore
 \EFb{:desc} \EFs{"Upper_Score"} \EFs{"u"} \#'string-inflection-capital-underscore
 \EFb{:desc} \EFs{"UP_CASE"} \EFs{"U"} \#'string-inflection-upcase)
 (\EFk{after!} evil
 (evil-define-operator evil-operator-string-inflection (beg end _type)
 \EFs{"Define a new evil operator that cycles symbol casing."}
 \EFb{:move-point} nil
 (\EFk{interactive} \EFs{"<R>"})
 (string-inflection-all-cycle)
 (\EFk{setq} evil-repeat-info '([?g ?\char126{}])))
 (define-key evil-normal-state-map (kbd \EFs{"g\char126{}"}) 'evil-operator-string-inflection)))
\end{Verbatim}
\end{Code}
\subsection{Smart parentheses}
\label{sec:orgb80b950}

\begin{quote}
From the \verb~:core packages~ module.
\end{quote}

\begin{Code}
\begin{Verbatim}
\color{EFD}(sp-local-pair
 '(org-mode)
 \EFs{"<<"} \EFs{">>"}
 \EFb{:actions} '(insert))
\end{Verbatim}
\end{Code}
\section{Visuals}
\label{sec:orga644044}
\subsection{Info colours}
\label{sec:org914a0f0}

This makes manual pages nicer to look at by adding variable pitch fontification
and colouring ð���.

\begin{center}
\includegraphics[width=.9\linewidth]{/tmp/org-persist-IRkN4n/e7/5e8b77-f8ea-4465-888b-4c0a16464b00-592978e43592601d5ae7cd9491c5433b.png}
\end{center}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} info-colors \EFb{:pin} \EFs{"2e237c301ba62f0e0286a27c1abe48c4c8441143"})
\end{Verbatim}
\end{Code}

To use this we'll just hook it into \verb~Info~.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} info-colors
 \EFb{:commands} (info-colors-fontify-node))

(add-hook 'Info-selection-hook 'info-colors-fontify-node)
\end{Verbatim}
\end{Code}

\begin{center}
\includegraphics[width=.9\linewidth]{/tmp/org-persist-IRkN4n/94/eaa83a-e47e-448d-899a-95afa15a741f-11a8ea90d6e0a366fe6318fec3612f98.png}
\end{center}
\subsection{Modus themes}
\label{sec:orgaee651f}

Proteolas did a lovely job with the Modus themes, so much so that they were
welcomed into Emacs 28. However, he is also rather attentive with updates, and
so I'd like to make sure we have a recent version.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} modus-themes \EFb{:pin} \EFs{"f3cd4d6983566dab0ef3bcddf812cfd565d00d08"} \EFb{:pin} \EFs{"3576d14f06f245c3111496bfb035bb0926f48089"})
\end{Verbatim}
\end{Code}
\subsection{Spacemacs themes}
\label{sec:org1894924}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} spacemacs-theme \EFb{:pin} \EFs{"a7c5dccb4a037ba1f090015fc8ffb9566c64e369"})
\end{Verbatim}
\end{Code}
\subsection{Theme magic}
\label{sec:orgb658d90}

With all our fancy Emacs themes, my terminal is missing out!
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} theme-magic \EFb{:pin} \EFs{"844c4311bd26ebafd4b6a1d72ddcc65d87f074e3"})
\end{Verbatim}
\end{Code}

This operates using \verb~pywal~, which is present in some repositories, but most
reliably installed with \verb~pip~.

\begin{Code}
\begin{Verbatim}
\color{EFD}sudo python3 -m pip install pywal
\end{Verbatim}
\end{Code}

We can also add a \verb~doctor~ check.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{unless} (executable-find \EFs{"wal"})
 (warn! \EFs{"Couldn't find the pywal executable (wal), theme-magic will not function."}))
\end{Verbatim}
\end{Code}

Theme magic takes a look at a number of faces, the saturation levels, and colour
differences to try to cleverly pick eight colours to use. However, it uses the
same colours for the light variants, and doesn't always make the best picks.
Since we're using \verb~doom-themes~, our life is a little easier and we can use the
colour utilities from Doom themes to easily grab sensible colours and generate
lightened versions --- let's do that.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} theme-magic
 \EFb{:commands} theme-magic-from-emacs
 \EFb{:config}
 (\EFk{defadvice!} theme-magic--auto-extract-16-doom-colors ()
 \EFb{:override} \#'theme-magic--auto-extract-16-colors
 (list
 (face-attribute 'default \EFb{:background})
 (doom-color 'error)
 (doom-color 'success)
 (doom-color 'type)
 (doom-color 'keywords)
 (doom-color 'constants)
 (doom-color 'functions)
 (face-attribute 'default \EFb{:foreground})
 (face-attribute 'shadow \EFb{:foreground})
 (doom-blend 'base8 'error 0.1)
 (doom-blend 'base8 'success 0.1)
 (doom-blend 'base8 'type 0.1)
 (doom-blend 'base8 'keywords 0.1)
 (doom-blend 'base8 'constants 0.1)
 (doom-blend 'base8 'functions 0.1)
 (face-attribute 'default \EFb{:foreground}))))
\end{Verbatim}
\end{Code}
\subsection{Simple comment markup}
\label{sec:org0a7e575}

I find that every now and then I sprinkle a little markup in code comments. Of
course, this doesn't get fortified as it's ultimately meaningless \ldots{} but it
would be nice if it was, just slightly. Surprisingly, I couldn't find a package
for this, so I made one.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} simple-comment-markup \EFb{:recipe} (\EFb{:local-repo} \EFs{"lisp/simple-comment-markup"}))
\end{Verbatim}
\end{Code}

Let's use both basic Org markup and Markdown code backticks, to cover most
situations decently.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} simple-comment-markup
 \EFb{:hook} (prog-mode . simple-comment-markup-mode)
 \EFb{:config}
 (\EFk{setq} simple-comment-markup-set '(org markdown-code)))
\end{Verbatim}
\end{Code}
\subsection{Doom modeline}
\label{sec:orgfc529e7}

\begin{quote}
From the \verb~:ui modeline~ module.
\end{quote}
\begin{enumerate}
\item Modified buffer colour
\label{sec:org59c76bf}

The modeline is very nice and pretty, however I have a few niggles with the
defaults. For starters, by default \texttt{red} text is used to indicate an unsaved file.
This makes me feel like something's gone \emph{wrong}, so let's tone that down to
orange.

\begin{Code}
\begin{Verbatim}
\color{EFD}(custom-set-faces!
 '(doom-modeline-buffer-modified \EFb{:foreground} \EFs{"orange"}))
\end{Verbatim}
\end{Code}
\item Height
\label{sec:org1835412}

The default size (\verb~25~) makes for a rather narrow mode line. To me, the modeline
feels a bit comfier if we give it a bit more space. I find \verb~45~ adds roughly a
third of the line height as padding above and below.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} doom-modeline-height 45)
\end{Verbatim}
\end{Code}
\item File encoding
\label{sec:org947ad06}

While we're modifying the modeline, when we have the default file encoding (\verb~LF UTF-8~), it really isn't worth noting in the modeline. So, why not conditionally
hide it?

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{doom-modeline-conditional-buffer-encoding} ()
 \EFd{"We expect the encoding to be LF UTF-8, so only show the modeline when this is not the case"}
 (\EFk{setq-local} doom-modeline-buffer-encoding
 (\EFk{unless} (\EFk{and} (memq (plist-get (coding-system-plist buffer-file-coding-system) \EFb{:category})
 '(coding-category-undecided coding-category-utf-8))
 (not (memq (coding-system-eol-type buffer-file-coding-system) '(1 2))))
 t)))

(add-hook 'after-change-major-mode-hook \#'doom-modeline-conditional-buffer-encoding)
\end{Verbatim}
\end{Code}
\item Analogue clock
\label{sec:orgb2ec257}

Now that my code for an analogue clock icon has been upstreamed, all I do here
is adjust the size slightly ð���.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} doom-modeline-time-clock-size 0.65)
\end{Verbatim}
\end{Code}
\item Media player
\label{sec:org7e6e39b}

Sometimes (particularly when reading a novel, with Emacs full-screened) it would
be nice to know what I'm listening to. We can put this information in the
modeline with my media player package.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} doom-modeline-media-player
 \EFb{:recipe} (\EFb{:local-repo} \EFs{"lisp/doom-modeline-media-player"}))
\end{Verbatim}
\end{Code}

To enable the lazy loading, we make \verb~doom-modeline~ aware of the segment function
in \texttt{:init}, and the segment function itself is autoloaded.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} doom-modeline-media-player
 \EFb{:defer} t
 \EFb{:init}
 (\EFk{after!} doom-modeline
 (add-to-list 'doom-modeline-fn-alist
 (cons 'media-player \#'doom-modeline-segment--media-player)))
 \EFb{:config}
 (\EFk{defun} \EFf{+single-fullscreen-window-p} ()
 (\EFk{and} (memq (frame-parameter nil 'fullscreen) '(fullscreen fullboth))
 (not (consp (car (window-tree))))))
 (\EFk{setq} doom-modeline-media-player \#'+single-fullscreen-window-p
 doom-modeline-media-player-playback-indication 'dim))
\end{Verbatim}
\end{Code}
\item PDF modeline
\label{sec:orgfa05804}

I think the PDF modeline could do with tweaking. I raised \href{https://github.com/seagle0128/doom-modeline/pull/425}{an issue} on this,
however the response was basically "put your preferences in your personal
config, the current default is sensible" --- so here we are.

First up I'm going to want a segment for just the buffer file name, and a PDF
icon. Then we'll redefine two functions used to generate the modeline.

\begin{Code}
\begin{Verbatim}
\color{EFD}(doom-modeline-def-segment buffer-name
 \EFs{"Display the current buffer's name, without any other information."}
 (concat
 (doom-modeline-spc)
 (doom-modeline--buffer-name)))

(doom-modeline-def-segment pdf-icon
 \EFs{"PDF icon from nerd-icons."}
 (concat
 (doom-modeline-icon sucicon \EFs{"nf-seti-pdf"} nil nil
 (doom-modeline-spc)
 \EFb{:face} (\EFk{if} (doom-modeline--active)
 'nerd-icons-red
 'mode-line-inactive)
 \EFb{:v-adjust} 0.02)))

(\EFk{defun} \EFf{doom-modeline-update-pdf-pages} ()
 \EFd{"Update PDF pages."}
 (\EFk{setq} doom-modeline--pdf-pages
 (\EFk{let} ((current-page-str (number-to-string (eval `(pdf-view-current-page))))
 (total-page-str (number-to-string (pdf-cache-number-of-pages))))
 (concat
 (propertize
 (concat (make-string (- (length total-page-str) (length current-page-str)) ?)
 \EFs{" P"} current-page-str)
 'face 'mode-line)
 (propertize (concat \EFs{"/"} total-page-str) 'face 'doom-modeline-buffer-minor-mode)))))

(doom-modeline-def-segment pdf-pages
 \EFs{"Display PDF pages."}
 (\EFk{if} (doom-modeline--active) doom-modeline--pdf-pages
 (propertize doom-modeline--pdf-pages 'face 'mode-line-inactive)))

(doom-modeline-def-modeline 'pdf
 '(bar window-number pdf-pages pdf-icon buffer-name)
 '(media-player misc-info matches major-mode process vcs))
\end{Verbatim}
\end{Code}
\end{enumerate}
\subsection{Keycast}
\label{sec:orgfaf3513}

For some reason, I find myself demoing Emacs every now and then. Showing what
keyboard stuff I'm doing on-screen seems helpful. While \href{https://gitlab.com/screenkey/screenkey}{screenkey} does exist,
having something that doesn't cover up screen content is nice.

\begin{center}
\includegraphics[width=.9\linewidth]{/tmp/org-persist-IRkN4n/f9/3c92d1-99fa-4b22-a91f-ea779a989a30-57f25f47edf29d4d26a22b6317d158d6.png}
\end{center}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} keycast \EFb{:pin} \EFs{"53514c3dc3dfb7d4c3a65898b0b3edb69b6536c2"})
\end{Verbatim}
\end{Code}

Let's just make sure this is lazy-loaded appropriately.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} keycast
 \EFb{:commands} keycast-mode
 \EFb{:config}
 (\EFk{define-minor-mode} \EFf{keycast-mode}
 \EFd{"Show current command and its key binding in the mode line."}
 \EFb{:global} t
 (\EFk{if} keycast-mode
 (\EFk{progn}
 (add-hook 'pre-command-hook 'keycast--update t)
 (add-to-list 'global-mode-string '(\EFs{""} mode-line-keycast \EFs{" "})))
 (remove-hook 'pre-command-hook 'keycast--update)
 (\EFk{setq} global-mode-string (remove '(\EFs{""} mode-line-keycast \EFs{" "}) global-mode-string))))
 (custom-set-faces!
 '(keycast-command \EFb{:inherit} doom-modeline-debug
 \EFb{:height} 0.9)
 '(keycast-key \EFb{:inherit} custom-modified
 \EFb{:height} 1.1
 \EFb{:weight} bold)))
\end{Verbatim}
\end{Code}
\subsection{Screencast}
\label{sec:orgf566071}

In a similar manner to \cref{sec:orgfaf3513}, \href{https://gitlab.com/ambrevar/emacs-gif-screencast}{gif-screencast} may come in handy.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} gif-screencast \EFb{:pin} \EFs{"6798656d3d3107d16e30cc26bc3928b00e50c1ca"})
\end{Verbatim}
\end{Code}

We can lazy load this using the start/stop commands.

I initially installed \texttt{scrot} for this, since it was the default capture program.
However it raised \texttt{glib error: Saving to file ... failed} each time it was run.
Google didn't reveal any easy fixed, so I switched to \href{https://github.com/naelstrof/maim}{maim}. We now need to pass
it the window ID. This doesn't change throughout the lifetime of an Emacs
instance, so as long as a single window is used \texttt{xdotool getactivewindow} will
give a satisfactory result.

It seems that when new colours appear, that tends to make \texttt{gifsicle} introduce
artefacts. To avoid this we pre-populate the colour map using the current doom
theme.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} gif-screencast
 \EFb{:commands} gif-screencast-mode
 \EFb{:config}
 (map! \EFb{:map} gif-screencast-mode-map
 \EFb{:g} \EFs{"<f8>"} \#'gif-screencast-toggle-pause
 \EFb{:g} \EFs{"<f9>"} \#'gif-screencast-stop)
 (\EFk{setq} gif-screencast-program \EFs{"maim"}
 gif-screencast-args `(\EFs{"--quality"} \EFs{"3"} \EFs{"-i"} ,(string-trim-right
 (shell-command-to-string
 \EFs{"xdotool getactivewindow"})))
 gif-screencast-optimize-args '(\EFs{"--batch"} \EFs{"--optimize=3"} \EFs{"--usecolormap=/tmp/doom-color-theme"}))
 (\EFk{defun} \EFf{gif-screencast-write-colormap} ()
 (write-region
 (replace-regexp-in-string
 \EFs{"\char92{}n+"} \EFs{"\char92{}n"}
 (mapconcat (\EFk{lambda} (c) (\EFk{if} (listp (cdr c))
 (cadr c))) \EFwr{doom-themes--colors} \textcolor[HTML]{986801}{"\char92{}n"}\EFwr{))}
 nil \EFs{"/tmp/doom-color-theme"}))
 (gif-screencast-write-colormap)
 (add-hook 'doom-load-theme-hook \#'gif-screencast-write-colormap))
\end{Verbatim}
\end{Code}
\subsection{Mixed pitch}
\label{sec:org62b321d}

\begin{quote}
From the \verb~:ui zen~ module.
\end{quote}

We'd like to use mixed pitch in certain modes. If we simply add a hook, when
directly opening a file with (a new) Emacs \verb~mixed-pitch-mode~ runs before UI
initialisation, which is problematic. To resolve this, we create a hook that
runs after UI initialisation and both
\begin{itemize}
\item conditionally enables \verb~mixed-pitch-mode~
\item sets up the mixed pitch hooks
\end{itemize}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{mixed-pitch-modes} '(org-mode LaTeX-mode markdown-mode gfm-mode Info-mode)
 \EFd{"Modes that `}\textcolor[HTML]{b751b6}{\textit{mixed-pitch-mode}}\EFd{' should be enabled in, but only after UI initialisation."})
(\EFk{defun} \EFf{init-mixed-pitch-h} ()
 \EFd{"Hook `}\textcolor[HTML]{b751b6}{\textit{mixed-pitch-mode}}\EFd{' into each mode in `}\textcolor[HTML]{b751b6}{\textit{mixed-pitch-modes}}\EFd{'.}
\EFd{Also immediately enables `}\textcolor[HTML]{b751b6}{\textit{mixed-pitch-modes}}\EFd{' if currently in one of the modes."}
 (\EFk{when} (memq major-mode mixed-pitch-modes)
 (mixed-pitch-mode 1))
 (\EFk{dolist} (hook mixed-pitch-modes)
 (add-hook (intern (concat (symbol-name hook) \EFs{"-hook"})) \#'mixed-pitch-mode)))
(add-hook 'doom-init-ui-hook \#'init-mixed-pitch-h)
\end{Verbatim}
\end{Code}

As mixed pitch uses the variable \verb~mixed-pitch-face~, we can create a new function
to apply mixed pitch with a serif face instead of the default (see the
subsequent face definition). This was created for writeroom mode.

\begin{Code}
\begin{Verbatim}
\color{EFD}(autoload \#'mixed-pitch-serif-mode \EFs{"mixed-pitch"}
 \EFd{"Change the default face of the current buffer to a serifed variable pitch, while keeping some faces fixed pitch."} t)

(\EFk{setq!} variable-pitch-serif-font (font-spec \EFb{:family} \EFs{"Alegreya"} \EFb{:size} 27))

(\EFk{after!} mixed-pitch
 (\EFk{setq} mixed-pitch-set-height t)
 (set-face-attribute 'variable-pitch-serif nil \EFb{:font} variable-pitch-serif-font)
 (\EFk{defun} \EFf{mixed-pitch-serif-mode} (\EFt{\&optional} arg)
 \EFd{"Change the default face of the current buffer to a serifed variable pitch, while keeping some faces fixed pitch."}
 (\EFk{interactive})
 (\EFk{let} ((mixed-pitch-face 'variable-pitch-serif))
 (mixed-pitch-mode (\EFk{or} arg 'toggle)))))
\end{Verbatim}
\end{Code}

Now, as Harfbuzz is currently used in Emacs, we'll be missing out on the
following Alegreya ligatures:
\begin{center}
ff \emph{ff} ffi \emph{ffi} ffj \emph{ffj} ffl \emph{ffl}
fft \emph{fft} fi \emph{fi} fj \emph{fj} ft \emph{ft}
Th \emph{Th}
\end{center}

Thankfully, it isn't to hard to add these to the \texttt{composition-function-table}.
\begin{Code}
\begin{Verbatim}
\color{EFD}(set-char-table-range composition-function-table ?f '([\EFs{"}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(?:}}\EFs{ff?[fijlt]}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{"} 0 font-shape-gstring]))
(set-char-table-range composition-function-table ?T '([\EFs{"}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(?:}}\EFs{Th}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{"} 0 font-shape-gstring]))
\end{Verbatim}
\end{Code}
\begin{enumerate}
\item Variable pitch serif font
\label{sec:orgb90a10f}

It would be nice if we were able to make use of a serif version of the
\verb~variable-pitch~ face. Since this doesn't already exist, let's create it.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defface} \EFv{variable-pitch-serif}
 '((t (\EFb{:family} \EFs{"serif"})))
 \EFd{"A variable-pitch face with serifs."}
 \EFb{:group} 'basic-faces)
\end{Verbatim}
\end{Code}

For ease of use, let's also set up an easy way of setting the \texttt{:font} attribute.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defcustom} \EFv{variable-pitch-serif-font} (font-spec \EFb{:family} \EFs{"serif"})
 \EFd{"The font face used for `}\textcolor[HTML]{b751b6}{\textit{variable-pitch-serif}}\EFd{'."}
 \EFb{:group} 'basic-faces
 \EFb{:type} '(restricted-sexp \EFb{:tag} \EFs{"font-spec"} \EFb{:match-alternatives} (fontp))
 \EFb{:set} (\EFk{lambda} (symbol value)
 (set-face-attribute 'variable-pitch-serif nil \EFb{:font} value)
 (set-default-toplevel-value symbol value)))
\end{Verbatim}
\end{Code}
\end{enumerate}
\subsection{Marginalia}
\label{sec:orgedc7315}

\begin{quote}
Part of the \verb~:completion vertico~ module.
\end{quote}

Marginalia is nice, but the file metadata annotations are a little too plain.
Specifically, I have these gripes
\begin{itemize}
\item File attributes would be nicer if coloured
\item I don't care about the user/group information if the user/group is me
\item When a file time is recent, a relative age (e.g. \verb~2h ago~) is more useful than
the date
\item An indication of file fatness would be nice
\end{itemize}

Thanks to the \texttt{marginalia-annotator-registry}, we don't have to advise, we can
just add a new \verb~file~ annotator.

Another small thing is the face used for docstrings. At the moment it's \verb~(italic shadow)~, but I don't like that.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} marginalia
 (\EFk{setq} marginalia-censor-variables nil)

 (\EFk{defadvice!} +marginalia--anotate-local-file-colorful (cand)
 \EFd{"Just a more colourful version of `}\textcolor[HTML]{b751b6}{\textit{marginalia--anotate-local-file}}\EFd{'."}
 \EFb{:override} \#'marginalia--annotate-local-file
 (\EFk{when-let} (attrs (file-attributes (substitute-in-file-name
 (marginalia--full-candidate cand))
 'integer))
 (marginalia--fields
 ((marginalia--file-owner attrs)
 \EFb{:width} 12 \EFb{:face} 'marginalia-file-owner)
 ((marginalia--file-modes attrs))
 ((+marginalia-file-size-colorful (file-attribute-size attrs))
 \EFb{:width} 7)
 ((+marginalia--time-colorful (file-attribute-modification-time attrs))
 \EFb{:width} 12))))

 (\EFk{defun} \EFf{+marginalia--time-colorful} (time)
 (\EFk{let*} ((seconds (float-time (time-subtract (current-time) time)))
 (color (doom-blend
 (face-attribute 'marginalia-date \EFb{:foreground} nil t)
 (face-attribute 'marginalia-documentation \EFb{:foreground} nil t)
 (/ 1.0 (log (+ 3 (/ (+ 1 seconds) 345600.0)))))))
 \EFcd{;;} \EFc{1 - log(3 + 1/(days + 1)) \% grey}
 (propertize (marginalia--time time) 'face (list \EFb{:foreground} color))))

 (\EFk{defun} \EFf{+marginalia-file-size-colorful} (size)
 (\EFk{let*} ((size-index (/ (log (+ 1 size)) 7.0))
 (color (\EFk{if} (< size-index 10000000) \EFcd{;} \EFc{10m}
 (doom-blend 'orange 'green size-index)
 (doom-blend 'red 'orange (- size-index 1)))))
 (propertize (file-size-human-readable size) 'face (list \EFb{:foreground} color)))))
\end{Verbatim}
\end{Code}
\subsection{Centaur Tabs}
\label{sec:org791464c}

\begin{quote}
From the \verb~:ui tabs~ module.
\end{quote}

We want to make the tabs a nice, comfy size (\texttt{36}), with icons. The modifier
marker is nice, but the particular default Unicode one causes a lag spike, so
let's just switch to an \texttt{o}, which still looks decent but doesn't cause any
issues.
An 'active-bar' is nice, so let's have one of those. If we have it \texttt{under} needs us to
turn on \texttt{x-underline-at-decent} though. For some reason this didn't seem to work
inside the \Verb[commandchars=\\\{\},highlightcolor=white!95!black!80!blue,breaklines=true,breaksymbol=\color{white!60!black}\tiny\ensuremath{\hookrightarrow}]{\color{EFD}(\EFk{after!} ...)} block Â¯\backslash\textsubscript{(Â¿)}_/Â¯.
Then let's change the font to a sans serif, but the default one doesn't fit too
well somehow, so let's switch to 'P22 Underground Book'; it looks much nicer.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} centaur-tabs
 (centaur-tabs-mode -1)
 (\EFk{setq} centaur-tabs-height 36
 centaur-tabs-set-icons t
 centaur-tabs-modified-marker \EFs{"o"}
 centaur-tabs-close-button \EFs{"Ã�"}
 centaur-tabs-set-bar 'above
 centaur-tabs-gray-out-icons 'buffer)
 (centaur-tabs-change-fonts \EFs{"P22 Underground Book"} 160))
\EFcd{;;} \EFc{(setq x-underline-at-descent-line t)}
\end{Verbatim}
\end{Code}
\subsection{Nerd Icons}
\label{sec:org4b3fd8d}

\begin{quote}
From the \verb~:core packages~ module.
\end{quote}

\verb~nerd-icons~ does a generally great job giving file names icons. One minor
niggle I have is that when \emph{I} open a \verb~.m~ file, it's much more likely to be Matlab
than Objective-C. As such, it'll be switching the icon associated with \verb~.m~.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} nerd-icons
 (\EFk{when-let} ((matlab-icon (assoc \EFs{"matlab"} nerd-icons-extension-icon-alist)))
 (setcdr (assoc \EFs{"m"} nerd-icons-extension-icon-alist)
 (cdr matlab-icon))))
\end{Verbatim}
\end{Code}
\subsection{Prettier page breaks}
\label{sec:orgbf39fb7}

In some files, \verb~^L~ appears as a page break character. This isn't that visually
appealing, and Steve Purcell has been nice enough to make a package to display
these as horizontal rules.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} page-break-lines \EFb{:recipe} (\EFb{:host} github \EFb{:repo} \EFs{"purcell/page-break-lines"})
 \EFb{:pin} \EFs{"982571749c8fe2b5e2997dd043003a1b9fe87b38"})
\end{Verbatim}
\end{Code}

We can go from "better" to "where has this been all my life?" by now making page
navigation easy with some simple keybindings lifted from \href{http://xahlee.info/emacs/emacs/modernization_formfeed.html}{Xah Lee}'s post on the
form feed. Making \texttt{forward-page} and \texttt{backward-page} work with Evil mode also takes
a little tweaking, so we might as well do that too while we're at it.

We can also make the displayed horizontal rule communicate more useful
information by making it the same as the fill column. While this could be
accomplished by just \verb~setq~â��ing the rule width to the default \texttt{fill-column} value,
it would be better for it to always match the local buffer value. This may be
accomplished with advise, but it's a bit cleaner (and even simpler) to just turn
the width variable into an alias for \texttt{fill-column}.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} page-break-lines
 \EFb{:hook} (prog-mode . page-break-lines-mode)
 \EFb{:init}
 (autoload 'turn-on-page-break-lines-mode \EFs{"page-break-lines"})
 \EFb{:config}
 (\EFk{defvaralias} '\EFv{page-break-lines-max-width} 'fill-column)
 (\EFk{defun} \EFf{+evil-forward-page} ()
 \EFd{"Call `}\textcolor[HTML]{b751b6}{\textit{forward-page}}\EFd{', such that it works as intended with evil-mode."}
 (\EFk{interactive})
 (\EFk{when} (eq (char-after (point)) ?\char92{}\char94{}L)
 (forward-char 1))
 (forward-page))
 (\EFk{defun} \EFf{+evil-backward-page} ()
 \EFd{"Call `}\textcolor[HTML]{b751b6}{\textit{backward-page}}\EFd{', such that it works as intended with evil-mode."}
 (\EFk{interactive})
 (\EFk{when} (eq (char-after (point)) ?\char92{}\char94{}L)
 (backward-char 1))
 (backward-page))
 (map! \EFb{:prefix} \EFs{"g"}
 \EFb{:desc} \EFs{"Prev page break"} \EFb{:nv} \EFs{"["} \#'+evil-backward-page
 \EFb{:desc} \EFs{"Next page break"} \EFb{:nv} \EFs{"]"} \#'+evil-forward-page)
 (map! \EFs{"<C-M-prior>"} \#'+evil-backward-page
 \EFs{"<C-M-next>"} \#'+evil-forward-page))
\end{Verbatim}
\end{Code}

With this setup, I find form-feeds to be a really convenient addition to my
coding workflow. Despite generally poor adoption, they are the only
language-independent form that "just works". While you could also use specially
crafted comment forms and a more complex setup, it's not as though the form-feed
is being used for anything else --- it's free real estate! ð���
\subsection{Writeroom}
\label{sec:org813c5ab}

\begin{quote}
From the \verb~:ui zen~ module.
\end{quote}

For starters, I think Doom is a bit over-zealous when zooming in
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} +zen-text-scale 0.8)
\end{Verbatim}
\end{Code}

Then, when using Org it would be nice to make a number of other aesthetic
tweaks. Namely:
\begin{itemize}
\item Use a serifed variable-pitch font
\item Hiding headline leading stars
\item Using fleurons as headline bullets
\item Hiding line numbers
\item Removing outline indentation
\item Centring the text
\end{itemize}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{+zen-serif-p} t
 \EFd{"Whether to use a serifed font with `}\textcolor[HTML]{b751b6}{\textit{mixed-pitch-mode}}\EFd{'."})
(\EFk{defvar} \EFv{+zen-org-starhide} t
 \EFd{"The value `}\textcolor[HTML]{b751b6}{\textit{org-modern-hide-stars}}\EFd{' is set to."})

(\EFk{after!} writeroom-mode
 (\EFk{defvar-local} \EFv{+zen--original-org-indent-mode-p} nil)
 (\EFk{defvar-local} \EFv{+zen--original-mixed-pitch-mode-p} nil)
 (\EFk{defun} \EFf{+zen-enable-mixed-pitch-mode-h} ()
 \EFd{"Enable `}\textcolor[HTML]{b751b6}{\textit{mixed-pitch-mode}}\EFd{' when in `}\textcolor[HTML]{b751b6}{\textit{+zen-mixed-pitch-modes}}\EFd{'."}
 (\EFk{when} (apply \#'derived-mode-p +zen-mixed-pitch-modes)
 (\EFk{if} writeroom-mode
 (\EFk{progn}
 (\EFk{setq} +zen--original-mixed-pitch-mode-p mixed-pitch-mode)
 (funcall (\EFk{if} +zen-serif-p \#'mixed-pitch-serif-mode \#'mixed-pitch-mode) 1))
 (funcall \#'mixed-pitch-mode (\EFk{if} +zen--original-mixed-pitch-mode-p 1 -1)))))
 (\EFk{defun} \EFf{+zen-prose-org-h} ()
 \EFd{"Reformat the current Org buffer appearance for prose."}
 (\EFk{when} (eq major-mode 'org-mode)
 (\EFk{setq} display-line-numbers nil
 visual-fill-column-width 60
 org-adapt-indentation nil)
 (\EFk{when} (\EFk{featurep} '\EFo{org-modern})
 (\EFk{setq-local} org-modern-star '(\EFs{"ð���"} \EFs{"ð���"} \EFs{"ð���"} \EFs{"ð���"})
 \EFcd{;;} \EFc{org-modern-star '("ð���" "ð���" "ð���" "ð���" "ð���" "ð���" "ð���" "ð���")}
 org-modern-hide-stars +zen-org-starhide)
 (org-modern-mode -1)
 (org-modern-mode 1))
 (\EFk{setq}
 +zen--original-org-indent-mode-p org-indent-mode)
 (org-indent-mode -1)))
 (\EFk{defun} \EFf{+zen-nonprose-org-h} ()
 \EFd{"Reverse the effect of `}\textcolor[HTML]{b751b6}{\textit{+zen-prose-org}}\EFd{'."}
 (\EFk{when} (eq major-mode 'org-mode)
 (\EFk{when} (\EFk{bound-and-true-p} org-modern-mode)
 (org-modern-mode -1)
 (org-modern-mode 1))
 (\EFk{when} +zen--original-org-indent-mode-p (org-indent-mode 1))))
 (\EFk{pushnew!} writeroom--local-variables
 'display-line-numbers
 'visual-fill-column-width
 'org-adapt-indentation
 'org-modern-mode
 'org-modern-star
 'org-modern-hide-stars)
 (add-hook 'writeroom-mode-enable-hook \#'+zen-prose-org-h)
 (add-hook 'writeroom-mode-disable-hook \#'+zen-nonprose-org-h))
\end{Verbatim}
\end{Code}

\begin{center}
\includegraphics[width=.9\linewidth]{/tmp/org-persist-IRkN4n/b0/43e810-0d7d-4337-8498-3d7574dbfa43-a3245b2f247627c48e7a707dfff28e90.png}
\end{center}
\subsection{Treemacs}
\label{sec:org1c6b45b}

\begin{quote}
From the \verb~:ui treemacs~ module.
\end{quote}

Quite often there are superfluous files I'm not that interested in. There's no
good reason for them to take up space. Let's add a mechanism to ignore them.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} treemacs
 (\EFk{defvar} \EFv{treemacs-file-ignore-extensions} '()
 \EFd{"File extension which `}\textcolor[HTML]{b751b6}{\textit{treemacs-ignore-filter}}\EFd{' will ensure are ignored"})
 (\EFk{defvar} \EFv{treemacs-file-ignore-globs} '()
 \EFd{"Globs which will are transformed to `}\textcolor[HTML]{b751b6}{\textit{treemacs-file-ignore-regexps}}\EFd{' which `}\textcolor[HTML]{b751b6}{\textit{treemacs-ignore-filter}}\EFd{' will ensure are ignored"})
 (\EFk{defvar} \EFv{treemacs-file-ignore-regexps} '()
 \EFd{"RegExps to be tested to ignore files, generated from `}\textcolor[HTML]{b751b6}{\textit{treeemacs-file-ignore-globs}}\EFd{'"})
 (\EFk{defun} \EFf{treemacs-file-ignore-generate-regexps} ()
 \EFd{"Generate `}\textcolor[HTML]{b751b6}{\textit{treemacs-file-ignore-regexps}}\EFd{' from `}\textcolor[HTML]{b751b6}{\textit{treemacs-file-ignore-globs}}\EFd{'"}
 (\EFk{setq} treemacs-file-ignore-regexps (mapcar 'dired-glob-regexp treemacs-file-ignore-globs)))
 (\EFk{if} (equal treemacs-file-ignore-globs '()) nil (treemacs-file-ignore-generate-regexps))
 (\EFk{defun} \EFf{treemacs-ignore-filter} (file full-path)
 \EFd{"Ignore files specified by `}\textcolor[HTML]{b751b6}{\textit{treemacs-file-ignore-extensions}}\EFd{', and `}\textcolor[HTML]{b751b6}{\textit{treemacs-file-ignore-regexps}}\EFd{'"}
 (\EFk{or} (member (file-name-extension file) treemacs-file-ignore-extensions)
 (\EFk{let} ((ignore-file nil))
 (\EFk{dolist} (regexp treemacs-file-ignore-regexps ignore-file)
 (\EFk{setq} ignore-file (\EFk{or} ignore-file (\EFk{if} (string-match-p regexp full-path) t nil)))))))
 (add-to-list 'treemacs-ignored-file-predicates \#'treemacs-ignore-filter))
\end{Verbatim}
\end{Code}

Now, we just identify the files in question.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} treemacs-file-ignore-extensions
 '(\EFcd{;;} \EFc{LaTeX}
 \EFs{"aux"}
 \EFs{"ptc"}
 \EFs{"fdb_latexmk"}
 \EFs{"fls"}
 \EFs{"synctex.gz"}
 \EFs{"toc"}
 \EFcd{;;} \EFc{LaTeX - glossary}
 \EFs{"glg"}
 \EFs{"glo"}
 \EFs{"gls"}
 \EFs{"glsdefs"}
 \EFs{"ist"}
 \EFs{"acn"}
 \EFs{"acr"}
 \EFs{"alg"}
 \EFcd{;;} \EFc{LaTeX - pgfplots}
 \EFs{"mw"}
 \EFcd{;;} \EFc{LaTeX - pdfx}
 \EFs{"pdfa.xmpi"}
))
(\EFk{setq} treemacs-file-ignore-globs
 '(\EFcd{;;} \EFc{LaTeX}
 \EFs{"*/_minted-*"}
 \EFcd{;;} \EFc{AucTeX}
 \EFs{"*/.auctex-auto"}
 \EFs{"*/_region_.log"}
 \EFs{"*/_region_.tex"}))
\end{Verbatim}
\end{Code}
\subsection{Visual fill column}
\label{sec:org5b21ed3}

This is already loaded by Doom, but it needs a patch applied for Emacs 29. I've
emailed this to the maintainer, hopefully Joost will take a look at it.

\begin{verbatim}
Account for remapping in window width calculation

The window width calculation in
`visual-fill-column--window-max-text-width' uses `window-width' with the
active window as the sole argument. As of Emacs 29, this returns the
width of the window using the default face, even if the default face has
been remapped in the window: causing incorrect results when the window
is remapped.

Emacs 29 also introduces a special second argument value, `remap'
which (as we want) uses the remapped face, if applicable. This corrects
the width calculation. However, margin calculations are still done in
terms of the non-remapped default face, and so a conversion factor needs
to be applied when considering margins.
\end{verbatim}

That's the problem/fix, I'll just overwrite the two functions in question with
the fixed versions for now.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{+visual-fill-column--window-max-text-width--fixed} (\EFt{\&optional} window)
 \EFd{"Return the maximum possible text width of WINDOW.}
\EFd{The maximum possible text width is the width of the current text}
\EFd{area plus the margins, but excluding the fringes, scroll bar, and}
\EFd{right divider. WINDOW defaults to the selected window. The}
\EFd{return value is scaled to account for `}\textcolor[HTML]{b751b6}{\textit{text-scale-mode-amount}}\EFd{'}
\EFd{and `}\textcolor[HTML]{b751b6}{\textit{text-scale-mode-step}}\EFd{'."}
 (\EFk{or} window (\EFk{setq} window (selected-window)))
 (\EFk{let*} ((margins (window-margins window))
 (buffer (window-buffer window))
 (scale (\EFk{if} (\EFk{and} visual-fill-column-adjust-for-text-scale
 (boundp 'text-scale-mode-step)
 (boundp 'text-scale-mode-amount))
 (\EFk{with-current-buffer} buffer
 (expt text-scale-mode-step
 text-scale-mode-amount))
 1.0))
 (remap-scale
 (\EFk{if} (>= emacs-major-version 29)
 (/ (window-width window 'remap) (float (window-width window)))
 1.0)))
 (truncate (/ (+ (window-width window (\EFk{and} (>= emacs-major-version 29) 'remap))
 (* (\EFk{or} (car margins) 0) remap-scale)
 (* (\EFk{or} (cdr margins) 0) remap-scale))
 (float scale)))))

(advice-add 'visual-fill-column--window-max-text-width
 \EFb{:override} \#'+visual-fill-column--window-max-text-width--fixed)

(\EFk{defun} \EFf{+visual-fill-column--set-margins--fixed} (window)
 \EFd{"Set window margins for WINDOW."}
 \EFcd{;;} \EFc{Calculate left \& right margins.}
 (\EFk{let*} ((total-width (visual-fill-column--window-max-text-width window))
 (remap-scale
 (\EFk{if} (>= emacs-major-version 29)
 (/ (window-width window 'remap) (float (window-width window)))
 1.0))
 (width (\EFk{or} visual-fill-column-width
 fill-column))
 (margins (\EFk{if} (< (- total-width width) 0) \EFcd{;} \EFc{margins must be >= 0}
 0
 (round (/ (- total-width width) remap-scale))))
 (left (\EFk{if} visual-fill-column-center-text
 (/ margins 2)
 0))
 (right (- margins left)))

 (\EFk{if} visual-fill-column-extra-text-width
 (\EFk{let} ((add-width (visual-fill-column--add-extra-width left right visual-fill-column-extra-text-width)))
 (\EFk{setq} left (car add-width)
 right (cdr add-width))))

 \EFcd{;;} \EFc{put an explicitly R2L buffer on the right side of the window}
 (\EFk{when} (\EFk{and} (eq bidi-paragraph-direction 'right-to-left)
 (= left 0))
 (\EFk{setq} left right)
 (\EFk{setq} right 0))

 (set-window-margins window left right)))

(advice-add 'visual-fill-column--set-margins
 \EFb{:override} \#'+visual-fill-column--set-margins--fixed)
\end{Verbatim}
\end{Code}
\section{Frivolities}
\label{sec:orgfdf179b}
\subsection{xkcd}
\label{sec:org2e1a347}

XKCD comics are fun.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} xkcd \EFb{:pin} \EFs{"80011da2e7def8f65233d4e0d790ca60d287081d"})
\end{Verbatim}
\end{Code}

We want to set this up so it loads nicely in \hyperref[sec:orgb5e3786]{Extra links}.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} xkcd
 \EFb{:commands} (xkcd-get-json
 xkcd-download xkcd-get
 \EFcd{;;} \EFc{now for funcs from my extension of this pkg}
 +xkcd-find-and-copy +xkcd-find-and-view
 +xkcd-fetch-info +xkcd-select)
 \EFb{:config}
 (\EFk{setq} xkcd-cache-dir (expand-file-name \EFs{"xkcd/"} doom-cache-dir)
 xkcd-cache-latest (concat xkcd-cache-dir \EFs{"latest"}))
 (\EFk{unless} (file-exists-p xkcd-cache-dir)
 (make-directory xkcd-cache-dir))
 (\EFk{after!} evil-snipe
 (add-to-list 'evil-snipe-disabled-modes 'xkcd-mode))
 \EFb{:general} (\EFb{:states} 'normal
 \EFb{:keymaps} 'xkcd-mode-map
 \EFs{"<right>"} \#'xkcd-next
 \EFs{"n"} \#'xkcd-next \EFcd{;} \EFc{evil-ish}
 \EFs{"<left>"} \#'xkcd-prev
 \EFs{"N"} \#'xkcd-prev \EFcd{;} \EFc{evil-ish}
 \EFs{"r"} \#'xkcd-rand
 \EFs{"a"} \#'xkcd-rand \EFcd{;} \EFc{because image-rotate can interfere}
 \EFs{"t"} \#'xkcd-alt-text
 \EFs{"q"} \#'xkcd-kill-buffer
 \EFs{"o"} \#'xkcd-open-browser
 \EFs{"e"} \#'xkcd-open-explanation-browser
 \EFcd{;;} \EFc{extras}
 \EFs{"s"} \#'+xkcd-find-and-view
 \EFs{"/"} \#'+xkcd-find-and-view
 \EFs{"y"} \#'+xkcd-copy))
\end{Verbatim}
\end{Code}

Let's also extend the functionality a whole bunch.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} xkcd
 (\EFk{require} '\EFo{emacsql-sqlite})

 (\EFk{defun} \EFf{+xkcd-select} ()
 \EFd{"Prompt the user for an xkcd using `}\textcolor[HTML]{b751b6}{\textit{completing-read}}\EFd{' and `}\textcolor[HTML]{b751b6}{\textit{+xkcd-select-format}}\EFd{'. Return the xkcd number or nil"}
 (\EFk{let*} (prompt-lines
 (-dummy (maphash (\EFk{lambda} (key xkcd-info)
 (\EFk{push} (+xkcd-select-format xkcd-info) prompt-lines))
 +xkcd-stored-info))
 (num (completing-read (format \EFs{"xkcd (\%s): "} xkcd-latest) prompt-lines)))
 (\EFk{if} (equal \EFs{""} num) xkcd-latest
 (string-to-number (replace-regexp-in-string \EFs{"}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[0-9]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{.*"} \EFs{"\char92{}\char92{}1"} num)))))

 (\EFk{defun} \EFf{+xkcd-select-format} (xkcd-info)
 \EFd{"Creates each completing-read line from an xkcd info plist. Must start with the xkcd number"}
 (format \EFs{"\%-4s \%-30s \%s"}
 (propertize (number-to-string (plist-get xkcd-info \EFb{:num}))
 'face 'counsel-key-binding)
 (plist-get xkcd-info \EFb{:title})
 (propertize (plist-get xkcd-info \EFb{:alt})
 'face '(variable-pitch font-lock-comment-face))))

 (\EFk{defun} \EFf{+xkcd-fetch-info} (\EFt{\&optional} num)
 \EFd{"Fetch the parsed json info for comic NUM. Fetches latest when omitted or 0"}
 (\EFk{require} '\EFo{xkcd})
 (\EFk{when} (\EFk{or} (not num) (= num 0))
 (+xkcd-check-latest)
 (\EFk{setq} num xkcd-latest))
 (\EFk{let} ((res (\EFk{or} (gethash num +xkcd-stored-info)
 (puthash num (+xkcd-db-read num) +xkcd-stored-info))))
 (\EFk{unless} res
 (+xkcd-db-write
 (\EFk{let*} ((url (format \EFs{"https://xkcd.com/\%d/info.0.json"} num))
 (json-assoc
 (\EFk{if} (gethash num +xkcd-stored-info)
 (gethash num +xkcd-stored-info)
 (json-read-from-string (xkcd-get-json url num)))))
 json-assoc))
 (\EFk{setq} res (+xkcd-db-read num)))
 res))

 \EFcd{;;} \EFc{since we've done this, we may as well go one little step further}
 (\EFk{defun} \EFf{+xkcd-find-and-copy} ()
 \EFd{"Prompt for an xkcd using `}\textcolor[HTML]{b751b6}{\textit{+xkcd-select}}\EFd{' and copy url to clipboard"}
 (\EFk{interactive})
 (+xkcd-copy (+xkcd-select)))

 (\EFk{defun} \EFf{+xkcd-copy} (\EFt{\&optional} num)
 \EFd{"Copy a url to xkcd NUM to the clipboard"}
 (\EFk{interactive} \EFs{"i"})
 (\EFk{let} ((num (\EFk{or} num xkcd-cur)))
 (gui-select-text (format \EFs{"https://xkcd.com/\%d"} num))
 (message \EFs{"xkcd.com/\%d copied to clipboard"} num)))

 (\EFk{defun} \EFf{+xkcd-find-and-view} ()
 \EFd{"Prompt for an xkcd using `}\textcolor[HTML]{b751b6}{\textit{+xkcd-select}}\EFd{' and view it"}
 (\EFk{interactive})
 (xkcd-get (+xkcd-select))
 (switch-to-buffer \EFs{"*xkcd*"}))

 (\EFk{defvar} \EFv{+xkcd-latest-max-age} (* 60 60) \EFcd{;} \EFc{1 hour}
 \EFd{"Time after which xkcd-latest should be refreshed, in seconds"})

 \EFcd{;;} \EFc{initialise `}\textcolor[HTML]{b751b6}{xkcd-latest}\EFc{' and `}\textcolor[HTML]{b751b6}{+xkcd-stored-info}\EFc{' with latest xkcd}
 (\EFk{add-transient-hook!} '+xkcd-select
 (\EFk{require} '\EFo{xkcd})
 (+xkcd-fetch-info xkcd-latest)
 (\EFk{setq} +xkcd-stored-info (+xkcd-db-read-all)))

 (\EFk{add-transient-hook!} '+xkcd-fetch-info
 (xkcd-update-latest))

 (\EFk{defun} \EFf{+xkcd-check-latest} ()
 \EFd{"Use value in `}\textcolor[HTML]{b751b6}{\textit{xkcd-cache-latest}}\EFd{' as long as it isn't older thabn `}\textcolor[HTML]{b751b6}{\textit{+xkcd-latest-max-age}}\EFd{'"}
 (\EFk{unless} (\EFk{and} (file-exists-p xkcd-cache-latest)
 (< (- (time-to-seconds (current-time))
 (time-to-seconds (file-attribute-modification-time (file-attributes xkcd-cache-latest))))
 +xkcd-latest-max-age))
 (\EFk{let*} ((out (xkcd-get-json \EFs{"http://xkcd.com/info.0.json"} 0))
 (json-assoc (json-read-from-string out))
 (latest (cdr (assoc 'num json-assoc))))
 (\EFk{when} (/= xkcd-latest latest)
 (+xkcd-db-write json-assoc)
 (\EFk{with-current-buffer} (find-file xkcd-cache-latest)
 (\EFk{setq} xkcd-latest latest)
 (erase-buffer)
 (insert (number-to-string latest))
 (save-buffer)
 (kill-buffer (current-buffer)))))
 (shell-command (format \EFs{"touch \%s"} xkcd-cache-latest))))

 (\EFk{defvar} \EFv{+xkcd-stored-info} (make-hash-table \EFb{:test} 'eql)
 \EFd{"Basic info on downloaded xkcds, in the form of a hashtable"})

 (\EFk{defadvice!} xkcd-get-json--and-cache (url \EFt{\&optional} num)
 \EFd{"Fetch the Json coming from URL.}
\EFd{If the file NUM.json exists, use it instead.}
\EFd{If NUM is 0, always download from URL.}
\EFd{The return value is a string."}
 \EFb{:override} \#'xkcd-get-json
 (\EFk{let*} ((file (format \EFs{"\%s\%d.json"} xkcd-cache-dir num))
 (cached (\EFk{and} (file-exists-p file) (not (eq num 0))))
 (out (\EFk{with-current-buffer} (\EFk{if} cached
 (find-file file)
 (url-retrieve-synchronously url))
 (goto-char (point-min))
 (\EFk{unless} cached (re-search-forward \EFs{"\char94{}\$"}))
 (\EFk{prog1}
 (buffer-substring-no-properties (point) (point-max))
 (kill-buffer (current-buffer))))))
 (\EFk{unless} (\EFk{or} cached (eq num 0))
 (xkcd-cache-json num out))
 out))

 (\EFk{defadvice!} +xkcd-get (num)
 \EFd{"Get the xkcd number NUM."}
 \EFb{:override} 'xkcd-get
 (\EFk{interactive} \EFs{"nEnter comic number: "})
 (xkcd-update-latest)
 (get-buffer-create \EFs{"*xkcd*"})
 (switch-to-buffer \EFs{"*xkcd*"})
 (xkcd-mode)
 (\EFk{let} (buffer-read-only)
 (erase-buffer)
 (\EFk{setq} xkcd-cur num)
 (\EFk{let*} ((xkcd-data (+xkcd-fetch-info num))
 (num (plist-get xkcd-data \EFb{:num}))
 (img (plist-get xkcd-data \EFb{:img}))
 (safe-title (plist-get xkcd-data \EFb{:safe-title}))
 (alt (plist-get xkcd-data \EFb{:alt}))
 title file)
 (message \EFs{"Getting comic..."})
 (\EFk{setq} file (xkcd-download img num))
 (\EFk{setq} title (format \EFs{"\%d: \%s"} num safe-title))
 (insert (propertize title
 'face 'outline-1))
 (center-line)
 (insert \EFs{"\char92{}n"})
 (xkcd-insert-image file num)
 (\EFk{if} (eq xkcd-cur 0)
 (\EFk{setq} xkcd-cur num))
 (\EFk{setq} xkcd-alt alt)
 (message \EFs{"\%s"} title))))

 (\EFk{defconst} \EFv{+xkcd-db--sqlite-available-p}
 (\EFk{with-demoted-errors} \EFs{"+org-xkcd initialization: \%S"}
 (emacsql-sqlite-ensure-binary)
 t))

 (\EFk{defvar} \EFv{+xkcd-db--connection} (make-hash-table \EFb{:test} \#'equal)
 \EFd{"Database connection to +org-xkcd database."})

 (\EFk{defun} \EFf{+xkcd-db--get} ()
 \EFd{"Return the sqlite db file."}
 (expand-file-name \EFs{"xkcd.db"} xkcd-cache-dir))

 (\EFk{defun} \EFf{+xkcd-db--get-connection} ()
 \EFd{"Return the database connection, if any."}
 (gethash (file-truename xkcd-cache-dir)
 +xkcd-db--connection))

 (\EFk{defconst} \EFv{+xkcd-db--table-schema}
 '((xkcds
 [(num integer \EFb{:unique} \EFb{:primary-key})
 (year \EFb{:not-null})
 (month \EFb{:not-null})
 (link \EFb{:not-null})
 (news \EFb{:not-null})
 (safe_title \EFb{:not-null})
 (title \EFb{:not-null})
 (transcript \EFb{:not-null})
 (alt \EFb{:not-null})
 (img \EFb{:not-null})])))

 (\EFk{defun} \EFf{+xkcd-db--init} (db)
 \EFd{"Initialize database DB with the correct schema and user version."}
 (emacsql-with-transaction db
 (\EFk{pcase-dolist} (`(,table . ,schema) +xkcd-db--table-schema)
 (emacsql db [\EFb{:create-table} \$i1 \$S2] table schema))))

 (\EFk{defun} \EFf{+xkcd-db} ()
 \EFd{"Entrypoint to the +org-xkcd sqlite database.}
\EFd{Initializes and stores the database, and the database connection.}
\EFd{Performs a database upgrade when required."}
 (\EFk{unless} (\EFk{and} (+xkcd-db--get-connection)
 (emacsql-live-p (+xkcd-db--get-connection)))
 (\EFk{let*} ((db-file (+xkcd-db--get))
 (init-db (not (file-exists-p db-file))))
 (make-directory (file-name-directory db-file) t)
 (\EFk{let} ((conn (emacsql-sqlite db-file)))
 (set-process-query-on-exit-flag (emacsql-process conn) nil)
 (puthash (file-truename xkcd-cache-dir)
 conn
 +xkcd-db--connection)
 (\EFk{when} init-db
 (+xkcd-db--init conn)))))
 (+xkcd-db--get-connection))

 (\EFk{defun} \EFf{+xkcd-db-query} (sql \EFt{\&rest} args)
 \EFd{"Run SQL query on +org-xkcd database with ARGS.}
\EFd{SQL can be either the emacsql vector representation, or a string."}
 (\EFk{if} (stringp sql)
 (emacsql (+xkcd-db) (apply \#'format sql args))
 (apply \#'emacsql (+xkcd-db) sql args)))

 (\EFk{defun} \EFf{+xkcd-db-read} (num)
 (\EFk{when-let} ((res
 (car (+xkcd-db-query [\EFb{:select} * \EFb{:from} xkcds
 \EFb{:where} (= num \$s1)]
 num
 \EFb{:limit} 1))))
 (+xkcd-db-list-to-plist res)))

 (\EFk{defun} \EFf{+xkcd-db-read-all} ()
 (\EFk{let} ((xkcd-table (make-hash-table \EFb{:test} 'eql \EFb{:size} 4000)))
 (mapcar (\EFk{lambda} (xkcd-info-list)
 (puthash (car xkcd-info-list) (+xkcd-db-list-to-plist xkcd-info-list) xkcd-table))
 (+xkcd-db-query [\EFb{:select} * \EFb{:from} xkcds]))
 xkcd-table))

 (\EFk{defun} \EFf{+xkcd-db-list-to-plist} (xkcd-datalist)
 `(\EFb{:num} ,(nth 0 xkcd-datalist)
 \EFb{:year} ,(nth 1 xkcd-datalist)
 \EFb{:month} ,(nth 2 xkcd-datalist)
 \EFb{:link} ,(nth 3 xkcd-datalist)
 \EFb{:news} ,(nth 4 xkcd-datalist)
 \EFb{:safe-title} ,(nth 5 xkcd-datalist)
 \EFb{:title} ,(nth 6 xkcd-datalist)
 \EFb{:transcript} ,(nth 7 xkcd-datalist)
 \EFb{:alt} ,(nth 8 xkcd-datalist)
 \EFb{:img} ,(nth 9 xkcd-datalist)))

 (\EFk{defun} \EFf{+xkcd-db-write} (data)
 (+xkcd-db-query [\EFb{:insert-into} xkcds
 \EFb{:values} \$v1]
 (list (vector
 (cdr (assoc 'num data))
 (cdr (assoc 'year data))
 (cdr (assoc 'month data))
 (cdr (assoc 'link data))
 (cdr (assoc 'news data))
 (cdr (assoc 'safe_title data))
 (cdr (assoc 'title data))
 (cdr (assoc 'transcript data))
 (cdr (assoc 'alt data))
 (cdr (assoc 'img data))
)))))
\end{Verbatim}
\end{Code}
\subsection{Selectric}
\label{sec:orgf9dcd6a}

Every so often, you want everyone else to \emph{know} that you're typing, or just to
amuse oneself. Introducing: typewriter sounds!
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} selectric-mode \EFb{:pin} \EFs{"1840de71f7414b7cd6ce425747c8e26a413233aa"})
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} selectic-mode
 \EFb{:commands} selectic-mode)
\end{Verbatim}
\end{Code}
\subsection{Wttrin}
\label{sec:org8e0e7a8}

Hey, let's get the weather in here while we're at it.
Unfortunately this seems slightly unmaintained (\href{https://github.com/bcbcarl/emacs-wttrin/pulls}{few open bugfix PRs}) so let's
roll our \href{lisp/wttrin/wttrin.el}{own version}.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} wttrin \EFb{:recipe} (\EFb{:local-repo} \EFs{"lisp/wttrin"}))
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} wttrin
 \EFb{:commands} wttrin)
\end{Verbatim}
\end{Code}
\subsection{Spray}
\label{sec:org07fb202}

Why not flash words on the screen. Why not --- hey, it could be fun.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} spray \EFb{:pin} \EFs{"74d9dcfa2e8b38f96a43de9ab0eb13364300cb46"}
 \EFb{:recipe} (\EFb{:host} github \EFb{:repo} \EFs{"emacsmirror/spray"})) \EFcd{;} \EFc{sr.ht can be flaky}
\end{Verbatim}
\end{Code}

It would be nice if Spray's default speed suited me better, and the keybindings
worked in evil mode. Let's do that and make the display slightly nicer while
we're at it.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} spray
 \EFb{:commands} spray-mode
 \EFb{:config}
 (\EFk{setq} spray-wpm 600
 spray-height 800)
 (\EFk{defun} \EFf{spray-mode-hide-cursor} ()
 \EFd{"Hide or unhide the cursor as is appropriate."}
 (\EFk{if} spray-mode
 (\EFk{setq-local} spray--last-evil-cursor-state evil-normal-state-cursor
 evil-normal-state-cursor '(nil))
 (\EFk{setq-local} evil-normal-state-cursor spray--last-evil-cursor-state)))
 (add-hook 'spray-mode-hook \#'spray-mode-hide-cursor)
 (map! \EFb{:map} spray-mode-map
 \EFs{"<return>"} \#'spray-start/stop
 \EFs{"f"} \#'spray-faster
 \EFs{"s"} \#'spray-slower
 \EFs{"t"} \#'spray-time
 \EFs{"<right>"} \#'spray-forward-word
 \EFs{"h"} \#'spray-forward-word
 \EFs{"<left>"} \#'spray-backward-word
 \EFs{"l"} \#'spray-backward-word
 \EFs{"q"} \#'spray-quit))
\end{Verbatim}
\end{Code}
\subsection{Elcord}
\label{sec:org090683e}

What's even the point of using Emacs unless you're constantly telling everyone
about it?
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} elcord \EFb{:pin} \EFs{"deeb22f84378b382f09e78f1718bc4c39a3582b8"})
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} elcord
 \EFb{:commands} elcord-mode
 \EFb{:config}
 (\EFk{setq} elcord-use-major-mode-as-main-icon t))
\end{Verbatim}
\end{Code}
\section{File types}
\label{sec:org28aeb62}
\subsection{Systemd}
\label{sec:orgf51f354}

For editing systemd unit files
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} systemd \EFb{:pin} \EFs{"8742607120fbc440821acbc351fda1e8e68a8806"})
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} systemd
 \EFb{:defer} t)
\end{Verbatim}
\end{Code}
\chapter{Applications}
\label{sec:orgbd19373}
\section{Ebooks}
\label{sec:orgcb0890f}

For managing my ebooks, I'll hook into the well-established ebook library
manager \href{https://calibre-ebook.com/}{calibre}. A number of Emacs clients for this exist, but this seems like a
good option.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} calibredb \EFb{:pin} \EFs{"7d33947462c77f9e87e8078fa7b7b398feeef0f7"})
\end{Verbatim}
\end{Code}

Then for reading them, the only currently viable options seems to be \href{https://depp.brause.cc/nov.el/}{nov.el}.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} nov \EFb{:pin} \EFs{"b37d9380752e541db3f4b947c219ca54d50ca273"})
\end{Verbatim}
\end{Code}

Together these should give me a rather good experience reading ebooks.

\verb~calibredb~ lets us use calibre through Emacs, because who wouldn't want to use
something through Emacs?
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} calibredb
 \EFb{:commands} calibredb
 \EFb{:config}
 (\EFk{setq} calibredb-root-dir \EFs{"\char126{}/.local/share/calibre-library"}
 calibredb-db-dir (expand-file-name \EFs{"metadata.db"} calibredb-root-dir))
 (map! \EFb{:map} calibredb-show-mode-map
 \EFb{:ne} \EFs{"?"} \#'calibredb-entry-dispatch
 \EFb{:ne} \EFs{"o"} \#'calibredb-find-file
 \EFb{:ne} \EFs{"O"} \#'calibredb-find-file-other-frame
 \EFb{:ne} \EFs{"V"} \#'calibredb-open-file-with-default-tool
 \EFb{:ne} \EFs{"s"} \#'calibredb-set-metadata-dispatch
 \EFb{:ne} \EFs{"e"} \#'calibredb-export-dispatch
 \EFb{:ne} \EFs{"q"} \#'calibredb-entry-quit
 \EFb{:ne} \EFs{"."} \#'calibredb-open-dired
 \EFb{:ne} [tab] \#'calibredb-toggle-view-at-point
 \EFb{:ne} \EFs{"M-t"} \#'calibredb-set-metadata--tags
 \EFb{:ne} \EFs{"M-a"} \#'calibredb-set-metadata--author_sort
 \EFb{:ne} \EFs{"M-A"} \#'calibredb-set-metadata--authors
 \EFb{:ne} \EFs{"M-T"} \#'calibredb-set-metadata--title
 \EFb{:ne} \EFs{"M-c"} \#'calibredb-set-metadata--comments)
 (map! \EFb{:map} calibredb-search-mode-map
 \EFb{:ne} [mouse-3] \#'calibredb-search-mouse
 \EFb{:ne} \EFs{"RET"} \#'calibredb-find-file
 \EFb{:ne} \EFs{"?"} \#'calibredb-dispatch
 \EFb{:ne} \EFs{"a"} \#'calibredb-add
 \EFb{:ne} \EFs{"A"} \#'calibredb-add-dir
 \EFb{:ne} \EFs{"c"} \#'calibredb-clone
 \EFb{:ne} \EFs{"d"} \#'calibredb-remove
 \EFb{:ne} \EFs{"D"} \#'calibredb-remove-marked-items
 \EFb{:ne} \EFs{"j"} \#'calibredb-next-entry
 \EFb{:ne} \EFs{"k"} \#'calibredb-previous-entry
 \EFb{:ne} \EFs{"l"} \#'calibredb-virtual-library-list
 \EFb{:ne} \EFs{"L"} \#'calibredb-library-list
 \EFb{:ne} \EFs{"n"} \#'calibredb-virtual-library-next
 \EFb{:ne} \EFs{"N"} \#'calibredb-library-next
 \EFb{:ne} \EFs{"p"} \#'calibredb-virtual-library-previous
 \EFb{:ne} \EFs{"P"} \#'calibredb-library-previous
 \EFb{:ne} \EFs{"s"} \#'calibredb-set-metadata-dispatch
 \EFb{:ne} \EFs{"S"} \#'calibredb-switch-library
 \EFb{:ne} \EFs{"o"} \#'calibredb-find-file
 \EFb{:ne} \EFs{"O"} \#'calibredb-find-file-other-frame
 \EFb{:ne} \EFs{"v"} \#'calibredb-view
 \EFb{:ne} \EFs{"V"} \#'calibredb-open-file-with-default-tool
 \EFb{:ne} \EFs{"."} \#'calibredb-open-dired
 \EFb{:ne} \EFs{"b"} \#'calibredb-catalog-bib-dispatch
 \EFb{:ne} \EFs{"e"} \#'calibredb-export-dispatch
 \EFb{:ne} \EFs{"r"} \#'calibredb-search-refresh-and-clear-filter
 \EFb{:ne} \EFs{"R"} \#'calibredb-search-clear-filter
 \EFb{:ne} \EFs{"q"} \#'calibredb-search-quit
 \EFb{:ne} \EFs{"m"} \#'calibredb-mark-and-forward
 \EFb{:ne} \EFs{"f"} \#'calibredb-toggle-favorite-at-point
 \EFb{:ne} \EFs{"x"} \#'calibredb-toggle-archive-at-point
 \EFb{:ne} \EFs{"h"} \#'calibredb-toggle-highlight-at-point
 \EFb{:ne} \EFs{"u"} \#'calibredb-unmark-and-forward
 \EFb{:ne} \EFs{"i"} \#'calibredb-edit-annotation
 \EFb{:ne} \EFs{"DEL"} \#'calibredb-unmark-and-backward
 \EFb{:ne} [backtab] \#'calibredb-toggle-view
 \EFb{:ne} [tab] \#'calibredb-toggle-view-at-point
 \EFb{:ne} \EFs{"M-n"} \#'calibredb-show-next-entry
 \EFb{:ne} \EFs{"M-p"} \#'calibredb-show-previous-entry
 \EFb{:ne} \EFs{"/"} \#'calibredb-search-live-filter
 \EFb{:ne} \EFs{"M-t"} \#'calibredb-set-metadata--tags
 \EFb{:ne} \EFs{"M-a"} \#'calibredb-set-metadata--author_sort
 \EFb{:ne} \EFs{"M-A"} \#'calibredb-set-metadata--authors
 \EFb{:ne} \EFs{"M-T"} \#'calibredb-set-metadata--title
 \EFb{:ne} \EFs{"M-c"} \#'calibredb-set-metadata--comments))
\end{Verbatim}
\end{Code}

Then, to actually read the ebooks we use \verb~nov~.

\begin{center}
\includegraphics[width=.9\linewidth]{/tmp/org-persist-IRkN4n/19/f295d6-68f6-47b1-ab01-c53855b95d90-180845f6145617d5396d494cb58fbe29.png}
\end{center}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} nov
 \EFb{:mode} (\EFs{"\char92{}\char92{}.epub\char92{}\char92{}'"} . nov-mode)
 \EFb{:config}
 (map! \EFb{:map} nov-mode-map
 \EFb{:n} \EFs{"RET"} \#'nov-scroll-up)

 (advice-add 'nov-render-title \EFb{:override} \#'ignore)

 (\EFk{defun} \EFf{+nov-mode-setup} ()
 \EFd{"Tweak nov-mode to our liking."}
 (face-remap-add-relative 'variable-pitch
 \EFb{:family} \EFs{"Merriweather"}
 \EFb{:height} 1.4
 \EFb{:width} 'semi-expanded)
 (face-remap-add-relative 'default \EFb{:height} 1.3)
 (variable-pitch-mode 1)
 (\EFk{setq-local} line-spacing 0.2
 next-screen-context-lines 4
 shr-use-colors nil)
 (\EFk{when} (\EFk{require} '\EFo{visual-fill-column} nil t)
 (\EFk{setq-local} visual-fill-column-center-text t
 visual-fill-column-width 64
 nov-text-width 106)
 (visual-fill-column-mode 1))
 (\EFk{when} (\EFk{featurep} '\EFo{hl-line-mode})
 (hl-line-mode -1))
 \EFcd{;;} \EFc{Re-render with new display settings}
 (nov-render-document)
 \EFcd{;;} \EFc{Look up words with the dictionary.}
 (add-to-list '+lookup-definition-functions \#'+lookup/dictionary-definition))

 (add-hook 'nov-mode-hook \#'+nov-mode-setup))
\end{Verbatim}
\end{Code}

To enhance the reading experience, we can create a nice minimal modeline, with
just the basic bare minimum, information about the book/chapter, and possibly
currently playing media.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} doom-modeline
 (\EFk{defvar} \EFv{doom-modeline-nov-title-max-length} 40)
 (doom-modeline-def-segment nov-author
 (propertize
 (cdr (assoc 'creator nov-metadata))
 'face (doom-modeline-face 'doom-modeline-project-parent-dir)))
 (doom-modeline-def-segment nov-title
 (\EFk{let} ((title (\EFk{or} (cdr (assoc 'title nov-metadata)) \EFs{""})))
 (\EFk{if} (<= (length title) doom-modeline-nov-title-max-length)
 (concat \EFs{" "} title)
 (propertize
 (concat \EFs{" "} (truncate-string-to-width title doom-modeline-nov-title-max-length nil nil t))
 'help-echo title))))
 (doom-modeline-def-segment nov-current-page
 (\EFk{let} ((words (count-words (point-min) (point-max))))
 (propertize
 (format \EFs{" \%d/\%d"}
 (1+ nov-documents-index)
 (length nov-documents))
 'face (doom-modeline-face 'doom-modeline-info)
 'help-echo (\EFk{if} (= words 1) \EFs{"1 word in this chapter"}
 (format \EFs{"\%s words in this chapter"} words)))))
 (doom-modeline-def-segment scroll-percentage-subtle
 (concat
 (doom-modeline-spc)
 (propertize (format-mode-line '(\EFs{""} doom-modeline-percent-position \EFs{"\%\%"}))
 'face (doom-modeline-face 'shadow)
 'help-echo \EFs{"Buffer percentage"})))

 (doom-modeline-def-modeline 'nov
 '(workspace-name window-number nov-author nov-title nov-current-page scroll-percentage-subtle)
 '(media-player misc-info major-mode time))

 (add-to-list 'doom-modeline-mode-alist '(nov-mode . nov)))
\end{Verbatim}
\end{Code}
\section{Calculator}
\label{sec:org32919a8}

Emacs includes the venerable \verb~calc~, which is a pretty impressive RPN (Reverse
Polish Notation) calculator. However, we can do a bit to improve the experience.
\subsection{CalcTeX}
\label{sec:orgc2a8cee}

Everybody knows that mathematical expressions look best with \LaTeX{}, so \verb~calc~'s
ability to create \LaTeX{} representations of its expressions provides a lovely
opportunity which is taken advantage of in the CalcTeX package.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} calctex \EFb{:recipe} (\EFb{:host} github \EFb{:repo} \EFs{"johnbcoughlin/calctex"}
 \EFb{:files} (\EFs{"*.el"} \EFs{"calctex/*.el"} \EFs{"calctex-contrib/*.el"} \EFs{"org-calctex/*.el"} \EFs{"vendor"}))
 \EFb{:pin} \EFs{"67a2e76847a9ea9eff1f8e4eb37607f84b380ebb"})
\end{Verbatim}
\end{Code}

\begin{center}
\includegraphics[width=.9\linewidth]{/tmp/org-persist-IRkN4n/57/b141f5-42ac-4e93-8de2-586e627fb603-5ef9512fa2a48fed5abe14dcefb6f457.png}
\end{center}

We'd like to use CalcTeX too, so let's set that up, and fix some glaring
inadequacies --- why on earth would you commit a hard-coded path to an executable
that \emph{only works on your local machine}, consequently breaking the package for
everyone else!?

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} calctex
 \EFb{:commands} calctex-mode
 \EFb{:init}
 (add-hook 'calc-mode-hook \#'calctex-mode)
 \EFb{:config}
 (\EFk{setq} calctex-additional-latex-packages \EFs{"}
\EFs{\char92{}\char92{}usepackage[usenames]\{xcolor\}}
\EFs{\char92{}\char92{}usepackage\{soul\}}
\EFs{\char92{}\char92{}usepackage\{adjustbox\}}
\EFs{\char92{}\char92{}usepackage\{amsmath\}}
\EFs{\char92{}\char92{}usepackage\{amssymb\}}
\EFs{\char92{}\char92{}usepackage\{siunitx\}}
\EFs{\char92{}\char92{}usepackage\{cancel\}}
\EFs{\char92{}\char92{}usepackage\{mathtools\}}
\EFs{\char92{}\char92{}usepackage\{mathalpha\}}
\EFs{\char92{}\char92{}usepackage\{xparse\}}
\EFs{\char92{}\char92{}usepackage\{arevmath\}"}
 calctex-additional-latex-macros
 (concat calctex-additional-latex-macros
 \EFs{"\char92{}n\char92{}\char92{}let\char92{}\char92{}evalto\char92{}\char92{}Rightarrow"}))
 (\EFk{defadvice!} no-messaging-a (orig-fn \EFt{\&rest} args)
 \EFb{:around} \#'calctex-default-dispatching-render-process
 (\EFk{let} ((inhibit-message t) message-log-max)
 (apply orig-fn args)))
 \EFcd{;;} \EFc{Fix hardcoded dvichop path (whyyyyyyy)}
 (\EFk{let} ((vendor-folder (concat (file-truename doom-local-dir)
 \EFs{"straight/"}
 (format \EFs{"build-\%s"} emacs-version)
 \EFs{"/calctex/vendor/"})))
 (\EFk{setq} calctex-dvichop-sty (concat vendor-folder \EFs{"texd/dvichop"})
 calctex-dvichop-bin (concat vendor-folder \EFs{"texd/dvichop"})))
 (\EFk{unless} (file-exists-p calctex-dvichop-bin)
 (message \EFs{"CalcTeX: Building dvichop binary"})
 (\EFk{let} ((default-directory (file-name-directory calctex-dvichop-bin)))
 (call-process \EFs{"make"} nil nil nil))))
\end{Verbatim}
\end{Code}
\subsection{Defaults}
\label{sec:org29652ce}

Any sane person prefers radians and exact values.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} calc-angle-mode 'rad \EFcd{;} \EFc{radians are rad}
 calc-symbolic-mode t) \EFcd{;} \EFc{keeps expressions like \char92{}sqrt\{2\} irrational for as long as possible}
\end{Verbatim}
\end{Code}
\subsection{Embedded calc}
\label{sec:orgc85e772}

Embedded calc is a lovely feature which let's us use calc to operate on \LaTeX{}
maths expressions. The standard keybinding is a bit janky however (\verb~C-x * e~), so
we'll add a localleader-based alternative.

\begin{Code}
\begin{Verbatim}
\color{EFD}(map! \EFb{:map} calc-mode-map
 \EFb{:after} calc
 \EFb{:localleader}
 \EFb{:desc} \EFs{"Embedded calc (toggle)"} \EFs{"e"} \#'calc-embedded)
(map! \EFb{:map} org-mode-map
 \EFb{:after} org
 \EFb{:localleader}
 \EFb{:desc} \EFs{"Embedded calc (toggle)"} \EFs{"E"} \#'calc-embedded)
(map! \EFb{:map} latex-mode-map
 \EFb{:after} latex
 \EFb{:localleader}
 \EFb{:desc} \EFs{"Embedded calc (toggle)"} \EFs{"e"} \#'calc-embedded)
\end{Verbatim}
\end{Code}

Unfortunately this operates without the (rather informative) calculator and
trail buffers, but we can advice it that we would rather like those in a side
panel.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{calc-embedded-trail-window} nil)
(\EFk{defvar} \EFv{calc-embedded-calculator-window} nil)

(\EFk{defadvice!} calc-embedded-with-side-pannel (\EFt{\&rest} _)
 \EFb{:after} \#'calc-do-embedded
 (\EFk{when} calc-embedded-trail-window
 (\EFk{ignore-errors}
 (delete-window calc-embedded-trail-window))
 (\EFk{setq} calc-embedded-trail-window nil))
 (\EFk{when} calc-embedded-calculator-window
 (\EFk{ignore-errors}
 (delete-window calc-embedded-calculator-window))
 (\EFk{setq} calc-embedded-calculator-window nil))
 (\EFk{when} (\EFk{and} calc-embedded-info
 (> (* (window-width) (window-height)) 1200))
 (\EFk{let} ((main-window (selected-window))
 (vertical-p (> (window-width) 80)))
 (select-window
 (\EFk{setq} calc-embedded-trail-window
 (\EFk{if} vertical-p
 (split-window-horizontally (- (max 30 (/ (window-width) 3))))
 (split-window-vertically (- (max 8 (/ (window-height) 4)))))))
 (switch-to-buffer \EFs{"*Calc Trail*"})
 (select-window
 (\EFk{setq} calc-embedded-calculator-window
 (\EFk{if} vertical-p
 (split-window-vertically -6)
 (split-window-horizontally (- (/ (window-width) 2))))))
 (switch-to-buffer \EFs{"*Calculator*"})
 (select-window main-window))))
\end{Verbatim}
\end{Code}
\section{Newsfeed}
\label{sec:org72e445b}

RSS feeds are still a thing. Why not make use of them with \verb~elfeed~.
I really like what \href{https://github.com/fuxialexander/doom-emacs-private-xfu/tree/master/modules/app/rss}{fuxialexander} has going on, but I don't think I need a custom
module. Let's just try to patch on the main things I like the look of.

\begin{center}
\includegraphics[width=.9\linewidth]{/tmp/org-persist-IRkN4n/e0/f76974-7b1c-4e22-ace4-e014fde14c54-571585deec657330221b625e80852d47.png}
\end{center}
\subsection{Keybindings}
\label{sec:org12ab689}

\begin{Code}
\begin{Verbatim}
\color{EFD}(map! \EFb{:map} elfeed-search-mode-map
 \EFb{:after} elfeed-search
 [remap kill-this-buffer] \EFs{"q"}
 [remap kill-buffer] \EFs{"q"}
 \EFb{:n} doom-leader-key nil
 \EFb{:n} \EFs{"q"} \#'+rss/quit
 \EFb{:n} \EFs{"e"} \#'elfeed-update
 \EFb{:n} \EFs{"r"} \#'elfeed-search-untag-all-unread
 \EFb{:n} \EFs{"u"} \#'elfeed-search-tag-all-unread
 \EFb{:n} \EFs{"s"} \#'elfeed-search-live-filter
 \EFb{:n} \EFs{"RET"} \#'elfeed-search-show-entry
 \EFb{:n} \EFs{"p"} \#'elfeed-show-pdf
 \EFb{:n} \EFs{"+"} \#'elfeed-search-tag-all
 \EFb{:n} \EFs{"-"} \#'elfeed-search-untag-all
 \EFb{:n} \EFs{"S"} \#'elfeed-search-set-filter
 \EFb{:n} \EFs{"b"} \#'elfeed-search-browse-url
 \EFb{:n} \EFs{"y"} \#'elfeed-search-yank)
(map! \EFb{:map} elfeed-show-mode-map
 \EFb{:after} elfeed-show
 [remap kill-this-buffer] \EFs{"q"}
 [remap kill-buffer] \EFs{"q"}
 \EFb{:n} doom-leader-key nil
 \EFb{:nm} \EFs{"q"} \#'+rss/delete-pane
 \EFb{:nm} \EFs{"o"} \#'ace-link-elfeed
 \EFb{:nm} \EFs{"RET"} \#'org-ref-elfeed-add
 \EFb{:nm} \EFs{"n"} \#'elfeed-show-next
 \EFb{:nm} \EFs{"N"} \#'elfeed-show-prev
 \EFb{:nm} \EFs{"p"} \#'elfeed-show-pdf
 \EFb{:nm} \EFs{"+"} \#'elfeed-show-tag
 \EFb{:nm} \EFs{"-"} \#'elfeed-show-untag
 \EFb{:nm} \EFs{"s"} \#'elfeed-show-new-live-search
 \EFb{:nm} \EFs{"y"} \#'elfeed-show-yank)
\end{Verbatim}
\end{Code}
\subsection{Usability enhancements}
\label{sec:org4d0b0e1}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} elfeed-search
 (set-evil-initial-state! 'elfeed-search-mode 'normal))
(\EFk{after!} elfeed-show-mode
 (set-evil-initial-state! 'elfeed-show-mode 'normal))

(\EFk{after!} evil-snipe
 (\EFk{push} 'elfeed-show-mode evil-snipe-disabled-modes)
 (\EFk{push} 'elfeed-search-mode evil-snipe-disabled-modes))
\end{Verbatim}
\end{Code}
\subsection{Visual enhancements}
\label{sec:orgf19ad9e}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} elfeed

 (elfeed-org)
 (\EFk{use-package!} elfeed-link)

 (\EFk{setq} elfeed-search-filter \EFs{"@1-week-ago +unread"}
 elfeed-search-print-entry-function '+rss/elfeed-search-print-entry
 elfeed-search-title-min-width 80
 elfeed-show-entry-switch \#'pop-to-buffer
 elfeed-show-entry-delete \#'+rss/delete-pane
 elfeed-show-refresh-function \#'+rss/elfeed-show-refresh--better-style
 shr-max-image-proportion 0.6)

 (\EFk{add-hook!} 'elfeed-show-mode-hook (hide-mode-line-mode 1))
 (\EFk{add-hook!} 'elfeed-search-update-hook \#'hide-mode-line-mode)

 (\EFk{defface} \EFv{elfeed-show-title-face} '((t (\EFb{:weight} ultrabold \EFb{:slant} italic \EFb{:height} 1.5)))
 \EFd{"title face in elfeed show buffer"}
 \EFb{:group} 'elfeed)
 (\EFk{defface} \EFv{elfeed-show-author-face} `((t (\EFb{:weight} light)))
 \EFd{"title face in elfeed show buffer"}
 \EFb{:group} 'elfeed)
 (set-face-attribute 'elfeed-search-title-face nil
 \EFb{:foreground} 'nil
 \EFb{:weight} 'light)

 (\EFk{defadvice!} +rss-elfeed-wrap-h-nicer ()
 \EFd{"Enhances an elfeed entry's readability by wrapping it to a width of}
\EFd{`}\textcolor[HTML]{b751b6}{\textit{fill-column}}\EFd{' and centering it with `}\textcolor[HTML]{b751b6}{\textit{visual-fill-column-mode}}\EFd{'."}
 \EFb{:override} \#'+rss-elfeed-wrap-h
 (\EFk{setq-local} truncate-lines nil
 shr-width 120
 visual-fill-column-center-text t
 default-text-properties '(line-height 1.1))
 (\EFk{let} ((inhibit-read-only t)
 (inhibit-modification-hooks t))
 (visual-fill-column-mode)
 \EFcd{;;} \EFc{(setq-local shr-current-font '(:family "Merriweather" :height 1.2))}
 (set-buffer-modified-p nil)))

 (\EFk{defun} \EFf{+rss/elfeed-search-print-entry} (entry)
 \EFd{"Print ENTRY to the buffer."}
 (\EFk{let*} ((elfeed-goodies/tag-column-width 40)
 (elfeed-goodies/feed-source-column-width 30)
 (title (\EFk{or} (elfeed-meta entry \EFb{:title}) (elfeed-entry-title entry) \EFs{""}))
 (title-faces (elfeed-search--faces (elfeed-entry-tags entry)))
 (feed (elfeed-entry-feed entry))
 (feed-title
 (\EFk{when} feed
 (\EFk{or} (elfeed-meta feed \EFb{:title}) (elfeed-feed-title feed))))
 (tags (mapcar \#'symbol-name (elfeed-entry-tags entry)))
 (tags-str (concat (mapconcat 'identity tags \EFs{","})))
 (title-width (- (window-width) elfeed-goodies/feed-source-column-width
 elfeed-goodies/tag-column-width 4))

 (tag-column (elfeed-format-column
 tags-str (elfeed-clamp (length tags-str)
 elfeed-goodies/tag-column-width
 elfeed-goodies/tag-column-width)
 \EFb{:left}))
 (feed-column (elfeed-format-column
 feed-title (elfeed-clamp elfeed-goodies/feed-source-column-width
 elfeed-goodies/feed-source-column-width
 elfeed-goodies/feed-source-column-width)
 \EFb{:left})))

 (insert (propertize feed-column 'face 'elfeed-search-feed-face) \EFs{" "})
 (insert (propertize tag-column 'face 'elfeed-search-tag-face) \EFs{" "})
 (insert (propertize title 'face title-faces 'kbd-help title))
 (\EFk{setq-local} line-spacing 0.2)))

 (\EFk{defun} \EFf{+rss/elfeed-show-refresh--better-style} ()
 \EFd{"Update the buffer to match the selected entry, using a mail-style."}
 (\EFk{interactive})
 (\EFk{let*} ((inhibit-read-only t)
 (title (elfeed-entry-title elfeed-show-entry))
 (date (seconds-to-time (elfeed-entry-date elfeed-show-entry)))
 (author (elfeed-meta elfeed-show-entry \EFb{:author}))
 (link (elfeed-entry-link elfeed-show-entry))
 (tags (elfeed-entry-tags elfeed-show-entry))
 (tagsstr (mapconcat \#'symbol-name tags \EFs{", "}))
 (nicedate (format-time-string \EFs{"\%a, \%e \%b \%Y \%T \%Z"} date))
 (content (elfeed-deref (elfeed-entry-content elfeed-show-entry)))
 (type (elfeed-entry-content-type elfeed-show-entry))
 (feed (elfeed-entry-feed elfeed-show-entry))
 (feed-title (elfeed-feed-title feed))
 (base (\EFk{and} feed (elfeed-compute-base (elfeed-feed-url feed)))))
 (erase-buffer)
 (insert \EFs{"\char92{}n"})
 (insert (format \EFs{"\%s\char92{}n\char92{}n"} (propertize title 'face 'elfeed-show-title-face)))
 (insert (format \EFs{"\%s\char92{}t"} (propertize feed-title 'face 'elfeed-search-feed-face)))
 (\EFk{when} (\EFk{and} author elfeed-show-entry-author)
 (insert (format \EFs{"\%s\char92{}n"} (propertize author 'face 'elfeed-show-author-face))))
 (insert (format \EFs{"\%s\char92{}n\char92{}n"} (propertize nicedate 'face 'elfeed-log-date-face)))
 (\EFk{when} tags
 (insert (format \EFs{"\%s\char92{}n"}
 (propertize tagsstr 'face 'elfeed-search-tag-face))))
 \EFcd{;;} \EFc{(insert (propertize "Link: " 'face 'message-header-name))}
 \EFcd{;;} \EFc{(elfeed-insert-link link link)}
 \EFcd{;;} \EFc{(insert "\char92{}n")}
 (\EFk{cl-loop} for enclosure in (elfeed-entry-enclosures elfeed-show-entry)
 do (insert (propertize \EFs{"Enclosure: "} 'face 'message-header-name))
 do (elfeed-insert-link (car enclosure))
 do (insert \EFs{"\char92{}n"}))
 (insert \EFs{"\char92{}n"})
 (\EFk{if} content
 (\EFk{if} (eq type 'html)
 (elfeed-insert-html content base)
 (insert content))
 (insert (propertize \EFs{"(empty)\char92{}n"} 'face 'italic)))
 (goto-char (point-min))))

)
\end{Verbatim}
\end{Code}
\subsection{Functionality enhancements}
\label{sec:org8ffef34}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} elfeed-show
 (\EFk{require} '\EFo{url})

 (\EFk{defvar} \EFv{elfeed-pdf-dir}
 (expand-file-name \EFs{"pdfs/"}
 (file-name-directory (directory-file-name elfeed-enclosure-default-dir))))

 (\EFk{defvar} \EFv{elfeed-link-pdfs}
 '((\EFs{"https://www.jstatsoft.org/index.php/jss/article/view/v0}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{/]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{"} . \EFs{"https://www.jstatsoft.org/index.php/jss/article/view/v0\char92{}\char92{}1/v\char92{}\char92{}1.pdf"})
 (\EFs{"http://arxiv.org/abs/}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{/]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{"} . \EFs{"https://arxiv.org/pdf/\char92{}\char92{}1.pdf"}))
 \EFd{"List of alists of the form (REGEX-FOR-LINK . FORM-FOR-PDF)"})

 (\EFk{defun} \EFf{elfeed-show-pdf} (entry)
 (\EFk{interactive}
 (list (\EFk{or} elfeed-show-entry (elfeed-search-selected \EFb{:ignore-region}))))
 (\EFk{let} ((link (elfeed-entry-link entry))
 (feed-name (plist-get (elfeed-feed-meta (elfeed-entry-feed entry)) \EFb{:title}))
 (title (elfeed-entry-title entry))
 (file-view-function
 (\EFk{lambda} (f)
 (\EFk{when} elfeed-show-entry
 (elfeed-kill-buffer))
 (pop-to-buffer (find-file-noselect f))))
 pdf)

 (\EFk{let} ((file (expand-file-name
 (concat (subst-char-in-string ?/ ?, title) \EFs{".pdf"})
 (expand-file-name (subst-char-in-string ?/ ?, feed-name)
 elfeed-pdf-dir))))
 (\EFk{if} (file-exists-p file)
 (funcall file-view-function file)
 (\EFk{dolist} (link-pdf elfeed-link-pdfs)
 (\EFk{when} (\EFk{and} (string-match-p (car link-pdf) link)
 (not pdf))
 (\EFk{setq} pdf (replace-regexp-in-string (car link-pdf) (cdr link-pdf) link))))
 (\EFk{if} (not pdf)
 (message \EFs{"No associated PDF for entry"})
 (message \EFs{"Fetching \%s"} pdf)
 (\EFk{unless} (file-exists-p (file-name-directory file))
 (make-directory (file-name-directory file) t))
 (url-copy-file pdf file)
 (funcall file-view-function file))))))

)
\end{Verbatim}
\end{Code}
\section{Dictionary}
\label{sec:org3cde183}

Doom already loads \verb~define-word~, and provides it's own definition service using
\href{https://github.com/gromnitsky/wordnut}{wordnut}. However, using an offline dictionary possess a few compelling
advantages, namely:
\begin{itemize}
\item speed
\item integration of multiple dictionaries
\end{itemize}
\href{http://goldendict.org/}{GoldenDict} seems like the best option currently available, but lacks a CLI.
Hence, we'll fall back to \href{https://dushistov.github.io/sdcv/}{sdcv} (a CLI version of StarDict) for now.
To interface with this, we'll use a my \verb~lexic~ package.

\begin{center}
\includegraphics[width=.9\linewidth]{/tmp/org-persist-IRkN4n/9a/93d7de-1989-46bb-b025-57d53c7da0b9-ce9f31cbf972601036cfa01ad8ed320d.png}
\end{center}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} lexic \EFb{:recipe} (\EFb{:local-repo} \EFs{"lisp/lexic"}))
\end{Verbatim}
\end{Code}

Given that a request for a CLI is the \href{https://github.com/goldendict/goldendict/issues/37}{most upvoted issue} on GitHub for
GoldenDict, it's likely we'll be able to switch from \texttt{sdcv} to that in the future.

Since GoldenDict supports StarDict files, I expect this will be a relatively
painless switch.

We start off by loading \verb~lexic~, then we'll integrate it into pre-existing
definition functionality (like \texttt{+lookup/dictionary-definition}).
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} lexic
 \EFb{:commands} lexic-search lexic-list-dictionary
 \EFb{:config}
 (map! \EFb{:map} lexic-mode-map
 \EFb{:n} \EFs{"q"} \#'lexic-return-from-lexic
 \EFb{:nv} \EFs{"RET"} \#'lexic-search-word-at-point
 \EFb{:n} \EFs{"a"} \#'outline-show-all
 \EFb{:n} \EFs{"h"} (\EFk{cmd!} (outline-hide-sublevels 3))
 \EFb{:n} \EFs{"o"} \#'lexic-toggle-entry
 \EFb{:n} \EFs{"n"} \#'lexic-next-entry
 \EFb{:n} \EFs{"N"} (\EFk{cmd!} (lexic-next-entry t))
 \EFb{:n} \EFs{"p"} \#'lexic-previous-entry
 \EFb{:n} \EFs{"P"} (\EFk{cmd!} (lexic-previous-entry t))
 \EFb{:n} \EFs{"E"} (\EFk{cmd!} (lexic-return-from-lexic) \EFcd{;} \EFc{expand}
 (switch-to-buffer (lexic-get-buffer)))
 \EFb{:n} \EFs{"M"} (\EFk{cmd!} (lexic-return-from-lexic) \EFcd{;} \EFc{minimise}
 (lexic-goto-lexic))
 \EFb{:n} \EFs{"C-p"} \#'lexic-search-history-backwards
 \EFb{:n} \EFs{"C-n"} \#'lexic-search-history-forwards
 \EFb{:n} \EFs{"/"} (\EFk{cmd!} (call-interactively \#'lexic-search))))
\end{Verbatim}
\end{Code}

Now let's use this instead of wordnet.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defadvice!} +lookup/dictionary-definition-lexic (identifier \EFt{\&optional} arg)
 \EFd{"Look up the definition of the word at point (or selection) using `}\textcolor[HTML]{b751b6}{\textit{lexic-search}}\EFd{'."}
 \EFb{:override} \#'+lookup/dictionary-definition
 (\EFk{interactive}
 (list (\EFk{or} (doom-thing-at-point-or-region 'word)
 (read-string \EFs{"Look up in dictionary: "}))
 current-prefix-arg))
 (lexic-search identifier nil nil t))
\end{Verbatim}
\end{Code}

Lastly, I want to make sure I have some dictionaries set up. I've put a tarball
of dictionaries online which we can download if none seem to be present on the
system.
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFv{DIC_FOLDER}=\$\{\EFv{STARDICT_DATA_DIR}:-\$\{\EFv{XDG_DATA_HOME}:-\$\EFv{HOME}/.local/share\}/stardict\}/dic
\EFk{if} [\EFnc{!} -d \EFs{"\$DIC_FOLDER"}]; \EFk{then}
 \EFv{TMP}=\EFs{"\$(mktemp -d /tmp/dict-XXX)"}
 \EFb{cd} \EFs{"\$TMP"}
 curl -A \EFs{"Mozilla/4.0"} -o \EFs{"stardict.tar.gz"} \EFs{"https://tecosaur.com/resources/config/stardict.tar.gz"}
 tar -xf \EFs{"stardict.tar.gz"}
 rm \EFs{"stardict.tar.gz"}
 mkdir -p \EFs{"\$DIC_FOLDER"}
 mv * \EFs{"\$DIC_FOLDER"}
\EFk{fi}
\end{Verbatim}
\end{Code}

We can also add a \verb~doctor~ dictionary check.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{if} (executable-find \EFs{"sdcv"})
 (\EFk{let} ((dict-root (concat (\EFk{or} (getenv \EFs{"STARDICT_DATA_DIR"})
 (concat (\EFk{or} \EFs{"\char126{}/.local/share"}
 (getenv \EFs{"XDG_DATA_HOME"}))
 \EFs{"/stardict"}))
 \EFs{"/dic"}))
 (dicts '(\EFs{"webster"} \EFs{"synonyms"} \EFs{"etymology"} \EFs{"en-to-latin"} \EFs{"hitchcock"} \EFs{"elements"})))
 (\EFk{if} (file-exists-p dict-root)
 (\EFk{dolist} (dict dicts)
 (\EFk{unless} (file-exists-p (file-name-concat dict-root dict))
 (warn! (format \EFs{"Absent sdcv dictionary: \%s."} dict))))
 (warn! \EFs{"Couldn't find any stcv dictionaries, lexic will not function"})))
 (warn! \EFs{"Couldn't find sdcv executable, lexic will be disabled"}))
\end{Verbatim}
\end{Code}
\section{Mail}
\label{sec:orgaffddb1}

\subsection{Fetching}
\label{sec:org1842666}

The contenders for this seem to be:
\begin{itemize}
\item \href{https://www.offlineimap.org/}{OfflineIMAP} (\href{https://wiki.archlinux.org/index.php/OfflineIMAP}{ArchWiki page})
\item \href{http://isync.sourceforge.net/mbsync.html}{isync/mbsync} (\href{https://wiki.archlinux.org/index.php/isync}{ArchWiki page})
\end{itemize}

From perusing r/emacs the prevailing opinion seems to be that
\begin{itemize}
\item isync is faster
\item isync works more reliably
\end{itemize}
So let's use that.

The config was straightforward, and is located at \href{file:///home/runner/.mbsyncrc}{\textasciitilde{}/.mbsyncrc}.
I'm currently successfully connecting to: Gmail, office365mail, and dovecot.
I'm also shoving passwords in my \href{file:///home/runner/.authinfo.gpg}{authinfo.gpg} and fetching them using \texttt{PassCmd}:
\begin{Code}
\begin{Verbatim}
\color{EFD}gpg2 -q --for-your-eyes-only --no-tty -d \char126{}/.authinfo.gpg | awk \EFs{'/machine IMAP_SERCER login EMAIL_ADDR/ \{print \$NF\}'}
\end{Verbatim}
\end{Code}

We can run \texttt{mbsync -a} in a systemd service file or something, but we can do
better than that. \href{https://github.com/vsemyonoff/easymail\#usage}{vsemyonoff/easymail} seems like the sort of thing we want, but
is written for \verb~notmuch~ unfortunately. We can still use it for inspiration though.
Using \href{https://gitlab.com/shackra/goimapnotify}{goimapnotify} we should be able to sync just after new
mail. Unfortunately this means \emph{yet another} config file :(

We install with
\begin{Code}
\begin{Verbatim}
\color{EFD}go get -u gitlab.com/shackra/goimapnotify
ln -s \char126{}/.local/share/go/bin/goimapnotify \char126{}/.local/bin/
\end{Verbatim}
\end{Code}

Here's the general plan:
\begin{enumerate}
\item Use \texttt{goimapnotify} to monitor mailboxes
This needs it's own set of configs, and \verb~systemd~ services, which is a pain. We
remove this pain by writing a python script (found below) to setup these
config files, and systemd services by parsing the \href{file:///home/runner/.mbsyncrc}{\textasciitilde{}/.mbsyncrc} file.
\item On new mail, call \texttt{mbsync -{}-{}pull -{}-{}new ACCOUNT:BOX}
We try to be as specific as possible, so \texttt{mbsync} returns as soon as possible,
and we can \emph{get those emails as soon as possible}.
\item Try to call \texttt{mu index -{}-{}lazy-fetch}.
This fails if mu4e is already open (due to a write lock on the database), so
in that case we just \texttt{touch} a tmp file (\verb~/tmp/mu_reindex_now~).
\item Separately, we set up Emacs to check for the existance of
\verb~/tmp/mu_reindex_now~ once a second while mu4e is
running, and (after deleting the file) call \texttt{mu4e-update-index}.
\end{enumerate}

We can add a \verb~doctor~ check for these external dependencies.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{when} (file-exists-p \EFs{"\char126{}/.mail"}) \EFcd{;} \EFc{We care about mail when the mail folder exists}
 (\EFk{unless} (executable-find \EFs{"mu"})
 (error! \EFs{"Couldn't find mail dependency mu."}))
 (\EFk{unless} (executable-find \EFs{"mbsync"})
 (error! \EFs{"Couldn't find mail dependency mbsync."}))
 (\EFk{unless} (executable-find \EFs{"msmtp"})
 (error! \EFs{"Couldn't find mail dependency msmtp."}))
 (\EFk{unless} (executable-find \EFs{"goimapnotify"})
 (warn! \EFs{"Couldn't find mail helper goimapnotify, mail syncs will be slower."})))
\end{Verbatim}
\end{Code}

Let's start off by handling the elisp side of things
\begin{enumerate}
\item Rebuild mail index while using mu4e
\label{sec:org4aa500d}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{mu4e-reindex-request-file} \EFs{"/tmp/mu_reindex_now"}
 \EFd{"Location of the reindex request, signaled by existance"})
(\EFk{defvar} \EFv{mu4e-reindex-request-min-seperation} 5.0
 \EFd{"Don't refresh again until this many second have elapsed.}
\EFd{Prevents a series of redisplays from being called (when set to an appropriate value)"})

(\EFk{defvar} \EFv{mu4e-reindex-request--file-watcher} nil)
(\EFk{defvar} \EFv{mu4e-reindex-request--file-just-deleted} nil)
(\EFk{defvar} \EFv{mu4e-reindex-request--last-time} 0)

(\EFk{defun} \EFf{mu4e-reindex-request--add-watcher} ()
 (\EFk{setq} mu4e-reindex-request--file-just-deleted nil)
 (\EFk{setq} mu4e-reindex-request--file-watcher
 (file-notify-add-watch mu4e-reindex-request-file
 '(change)
 \#'mu4e-file-reindex-request)))

(\EFk{defadvice!} mu4e-stop-watching-for-reindex-request ()
 \EFb{:after} \#'mu4e--server-kill
 (\EFk{if} mu4e-reindex-request--file-watcher
 (file-notify-rm-watch mu4e-reindex-request--file-watcher)))

(\EFk{defadvice!} mu4e-watch-for-reindex-request ()
 \EFb{:after} \#'mu4e--server-start
 (mu4e-stop-watching-for-reindex-request)
 (\EFk{when} (file-exists-p mu4e-reindex-request-file)
 (delete-file mu4e-reindex-request-file))
 (mu4e-reindex-request--add-watcher))

(\EFk{defun} \EFf{mu4e-file-reindex-request} (event)
 \EFd{"Act based on the existance of `}\textcolor[HTML]{b751b6}{\textit{mu4e-reindex-request-file}}\EFd{'"}
 (\EFk{if} mu4e-reindex-request--file-just-deleted
 (mu4e-reindex-request--add-watcher)
 (\EFk{when} (equal (nth 1 event) 'created)
 (delete-file mu4e-reindex-request-file)
 (\EFk{setq} mu4e-reindex-request--file-just-deleted t)
 (mu4e-reindex-maybe t))))

(\EFk{defun} \EFf{mu4e-reindex-maybe} (\EFt{\&optional} new-request)
 \EFd{"Run `}\textcolor[HTML]{b751b6}{\textit{mu4e--server-index}}\EFd{' if it's been more than}
\EFd{`}\textcolor[HTML]{b751b6}{\textit{mu4e-reindex-request-min-seperation}}\EFd{'seconds since the last request,"}
 (\EFk{let} ((time-since-last-request (- (float-time)
 mu4e-reindex-request--last-time)))
 (\EFk{when} new-request
 (\EFk{setq} mu4e-reindex-request--last-time (float-time)))
 (\EFk{if} (> time-since-last-request mu4e-reindex-request-min-seperation)
 (mu4e--server-index nil t)
 (\EFk{when} new-request
 (run-at-time (* 1.1 mu4e-reindex-request-min-seperation) nil
 \#'mu4e-reindex-maybe)))))
\end{Verbatim}
\end{Code}
\item Config transcoding \& service management
\label{sec:orgd1dd6a1}

As long as the \verb~mbsyncrc~ file exists, this is as easy as running

\begin{Code}
\begin{Verbatim}
\color{EFD}\char126{}/.config/doom/misc/mbsync-imapnotify.py
\end{Verbatim}
\end{Code}

Let's also add a \verb~doctor~ check for this.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{when} (\EFk{and} (executable-find \EFs{"goimapnotify"})
 (not (file-exists-p \EFs{"\char126{}/.config/imapnotify"})))
 (warn! \EFs{"goimapnotify is installed but not configured."}))
\end{Verbatim}
\end{Code}

When run without flags this will perform the following actions
\begin{itemize}
\item Read, and parse \href{file:///home/runner/.mbsyncrc}{\textasciitilde{}/.mbsyncrc}, specifically recognising the following properties
\begin{itemize}
\item \texttt{IMAPAccount}
\item \texttt{Host}
\item \texttt{Port}
\item \texttt{User}
\item \texttt{Password}
\item \texttt{PassCmd}
\item \texttt{Patterns}
\end{itemize}
\item Call \texttt{mbsync -{}-{}list ACCOUNT}, and filter results according to \texttt{Patterns}
\item Construct a imapnotify config for each account, with the following hooks
\begin{description}
\item[{onNewMail}]

\item[{onNewMailPost}]
\end{description}
\item Compare accounts list to previous accounts, enable/disable the relevant
systemd services, called with the \texttt{-{}-{}now} flag (start/stop services as well)
\end{itemize}

This script also supports the following flags
\begin{itemize}
\item \texttt{-{}-{}status} to get the status of the relevant systemd services supports \verb~active~,
\verb~failing~, and \verb~disabled~
\item \texttt{-{}-{}enable} to enable all relevant systemd services
\item \texttt{-{}-{}disable} to disable all relevant systemd services
\end{itemize}
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFk{from} pathlib \EFk{import} Path
\EFk{import} json
\EFk{import} re
\EFk{import} shutil
\EFk{import} subprocess
\EFk{import} sys
\EFk{import} fnmatch

\EFv{mbsyncFile} = Path(\EFs{"\char126{}/.mbsyncrc"}).expanduser()

\EFv{imapnotifyConfigFolder} = Path(\EFs{"\char126{}/.config/imapnotify/"}).expanduser()
imapnotifyConfigFolder.mkdir(exist_ok=\EFo{True})
\EFv{imapnotifyConfigFilename} = \EFs{"notify.conf"}

\EFv{imapnotifyDefault} = \{
 \EFs{"host"}: \EFs{""},
 \EFs{"port"}: 993,
 \EFs{"tls"}: \EFo{True},
 \EFs{"tlsOptions"}: \{\EFs{"rejectUnauthorized"}: \EFo{True}\},
 \EFs{"onNewMail"}: \EFs{""},
 \EFs{"onNewMailPost"}: \EFs{"if mu index --lazy-check; then test -f /tmp/mu_reindex_now \&\& rm /tmp/mu_reindex_now; else touch /tmp/mu_reindex_now; fi"},
\}

\EFk{def} \EFf{stripQuotes}(string):
 \EFk{if} string[0] == \EFs{'"'} \EFk{and} string[-1] == \EFs{'"'}:
 \EFk{return} string[1:-1].replace(\EFs{'}\EFo{\char92{}\char92{}}\EFs{"'}, \EFs{'"'})

\EFv{mbsyncInotifyMapping} = \{
 \EFs{"Host"}: (\EFb{str}, \EFs{"host"}),
 \EFs{"Port"}: (\EFb{int}, \EFs{"port"}),
 \EFs{"User"}: (\EFb{str}, \EFs{"username"}),
 \EFs{"Password"}: (\EFb{str}, \EFs{"password"}),
 \EFs{"PassCmd"}: (stripQuotes, \EFs{"passwordCmd"}),
 \EFs{"Patterns"}: (\EFb{str}, \EFs{"_patterns"}),
\}

\EFv{oldAccounts} = [d.name \EFk{for} d \EFk{in} imapnotifyConfigFolder.iterdir() \EFk{if} d.is_dir()]

\EFv{currentAccount} = \EFs{""}
\EFv{currentAccountData} = \{\}

\EFv{successfulAdditions} = []

\EFk{def} \EFf{processLine}(line):
 \EFv{newAcc} = re.\EFk{match}(r\EFs{"\char94{}IMAPAccount ([\char94{}\#]+)"}, line)

 \EFv{linecontent} = re.sub(r\EFs{"(\char94{}|[\char94{}\char92{}\char92{}])\#.*"}, \EFs{""}, line).split(\EFs{" "}, 1)
 \EFk{if} \EFb{len}(linecontent) != 2:
 \EFk{return}

 \EFv{parameter}, \EFv{value} = linecontent

 \EFk{if} parameter == \EFs{"IMAPAccount"}:
 \EFk{if} currentAccountNumber > 0:
 finaliseAccount()
 newAccount(value)
 \EFk{elif} parameter \EFk{in} mbsyncInotifyMapping.keys():
 \EFv{parser}, \EFv{key} = mbsyncInotifyMapping[parameter]
 \EFv{currentAccountData}[key] = parser(value)
 \EFk{elif} parameter == \EFs{"Channel"}:
 \EFv{currentAccountData}[\EFs{"onNewMail"}] = f\EFs{"mbsync --pull --new} \{value\}\EFs{:'\%s'"}

\EFk{def} \EFf{newAccount}(name):
 \EFk{global} currentAccountNumber
 \EFk{global} currentAccount
 \EFk{global} currentAccountData
 \EFv{currentAccountNumber} += 1
 \EFv{currentAccount} = name
 \EFv{currentAccountData} = \{\}
 \EFb{print}(f\EFs{"}\EFo{\char92{}n\char92{}033}\EFs{[1;32m}\{currentAccountNumber\}\EFo{\char92{}033}\EFs{[0;32m -} \{name\}\EFo{\char92{}033}\EFs{[0;37m"})

\EFk{def} \EFf{accountToFoldername}(name):
 \EFk{return} re.sub(r\EFs{"[\char94{}A-Za-z0-9]"}, \EFs{""}, name)

\EFk{def} \EFf{finaliseAccount}():
 \EFk{if} currentAccountNumber == 0:
 \EFk{return}

 \EFk{global} currentAccountData
 \EFk{try}:
 \EFv{currentAccountData}[\EFs{"boxes"}] = getMailBoxes(currentAccount)
 \EFk{except} subprocess.CalledProcessError \EFk{as} e:
 \EFb{print}(
 f\EFs{"}\EFo{\char92{}033}\EFs{[1;31mError:}\EFo{\char92{}033}\EFs{[0;31m failed to fetch mailboxes (skipping): "}
 + f\EFs{"`}\{' '.join(e.cmd)\}\EFs{' returned code} \{e.returncode\}\EFo{\char92{}033}\EFs{[0;37m"}
)
 \EFk{return}
 \EFk{except} subprocess.TimeoutExpired \EFk{as} e:
 \EFb{print}(
 f\EFs{"}\EFo{\char92{}033}\EFs{[1;31mError:}\EFo{\char92{}033}\EFs{[0;31m failed to fetch mailboxes (skipping): "}
 + f\EFs{"`}\{' '.join(e.cmd)\}\EFs{' timed out after} \{e.timeout:.2f\} \EFs{seconds}\EFo{\char92{}033}\EFs{[0;37m"}
)
 \EFk{return}

 \EFk{if} \EFs{"_patterns"} \EFk{in} currentAccountData:
 \EFv{currentAccountData}[\EFs{"boxes"}] = applyPatternFilter(
 currentAccountData[\EFs{"_patterns"}], currentAccountData[\EFs{"boxes"}]
)

 \EFcd{\#} \EFc{strip not-to-be-exported data}
 \EFv{currentAccountData} = \{
 k: currentAccountData[k] \EFk{for} k \EFk{in} currentAccountData \EFk{if} k[0] != \EFs{"_"}
 \}

 \EFv{parametersSet} = currentAccountData.keys()
 \EFv{currentAccountData} = \{**imapnotifyDefault, **currentAccountData\}
 \EFk{for} key, val \EFk{in} currentAccountData.items():
 \EFv{valColor} = \EFs{"}\EFo{\char92{}033}\EFs{[0;33m"} \EFk{if} key \EFk{in} parametersSet \EFk{else} \EFs{"}\EFo{\char92{}033}\EFs{[0;37m"}
 \EFb{print}(f\EFs{"} \EFo{\char92{}033}\EFs{[1;37m}\{key:<13\} \{valColor\}\{val\}\EFo{\char92{}033}\EFs{[0;37m"})

 \EFk{if} (
 \EFb{len}(currentAccountData[\EFs{"boxes"}]) > 15
 \EFk{and} \EFs{"@gmail.com"} \EFk{in} currentAccountData[\EFs{"username"}]
):
 \EFb{print}(
 \EFs{"} \EFo{\char92{}033}\EFs{[1;31mWarning:}\EFo{\char92{}033}\EFs{[0;31m Gmail raises an error when more than"}
 + \EFs{"}\EFo{\char92{}033}\EFs{[1;31m15}\EFo{\char92{}033}\EFs{[0;31m simultanious connections are attempted."}
 + \EFs{"}\EFo{\char92{}n} \EFs{You are attempting to monitor "}
 + f\EFs{"}\EFo{\char92{}033}\EFs{[1;31m}\{\EFb{len}(currentAccountData['boxes'])\}\EFo{\char92{}033}\EFs{[0;31m mailboxes.}\EFo{\char92{}033}\EFs{[0;37m"}
)

 \EFv{configFile} = (
 imapnotifyConfigFolder
 / accountToFoldername(currentAccount)
 / imapnotifyConfigFilename
)
 configFile.parent.mkdir(exist_ok=\EFo{True})

 json.dump(currentAccountData, \EFb{open}(configFile, \EFs{"w"}), indent=2)
 \EFb{print}(f\EFs{"} \EFo{\char92{}033}\EFs{[0;35mConfig generated and saved to} \{configFile\}\EFo{\char92{}033}\EFs{[0;37m"})

 \EFk{global} successfulAdditions
 successfulAdditions.append(accountToFoldername(currentAccount))

\EFk{def} \EFf{getMailBoxes}(account):
 \EFv{boxes} = subprocess.run(
 [\EFs{"mbsync"}, \EFs{"--list"}, account], check=\EFo{True}, stdout=subprocess.PIPE, timeout=10.0
)
 \EFk{return} boxes.stdout.decode(\EFs{"utf-8"}).strip().split(\EFs{"}\EFo{\char92{}n}\EFs{"})

\EFk{def} \EFf{applyPatternFilter}(pattern, mailboxes):
 \EFv{patternRegexs} = getPatternRegexes(pattern)
 \EFk{return} [m \EFk{for} m \EFk{in} mailboxes \EFk{if} testPatternRegexs(patternRegexs, m)]

\EFk{def} \EFf{getPatternRegexes}(pattern):
 \EFk{def} \EFf{addGlob}(b):
 blobs.append(b.replace(\EFs{'}\EFo{\char92{}\char92{}}\EFs{"'}, \EFs{'"'}))
 \EFk{return} \EFs{""}

 \EFv{blobs} = []
 \EFv{pattern} = re.sub(r\EFs{' ?"([\char94{}"]+)"'}, \EFk{lambda} m: addGlob(m.groups()[0]), pattern)
 blobs.extend(pattern.split(\EFs{" "}))
 \EFv{blobs} = [
 (-1, fnmatch.translate(b[1::])) \EFk{if} b[0] == \EFs{"!"} \EFk{else} (1, fnmatch.translate(b))
 \EFk{for} b \EFk{in} blobs
]
 \EFk{return} blobs

\EFk{def} \EFf{testPatternRegexs}(regexCond, \EFk{case}):
 \EFk{for} factor, regex \EFk{in} regexCond:
 \EFk{if} factor * \EFb{bool}(re.\EFk{match}(regex, \EFk{case})) < 0:
 \EFk{return} \EFo{False}
 \EFk{return} \EFo{True}

\EFk{def} \EFf{processSystemdServices}():
 \EFv{keptAccounts} = [acc \EFk{for} acc \EFk{in} successfulAdditions \EFk{if} acc \EFk{in} oldAccounts]
 \EFv{freshAccounts} = [acc \EFk{for} acc \EFk{in} successfulAdditions \EFk{if} acc \EFk{not} \EFk{in} oldAccounts]
 \EFv{staleAccounts} = [acc \EFk{for} acc \EFk{in} oldAccounts \EFk{if} acc \EFk{not} \EFk{in} successfulAdditions]

 \EFk{if} keptAccounts:
 \EFb{print}(f\EFs{"}\EFo{\char92{}033}\EFs{[1;34m}\{\EFb{len}(keptAccounts)\}\EFo{\char92{}033}\EFs{[0;34m kept accounts:}\EFo{\char92{}033}\EFs{[0;37m"})
 restartAccountSystemdServices(keptAccounts)

 \EFk{if} freshAccounts:
 \EFb{print}(f\EFs{"}\EFo{\char92{}033}\EFs{[1;32m}\{\EFb{len}(freshAccounts)\}\EFo{\char92{}033}\EFs{[0;32m new accounts:}\EFo{\char92{}033}\EFs{[0;37m"})
 enableAccountSystemdServices(freshAccounts)
 \EFk{else}:
 \EFb{print}(f\EFs{"}\EFo{\char92{}033}\EFs{[0;32mNo new accounts.}\EFo{\char92{}033}\EFs{[0;37m"})

 \EFv{notActuallyEnabledAccounts} = [
 acc \EFk{for} acc \EFk{in} successfulAdditions \EFk{if} \EFk{not} getAccountServiceState(acc)[\EFs{"enabled"}]
]
 \EFk{if} notActuallyEnabledAccounts:
 \EFb{print}(
 f\EFs{"}\EFo{\char92{}033}\EFs{[1;32m}\{\EFb{len}(notActuallyEnabledAccounts)\}\EFo{\char92{}033}\EFs{[0;32m accounts need re-enabling:}\EFo{\char92{}033}\EFs{[0;37m"}
)
 enableAccountSystemdServices(notActuallyEnabledAccounts)

 \EFk{if} staleAccounts:
 \EFb{print}(f\EFs{"}\EFo{\char92{}033}\EFs{[1;33m}\{\EFb{len}(staleAccounts)\}\EFo{\char92{}033}\EFs{[0;33m removed accounts:}\EFo{\char92{}033}\EFs{[0;37m"})
 disableAccountSystemdServices(staleAccounts)
 \EFk{else}:
 \EFb{print}(f\EFs{"}\EFo{\char92{}033}\EFs{[0;33mNo removed accounts.}\EFo{\char92{}033}\EFs{[0;37m"})

\EFk{def} \EFf{enableAccountSystemdServices}(accounts):
 \EFk{for} account \EFk{in} accounts:
 \EFb{print}(f\EFs{"} \EFo{\char92{}033}\EFs{[0;32m -} \EFo{\char92{}033}\EFs{[1;37m}\{account:<18\}\EFs{"}, end=\EFs{"}\EFo{\char92{}033}\EFs{[0;37m"}, flush=\EFo{True})
 \EFk{if} setSystemdServiceState(
 \EFs{"enable"}, f\EFs{"goimapnotify@}\{accountToFoldername(account)\}\EFs{.service"}
):
 \EFb{print}(\EFs{"}\EFo{\char92{}033}\EFs{[1;32m enabled"})

\EFk{def} \EFf{disableAccountSystemdServices}(accounts):
 \EFk{for} account \EFk{in} accounts:
 \EFb{print}(f\EFs{"} \EFo{\char92{}033}\EFs{[0;33m -} \EFo{\char92{}033}\EFs{[1;37m}\{account:<18\}\EFs{"}, end=\EFs{"}\EFo{\char92{}033}\EFs{[0;37m"}, flush=\EFo{True})
 \EFk{if} setSystemdServiceState(
 \EFs{"disable"}, f\EFs{"goimapnotify@}\{accountToFoldername(account)\}\EFs{.service"}
):
 \EFb{print}(\EFs{"}\EFo{\char92{}033}\EFs{[1;33m disabled"})

\EFk{def} \EFf{restartAccountSystemdServices}(accounts):
 \EFk{for} account \EFk{in} accounts:
 \EFb{print}(f\EFs{"} \EFo{\char92{}033}\EFs{[0;34m -} \EFo{\char92{}033}\EFs{[1;37m}\{account:<18\}\EFs{"}, end=\EFs{"}\EFo{\char92{}033}\EFs{[0;37m"}, flush=\EFo{True})
 \EFk{if} setSystemdServiceState(
 \EFs{"restart"}, f\EFs{"goimapnotify@}\{accountToFoldername(account)\}\EFs{.service"}
):
 \EFb{print}(\EFs{"}\EFo{\char92{}033}\EFs{[1;34m restarted"})

\EFk{def} \EFf{setSystemdServiceState}(state, service):
 \EFk{try}:
 \EFv{enabler} = subprocess.run(
 [\EFs{"systemctl"}, \EFs{"--user"}, state, service, \EFs{"--now"}],
 check=\EFo{True},
 stderr=subprocess.DEVNULL,
 timeout=5.0,
)
 \EFk{return} \EFo{True}
 \EFk{except} subprocess.CalledProcessError \EFk{as} e:
 \EFb{print}(
 f\EFs{"} \EFo{\char92{}033}\EFs{[1;31mfailed}\EFo{\char92{}033}\EFs{[0;31m to} \{state\}\EFs{, `}\{' '.join(e.cmd)\}\EFs{'"}
 + f\EFs{"returned code} \{e.returncode\}\EFo{\char92{}033}\EFs{[0;37m"}
)
 \EFk{except} subprocess.TimeoutExpired \EFk{as} e:
 \EFb{print}(f\EFs{"} \EFo{\char92{}033}\EFs{[1;31mtimed out after} \{e.timeout:.2f\} \EFs{seconds}\EFo{\char92{}033}\EFs{[0;37m"})
 \EFk{return} \EFo{False}

\EFk{def} \EFf{getAccountServiceState}(account):
 \EFk{return} \{
 state: \EFb{bool}(
 1
 - subprocess.run(
 [
 \EFs{"systemctl"},
 \EFs{"--user"},
 f\EFs{"is-}\{state\}\EFs{"},
 \EFs{"--quiet"},
 f\EFs{"goimapnotify@}\{accountToFoldername(account)\}\EFs{.service"},
],
 stderr=subprocess.DEVNULL,
).returncode
)
 \EFk{for} state \EFk{in} (\EFs{"enabled"}, \EFs{"active"}, \EFs{"failing"})
 \}

\EFk{def} \EFf{getAccountServiceStates}(accounts):
 \EFk{for} account \EFk{in} accounts:
 \EFv{enabled}, \EFv{active}, \EFv{failing} = getAccountServiceState(account).values()
 \EFb{print}(f\EFs{" -} \EFo{\char92{}033}\EFs{[1;37m}\{account:<18\}\EFo{\char92{}033}\EFs{[0;37m "}, end=\EFs{""}, flush=\EFo{True})
 \EFk{if} \EFk{not} enabled:
 \EFb{print}(\EFs{"}\EFo{\char92{}033}\EFs{[1;33mdisabled}\EFo{\char92{}033}\EFs{[0;37m"})
 \EFk{elif} active:
 \EFb{print}(\EFs{"}\EFo{\char92{}033}\EFs{[1;32mactive}\EFo{\char92{}033}\EFs{[0;37m"})
 \EFk{elif} failing:
 \EFb{print}(\EFs{"}\EFo{\char92{}033}\EFs{[1;31mfailing}\EFo{\char92{}033}\EFs{[0;37m"})
 \EFk{else}:
 \EFb{print}(\EFs{"}\EFo{\char92{}033}\EFs{[1;35min an unrecognised state}\EFo{\char92{}033}\EFs{[0;37m"})

\EFk{if} \EFb{len}(sys.argv) > 1:
 \EFk{if} sys.argv[1] \EFk{in} [\EFs{"-e"}, \EFs{"--enable"}]:
 enableAccountSystemdServices(oldAccounts)
 \EFo{exit}()
 \EFk{elif} sys.argv[1] \EFk{in} [\EFs{"-d"}, \EFs{"--disable"}]:
 disableAccountSystemdServices(oldAccounts)
 \EFo{exit}()
 \EFk{elif} sys.argv[1] \EFk{in} [\EFs{"-r"}, \EFs{"--restart"}]:
 restartAccountSystemdServices(oldAccounts)
 \EFo{exit}()
 \EFk{elif} sys.argv[1] \EFk{in} [\EFs{"-s"}, \EFs{"--status"}]:
 getAccountServiceStates(oldAccounts)
 \EFo{exit}()
 \EFk{elif} sys.argv[1] \EFk{in} [\EFs{"-h"}, \EFs{"--help"}]:
 \EFb{print}(\EFs{"""}\EFo{\char92{}033}\EFs{[1;37mMbsync to IMAP Notify config generator.}\EFo{\char92{}033}\EFs{[0;37m}

\EFs{Usage: mbsync-imapnotify [options]}

\EFs{Options:}
 \EFs{-e, --enable enable all services}
 \EFs{-d, --disable disable all services}
 \EFs{-r, --restart restart all services}
 \EFs{-s, --status fetch the status for all services}
 \EFs{-h, --help show this help}
\EFs{"""}, end=\EFs{''})
 \EFo{exit}()
 \EFk{else}:
 \EFb{print}(f\EFs{"}\EFo{\char92{}033}\EFs{[0;31mFlag} \{sys.argv[1]\} \EFs{not recognised, try --help}\EFo{\char92{}033}\EFs{[0;37m"})
 \EFo{exit}()

\EFv{mbsyncData} = \EFb{open}(mbsyncFile, \EFs{"r"}).read()

\EFv{currentAccountNumber} = 0

\EFv{totalAccounts} = \EFb{len}(re.findall(r\EFs{"\char94{}IMAPAccount"}, mbsyncData, re.M))

\EFk{def} \EFf{main}():
 \EFb{print}(\EFs{"}\EFo{\char92{}033}\EFs{[1;34m:: MbSync to Go IMAP notify config file creator ::}\EFo{\char92{}033}\EFs{[0;37m"})

 shutil.rmtree(imapnotifyConfigFolder)
 imapnotifyConfigFolder.mkdir(exist_ok=\EFo{False})
 \EFb{print}(\EFs{"}\EFo{\char92{}033}\EFs{[1;30mImap Notify config dir purged}\EFo{\char92{}033}\EFs{[0;37m"})

 \EFb{print}(f\EFs{"Identified} \EFo{\char92{}033}\EFs{[1;32m}\{totalAccounts\}\EFo{\char92{}033}\EFs{[0;32m accounts.}\EFo{\char92{}033}\EFs{[0;37m"})

 \EFk{for} line \EFk{in} mbsyncData.split(\EFs{"}\EFo{\char92{}n}\EFs{"}):
 processLine(line)

 finaliseAccount()

 \EFb{print}(
 f\EFs{"}\EFo{\char92{}n}\EFs{Config files generated for} \EFo{\char92{}033}\EFs{[1;36m}\{\EFb{len}(successfulAdditions)\}\EFo{\char92{}033}\EFs{[0;36m"}
 + f\EFs{" out of} \EFo{\char92{}033}\EFs{[1;36m}\{totalAccounts\}\EFo{\char92{}033}\EFs{[0;37m accounts.}\EFo{\char92{}n}\EFs{"}
)

 processSystemdServices()

\EFk{if} \EFb{__name__} == \EFs{"__main__"}:
 main()
\end{Verbatim}
\end{Code}
\item Systemd
\label{sec:org53bbf14}

We then have a service file to run \texttt{goimapnotify} on all of these generated config files.
We'll use a template service file so we can enable a unit per-account.
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFt{[Unit]}
\EFk{Description}=IMAP notifier using IDLE, golang version.
\EFk{ConditionPathExists}=\EFo{\%h}/.config/imapnotify/\EFo{\%I}/notify.conf
\EFk{After}=network.target
\EFk{Wants}=gpg-agent.service

\EFt{[Service]}
\EFk{ExecStart}=\EFo{\%h}/.local/bin/goimapnotify -conf \EFo{\%h}/.config/imapnotify/\EFo{\%I}/notify.conf
\EFk{Restart}=\EFb{always}
\EFk{RestartSec}=30

\EFt{[Install]}
\EFk{WantedBy}=default.target
\end{Verbatim}
\end{Code}

Enabling the service is actually taken care of by that python script.

From one or two small tests, this can bring the delay down to as low as five
seconds, which I'm quite happy with.

This works well for fetching new mail, but we also want to propagate other
changes (e.g. marking mail as read), and make sure we're up to date at the
start, so for that I'll do the 'normal' thing and run \texttt{mbsync -all} every so often
--- let's say five minutes.

We can accomplish this via a systemd timer, and service file.
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFt{[Unit]}
\EFk{Description}=call mbsync on all accounts every 5 minutes
\EFk{ConditionPathExists}=\EFo{\%h}/.mbsyncrc

\EFt{[Timer]}
\EFk{OnBootSec}=5m
\EFk{OnUnitInactiveSec}=5m

\EFt{[Install]}
\EFk{WantedBy}=default.target
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFt{[Unit]}
\EFk{Description}=mbsync service, sync all mail
\EFk{Documentation}=man:mbsync(1)
\EFk{ConditionPathExists}=\EFo{\%h}/.mbsyncrc
\EFk{Wants}=gpg-agent.service

\EFt{[Service]}
\EFk{Type}=\EFb{oneshot}
\EFk{ExecStart}=/usr/bin/mbsync -c \EFo{\%h}/.mbsyncrc --all

\EFt{[Install]}
\EFk{WantedBy}=mail.target
\end{Verbatim}
\end{Code}

Enabling (and starting) this is as simple as

\begin{Code}
\begin{Verbatim}
\color{EFD}systemctl --user enable mbsync.timer --now
\end{Verbatim}
\end{Code}

We can also add a \verb~doctor~ check for the timer state.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{when} (executable-find \EFs{"mbsync"})
 (\EFk{unless} (string= \EFs{"enabled\char92{}n"} (shell-command-to-string \EFs{"systemctl --user is-enabled mbsync.timer"}))
 (warn! \EFs{"The mbsync timer is not enabled."})))
\end{Verbatim}
\end{Code}
\end{enumerate}
\subsection{Indexing/Searching}
\label{sec:orgaf59454}

This is performed by \href{https://www.djcbsoftware.nl/code/mu/}{Mu}. This is a tool for finding emails stored in the \href{http://en.wikipedia.org/wiki/Maildir}{Maildir} format.
According to the homepage, it's main features are
\begin{itemize}
\item Fast indexing
\item Good searching
\item Support for encrypted and signed messages
\item Rich CLI tooling
\item accent/case normalisation
\item strong integration with email clients
\end{itemize}

Unfortunately \texttt{mu} is not currently packaged from me. Oh well, I guess I'm
building it from source then. I needed to install these packages
\begin{itemize}
\item \verb~gmime-devel~
\item \verb~xapian-core-devel~
\end{itemize}

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFb{cd} \char126{}/.local/lib/
git clone https://github.com/djcb/mu.git
\EFb{cd} ./mu
./autogen.sh
make
sudo make install
\end{Verbatim}
\end{Code}

To check how my version compares to the latest published:

\begin{Code}
\begin{Verbatim}
\color{EFD}curl --silent \EFs{"https://api.github.com/repos/djcb/mu/releases/latest"} | grep \EFs{'"tag_name":'} | sed -E \EFs{'s/.*"([\char94{}"]+)".*/\char92{}1/'}
mu --version | head -n 1 | sed \EFs{'s/.* version //'}
\end{Verbatim}
\end{Code}
\subsection{Sending}
\label{sec:org4a77f89}

\href{https://www.nongnu.org/smtpmail/}{SmtpMail} seems to be the 'default' starting point, but that's not packaged for
me. \href{https://marlam.de/msmtp/}{msmtp} is however, so I'll give that a shot. Reading around a bit (googling
"msmtp vs sendmail" for example) almost every comparison mentioned seems to
suggest msmtp to be a better choice. I have seen the following points raised
\begin{itemize}
\item \texttt{sendmail} has several vulnerabilities
\item \texttt{sendmail} is tedious to configure
\item \texttt{ssmtp} is no longer maintained
\item \texttt{msmtp} is a maintained alternative to \texttt{ssmtp}
\item \texttt{msmtp} is easier to configure
\end{itemize}

The config file is \href{file:///home/runner/.config/msmtp/config}{\textasciitilde{}/.config/msmtp/config}.
\begin{enumerate}
\item System hackery
\label{sec:org7fa0c86}

Unfortunately, I seem to have run into a \href{https://bugs.archlinux.org/task/44994}{bug} present in my packaged version, so
we'll just install the latest from source.

For full use of the \texttt{auth} options, I need \verb~GNU SASL~, which isn't packaged for me.
I don't think I want it, but in case I do, I'll need to do this.
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFb{export} \EFv{GSASL_VERSION}=1.8.1
\EFb{cd} \char126{}/.local/lib/
curl \EFs{"ftp://ftp.gnu.org/gnu/gsasl/libgsasl-\$GSASL_VERSION.tar.gz"} | tar xz
curl \EFs{"ftp://ftp.gnu.org/gnu/gsasl/gsasl-\$GSASL_VERSION.tar.gz"} | tar xz
\EFb{cd} \EFs{"./libgsasl-\$GSASL_VERSION"}
./configure
make
sudo make install
\EFb{cd} ..
\EFb{cd} \EFs{"./gsasl-\$VERSION"}
./configure
make
sudo make install
\EFb{cd} ..
\end{Verbatim}
\end{Code}

Now actually compile \texttt{msmtp}.
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFb{cd} \char126{}/.local/lib/
git clone https://github.com/marlam/msmtp-mirror.git ./msmtp
\EFb{cd} ./msmtp
libtoolize --force
aclocal
autoheader
automake --force-missing --add-missing
autoconf
\EFcd{\#} \EFc{if using GSASL}
\EFcd{\#} \EFc{PKG_CONFIG_PATH=/usr/local/lib/pkgconfig ./configure --with-libgsasl}
./configure
make
sudo make install
\end{Verbatim}
\end{Code}

If using \verb~GSASL~ (from earlier) we need to make ensure that the dynamic library in
in the library path. We can do by adding an executable with the same name
earlier on in my \texttt{\$PATH}.
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFv{LD_LIBRARY_PATH}=/usr/local/lib exec /usr/local/bin/msmtp \EFs{"\$@"}
\end{Verbatim}
\end{Code}
\end{enumerate}
\subsection{Mu4e}
\label{sec:org017934c}

Webmail clients are nice and all, but I still don't believe that SPAs in my
browser can replaced desktop apps \ldots{} sorry Gmail. I'm also liking google less
and less.

Mailspring is a decent desktop client, quite lightweight for electron
(apparently the backend is in \verb~C~, which probably helps), however I miss Emacs
stuff.

While \verb~Notmuch~ seems very promising, and I've heard good things about it, it
doesn't seem to make any changes to the emails themselves. All data is stored in
Notmuch's database. While this is a very interesting model, occasionally I need
to pull up an email on say my phone, and so not I want the tagging/folders etc.\
to be applied to the mail itself --- not stored in a database.

On the other hand \verb~Mu4e~ is also talked about a lot in positive terms, and seems
to possess a similarly strong feature set --- and modifies the mail itself (I.e.
information is accessible without the database). \verb~Mu4e~ also seems to have a large
user base, which tends to correlate with better support and attention.

If I install mu4e from source, I need to add the \verb~/usr/local/~ loadpath so Mu4e
has a chance of loading. Alternatively, I may need to add the \verb~/usr/share/~ path.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{cond}
 ((cl-some (\EFk{lambda} (path) (string-match-p \EFs{"mu4e"} path)) load-path) nil)
 ((file-directory-p \EFs{"/usr/local/share/emacs/site-lisp/mu4e"})
 (\EFk{quote} (add-to-list 'load-path \EFs{"/usr/local/share/emacs/site-lisp/mu4e"})))
 ((file-directory-p \EFs{"/usr/share/emacs/site-lisp/mu4e"})
 (\EFk{quote} (add-to-list 'load-path \EFs{"/usr/share/emacs/site-lisp/mu4e"}))))
\end{Verbatim}
\end{Code}

Let's also just shove all the Elisp code here in an \Verb[commandchars=\\\{\},highlightcolor=white!95!black!80!blue,breaklines=true,breaksymbol=\color{white!60!black}\tiny\ensuremath{\hookrightarrow}]{\color{EFD}(\EFk{after!} ...)} block.
\begin{Code}
\begin{Verbatim}
\color{EFD}<<mu4e-conf>>
\end{Verbatim}
\end{Code}
\begin{enumerate}
\item Viewing Mail
\label{sec:org1339188}
There seem to be some advantages with using Gnus' article view (such as inline
images), and judging from \href{https://github.com/djcb/mu/pull/1442\#issuecomment-591695814}{djcb/mu!1442 (comment)} this seems to be the 'way of
the future' for mu4e.

There are some nerd-icons font related issues, so we need to redefine the
fancy chars, and make sure they get the correct width.

To account for the increase width of each flag character, and make perform a
few more visual tweaks, we'll tweak the headers a bit
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} mu4e-headers-fields
 '((\EFb{:flags} . 6)
 (\EFb{:account-stripe} . 2)
 (\EFb{:from-or-to} . 25)
 (\EFb{:folder} . 10)
 (\EFb{:recipnum} . 2)
 (\EFb{:subject} . 80)
 (\EFb{:human-date} . 8))
 +mu4e-min-header-frame-width 142
 mu4e-headers-date-format \EFs{"\%d/\%m/\%y"}
 mu4e-headers-time-format \EFs{"â§� \%H:\%M"}
 mu4e-headers-results-limit 1000
 mu4e-index-cleanup t)

(add-to-list 'mu4e-bookmarks
 '(\EFb{:name} \EFs{"Yesterday's messages"} \EFb{:query} \EFs{"date:2d..1d"} \EFb{:key} ?y) t)

(\EFk{defvar} \EFv{+mu4e-header--folder-colors} nil)
(\EFk{appendq!} mu4e-header-info-custom
 '((\EFb{:folder} .
 (\EFb{:name} \EFs{"Folder"} \EFb{:shortname} \EFs{"Folder"} \EFb{:help} \EFs{"Lowest level folder"} \EFb{:function}
 (\EFk{lambda} (msg)
 (+mu4e-colorize-str
 (replace-regexp-in-string \EFs{"\char92{}\char92{}`.*/"} \EFs{""} (mu4e-message-field msg \EFb{:maildir}))
 '+mu4e-header--folder-colors))))))
\end{Verbatim}
\end{Code}

Among the flags mu4e displays is the "personal address" flag, for messages sent
\emph{to} me (as opposed to mailing-list-y emails where I am not an explicit
recipient). Unfortunately, this doesn't play well with my wildcard email
addresses, so let's fix this with advise.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defadvice!} +mu4e-personal-address-p--*-a (orig-fn addr)
 \EFb{:around} \#'mu4e-personal-address-p
 (\EFk{or} (\EFk{and} (stringp addr)
 (string-match-p \EFs{"@}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[a-z]+\char92{}\char92{}.}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{?tecosaur\char92{}\char92{}.net\$"} addr))
 (funcall orig-fn addr)))
\end{Verbatim}
\end{Code}

We'll also use a nicer alert icon
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} mu4e-alert-icon \EFs{"/usr/share/icons/Papirus/64x64/apps/evolution.svg"})
\end{Verbatim}
\end{Code}

And save ourselves from the awful \verb~mu4e-thread-fold-face~.

\begin{Code}
\begin{Verbatim}
\color{EFD}(custom-set-faces!
 '(mu4e-thread-fold-face \EFb{:inherit} default))
\end{Verbatim}
\end{Code}
\item Sending Mail
\label{sec:orgcdb81bb}
Let's send emails too.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} sendmail-program \EFs{"/usr/bin/msmtp"}
 send-mail-function \#'smtpmail-send-it
 message-sendmail-f-is-evil t
 message-sendmail-extra-arguments '(\EFs{"--read-envelope-from"})\EFcd{;} \EFc{, "--read-recipients")}
 message-send-mail-function \#'message-send-mail-with-sendmail)
\end{Verbatim}
\end{Code}

It's also nice to avoid accidentally sending emails with the wrong account. If
we can send from the address in the \texttt{To} field, let's do that. Opening a prompt
otherwise also seems sensible.

We can register Emacs as a potential email client with a desktop file. We could
put an \verb~emacsclient ...~ entry in the \verb~Exec~ field, but I've found this a bit dodgy.
Instead let's package the \verb~emacslient~ behaviour in a little executable
\verb,~/.local/bin/emacsmail,.

\begin{Code}
\begin{Verbatim}
\color{EFD}emacsclient -create-frame --alternate-editor=\EFs{''} --no-wait --eval \textcolor[HTML]{50a14f}{\char92{}}
\EFs{"(progn (x-focus-frame nil) (mu4e-compose-from-mailto \char92{}"\$1\char92{}" t))"}
\end{Verbatim}
\end{Code}

Now we can just call that in a desktop file.

\begin{Code}
\begin{Verbatim}
\color{EFD}[\EFt{Desktop Entry}]
\EFv{Name}=Mu4e
\EFv{GenericName}=Compose a new message with Mu4e in Emacs
\EFv{Comment}=Open mu4e compose window
\EFv{MimeType}=x-scheme-handler/mailto;
\EFv{Exec}=emacsmail \%u
\EFv{Icon}=emacs
\EFv{Type}=Application
\EFv{Terminal}=false
\EFv{Categories}=Network;Email;
\EFv{StartupWMClass}=Emacs
\end{Verbatim}
\end{Code}

To register this, just call

\begin{Code}
\begin{Verbatim}
\color{EFD}update-desktop-database \char126{}/.local/share/applications
\end{Verbatim}
\end{Code}

We can see if this is necessary with a \verb~doctor~ check.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{when} (\EFk{and} (executable-find \EFs{"mu"})
 (not (string= (shell-command-to-string \EFs{"xdg-mime query default x-scheme-handler/mailto"})
 \EFs{"emacsmail.desktop\char92{}n"})))
 (warn! \EFs{"Emacs is not registered as a mailto handler."}))
\end{Verbatim}
\end{Code}

We also want to define \texttt{mu4e-compose-from-mailto}.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{mu4e-compose-from-mailto} (mailto-string \EFt{\&optional} quit-frame-after)
 (\EFk{require} '\EFo{mu4e})
 (\EFk{unless} mu4e--server-props (mu4e t) (sleep-for 0.1))
 (\EFk{let*} ((mailto (message-parse-mailto-url mailto-string))
 (to (cadr (assoc \EFs{"to"} mailto)))
 (subject (\EFk{or} (cadr (assoc \EFs{"subject"} mailto)) \EFs{""}))
 (body (cadr (assoc \EFs{"body"} mailto)))
 (headers (-filter (\EFk{lambda} (spec) (not (-contains-p '(\EFs{"to"} \EFs{"subject"} \EFs{"body"}) (car spec)))) mailto)))
 (\EFk{when-let} ((mu4e-main (get-buffer mu4e-main-buffer-name)))
 (switch-to-buffer mu4e-main))
 (mu4e\char126{}compose-mail to subject headers)
 (\EFk{when} body
 (goto-char (point-min))
 (\EFk{if} (eq major-mode 'org-msg-edit-mode)
 (org-msg-goto-body)
 (mu4e-compose-goto-bottom))
 (insert body))
 (goto-char (point-min))
 (\EFk{cond} ((null to) (search-forward \EFs{"To: "}))
 ((string= \EFs{""} subject) (search-forward \EFs{"Subject: "}))
 (t (\EFk{if} (eq major-mode 'org-msg-edit-mode)
 (org-msg-goto-body)
 (mu4e-compose-goto-bottom))))
 (font-lock-ensure)
 (\EFk{when} evil-normal-state-minor-mode
 (evil-append 1))
 (\EFk{when} quit-frame-after
 (add-hook 'kill-buffer-hook
 `(\EFk{lambda} ()
 (\EFk{when} (eq (selected-frame) ,(selected-frame))
 (delete-frame)))))))
\end{Verbatim}
\end{Code}

It would also be nice to change the name pre-filled in \verb~From:~ when drafting.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{mu4e-from-name} \EFs{"Timothy"}
 \EFd{"Name used in \char92{}"From:\char92{}" template."})
(\EFk{defadvice!} mu4e\char126{}draft-from-construct-renamed (orig-fn)
 \EFd{"Wrap `}\textcolor[HTML]{b751b6}{\textit{mu4e\char126{}draft-from-construct-renamed}}\EFd{' to change the name."}
 \EFb{:around} \#'mu4e\char126{}draft-from-construct
 (\EFk{let} ((user-full-name mu4e-from-name))
 (funcall orig-fn)))
\end{Verbatim}
\end{Code}

We can also use this a signature,
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} message-signature mu4e-from-name)
\end{Verbatim}
\end{Code}

I've got a few extra addresses I'd like \texttt{+mu4e-set-from-address-h} to be aware of.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{+mu4e-update-personal-addresses} ()
 (\EFk{let} ((primary-address
 (car (cl-remove-if-not
 (\EFk{lambda} (a) (eq (mod (apply \#'* (cl-coerce a 'list)) 600) 0))
 (mu4e-personal-addresses)))))
 (\EFk{setq} +mu4e-personal-addresses
 (\EFk{and} primary-address
 (append (mu4e-personal-addresses)
 (mapcar
 (\EFk{lambda} (subalias)
 (concat subalias \EFs{"@"}
 (subst-char-in-string ?@ ?. primary-address)))
 '(\EFs{"orgmode"}))
 (mapcar
 (\EFk{lambda} (alias)
 (replace-regexp-in-string
 \EFs{"\char92{}\char92{}`}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{.*}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{@"} alias primary-address t t 1))
 '(\EFs{"contact"} \EFs{"timothy"})))))))

(\EFk{add-transient-hook!} 'mu4e-compose-pre-hook
 (+mu4e-update-personal-addresses))
\end{Verbatim}
\end{Code}

We also want to use any \verb~@tecosaur.net~ address as an automatic from address.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defadvice!} +mu4e-set-from-adress-h-personal-a (orig-fn)
 \EFb{:around} \#'+mu4e-set-from-address-h
 (\EFk{let*} ((msg-addrs
 (\EFk{and} mu4e-compose-parent-message
 (delq nil
 (mapcar
 (\EFk{lambda} (adr) (plist-get adr \EFb{:email}))
 (append (mu4e-message-field mu4e-compose-parent-message \EFb{:to})
 (mu4e-message-field mu4e-compose-parent-message \EFb{:cc})
 (mu4e-message-field mu4e-compose-parent-message \EFb{:from}))))))
 (personal-addrs
 (\EFk{if} (\EFk{or} mu4e-contexts +mu4e-personal-addresses)
 (\EFk{and} (> (length +mu4e-personal-addresses) 1)
 +mu4e-personal-addresses)
 (mu4e-personal-addresses)))
 (personal-domain-addr
 (cl-some
 (\EFk{lambda} (email)
 (\EFk{and} (string-match-p \EFs{"@}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(?:}}\EFs{tec\char92{}\char92{}.}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{?tecosaur\char92{}\char92{}.net>?\$"}
 email)
 email))
 msg-addrs)))
 (\EFk{if} (\EFk{and} personal-domain-addr
 (not (cl-intersection msg-addrs personal-addrs \EFb{:test} \#'equal)))
 (\EFk{setq} user-mail-address personal-domain-addr)
 (funcall orig-fn))))
\end{Verbatim}
\end{Code}

Speaking of, it would be good to put emails sent from \verb~@tecosaur.net~ in the
account-specific sent directory, not the catch-all.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{+mu4e-account-sent-folder} (\EFt{\&optional} msg)
 (\EFk{let} ((from (\EFk{if} msg
 (plist-get (car (plist-get msg \EFb{:from})) \EFb{:email})
 (\EFk{save-restriction}
 (mail-narrow-to-head)
 (mail-fetch-field \EFs{"from"})))))
 (\EFk{if} (\EFk{and} from (string-match-p \EFs{"@tecosaur\char92{}\char92{}.net>?\char92{}\char92{}'"} from))
 \EFs{"/tecosaur-net/Sent"}
 \EFs{"/sent"})))
(\EFk{setq} mu4e-sent-folder \#'+mu4e-account-sent-folder)
\end{Verbatim}
\end{Code}

When composing an email, I think it would make more sense to start off in \verb~insert~
mode than \verb~normal~ mode, which can be accomplished via a compose hook.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{+mu4e-evil-enter-insert-mode} ()
 (\EFk{when} (eq (\EFk{bound-and-true-p} evil-state) 'normal)
 (call-interactively \#'evil-append)))

(add-hook 'mu4e-compose-mode-hook \#'+mu4e-evil-enter-insert-mode 90)
\end{Verbatim}
\end{Code}
\item Working with the Org mailing list
\label{sec:org6bcc8b5}
\begin{enumerate}
\item Adding \texttt{X-Woof} headers
\label{sec:org8c25c24}

I'm fairly active on the Org mailing list (ML). The Org ML has a linked
bug/patch tracker, \url{https://updates.orgmode.org/} managed by \href{https://github.com/bzg/woof}{Woof}. However, I feel
like I spend too much time looking up what the appropriate headers are for
updating the status of bugs and patches. What I need, is some sort of convenient
tool. Let's write one.

First, a function that asks what I want to do and returns the appropriate \verb~X-Woof~
header.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{+mu4e-get-woof-header} ()
 (\EFk{pcase} (read-char
 (format \EFs{"\char92{}}
\EFs{\%s}
 \EFs{\%s Declare \%s Applied \%s Aborted}
\EFs{\%s}
 \EFs{\%s Confirm \%s Fixed}
\EFs{\%s}
 \EFs{\%s Request \%s Resolved}

\EFs{\%s remove X-Woof header"}
 (propertize \EFs{"Patch"} 'face 'outline-3)
 (propertize \EFs{"p"} 'face '(bold consult-key))
 (propertize \EFs{"a"} 'face '(bold consult-key))
 (propertize \EFs{"c"} 'face '(bold consult-key))
 (propertize \EFs{"Bug"} 'face 'outline-3)
 (propertize \EFs{"b"} 'face '(bold consult-key))
 (propertize \EFs{"f"} 'face '(bold consult-key))
 (propertize \EFs{"Help"} 'face 'outline-3)
 (propertize \EFs{"h"} 'face '(bold consult-key))
 (propertize \EFs{"r"} 'face '(bold consult-key))
 (propertize \EFs{"x"} 'face '(bold error))))
 (?p \EFs{"X-Woof-Patch: confirmed"})
 (?a \EFs{"X-Woof-Patch: applied"})
 (?c \EFs{"X-Woof-Patch: cancelled"})
 (?b \EFs{"X-Woof-Bug: confirmed"})
 (?f \EFs{"X-Woof-Bug: fixed"})
 (?h \EFs{"X-Woof-Help: confirmed"})
 (?r \EFs{"X-Woof-Help: cancelled"})
 (?x 'delete)))
\end{Verbatim}
\end{Code}

Now we just need a function which will add such a header to a buffer
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{+mu4e-insert-woof-header} ()
 \EFd{"Insert an X-Woof header into the current message."}
 (\EFk{interactive})
 (\EFk{when-let} ((header (+mu4e-get-woof-header)))
 (\EFk{save-excursion}
 (goto-char (point-min))
 (search-forward \EFs{"--text follows this line--"})
 (\EFk{unless} (eq header 'delete)
 (beginning-of-line)
 (insert header \EFs{"\char92{}n"})
 (forward-line -1))
 (\EFk{when} (re-search-backward \EFs{"\char94{}X-Woof-"} nil t)
 (kill-whole-line)))))

(map! \EFb{:map} mu4e-compose-mode-map
 \EFb{:localleader}
 \EFb{:desc} \EFs{"Insert X-Woof Header"} \EFs{"w"} \#'+mu4e-insert-woof-header)

(map! \EFb{:map} org-msg-edit-mode-map
 \EFb{:after} org-msg
 \EFb{:localleader}
 \EFb{:desc} \EFs{"Insert X-Woof Header"} \EFs{"w"} \#'+mu4e-insert-woof-header)
\end{Verbatim}
\end{Code}

Lovely! That should make adding these headers a breeze.
\item Patch workflow
\label{sec:org3c0ef0e}

Testing patches from the ML is currently more hassle than it needs to be. Let's
change that.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} mu4e
 (\EFk{defvar} \EFv{+org-ml-target-dir}
 (expand-file-name \EFs{"lisp/org/"} doom-user-dir))
 (\EFk{defvar} \EFv{+org-ml-max-age} 600
 \EFd{"Maximum permissible age in seconds."})
 (\EFk{defvar} \EFv{+org-ml--cache-timestamp} 0)
 (\EFk{defvar} \EFv{+org-ml--cache} nil)

 (\EFk{define-minor-mode} \EFf{+org-ml-patchy-mood-mode}
 \EFd{"Apply patches to Org in bulk."}
 \EFb{:global} t
 (\EFk{let} ((action (cons \EFs{"apply patch to org"} \#'+org-ml-apply-patch)))
 (\EFk{if} +org-ml-patchy-mood-mode
 (add-to-list 'mu4e-view-actions action)
 (\EFk{setq} mu4e-view-actions (delete action mu4e-view-actions)))))

 (\EFk{defun} \EFf{+org-ml-apply-patch} (msg)
 \EFd{"Apply the patch in the current message to Org."}
 (\EFk{interactive})
 (\EFk{unless} msg (\EFk{setq} msg (mu4e-message-at-point)))
 (\EFk{with-current-buffer} (get-buffer-create \EFs{"*Shell: Org apply patches*"})
 (erase-buffer)
 (\EFk{let*} ((default-directory +org-ml-target-dir)
 (exit-code (call-process \EFs{"git"} nil t nil \EFs{"am"} (mu4e-message-field msg \EFb{:path}))))
 (magit-refresh)
 (\EFk{when} (not (= 0 exit-code))
 (+popup/buffer)))))

 (\EFk{defun} \EFf{+org-ml-current-patches} ()
 \EFd{"Get the currently open patches, as a list of alists.}
\EFd{Entries of the form (subject . id)."}
 (delq nil
 (mapcar
 (\EFk{lambda} (entry)
 (\EFk{unless} (plist-get entry \EFb{:fixed})
 (cons
 (format \EFs{"\%-8s \%s"}
 (propertize
 (replace-regexp-in-string \EFs{"T.*"} \EFs{""}
 (plist-get entry \EFb{:date}))
 'face 'font-lock-doc-face)
 (propertize
 (replace-regexp-in-string \EFs{"\char92{}\char92{}[}\textcolor[HTML]{b751b6}{PATCH\char92{}\char92{}}\EFs{] ?"} \EFs{""}
 (plist-get entry \EFb{:summary}))
 'face 'font-lock-keyword-face))
 (plist-get entry \EFb{:id}))))
 (\EFk{with-current-buffer} (url-retrieve-synchronously \EFs{"https://updates.orgmode.org/data/patches"})
 (goto-char url-http-end-of-headers)
 (json-parse-buffer \EFb{:object-type} 'plist)))))

 (\EFk{defun} \EFf{+org-ml-select-patch-thread} ()
 \EFd{"Find and apply a proposed Org patch."}
 (\EFk{interactive})
 (\EFk{let*} ((current-workspace (+workspace-current))
 (patches (\EFk{progn}
 (\EFk{when} (\EFk{or} (not +org-ml--cache)
 (> (- (float-time) +org-ml--cache-timestamp)
 +org-ml-max-age))
 (\EFk{setq} +org-ml--cache (+org-ml-current-patches)
 +org-ml--cache-timestamp (float-time)))
 +org-ml--cache))
 (msg-id (cdr (assoc (completing-read
 \EFs{"Thread: "} (mapcar \#'car patches))
 patches))))
 (+workspace-switch +mu4e-workspace-name)
 (mu4e-view-message-with-message-id msg-id)
 (\EFk{unless} +org-ml-patchy-mood-mode
 (add-to-list 'mu4e-view-actions
 (cons \EFs{"apply patch to org"} \#'+org-ml-transient-mu4e-action)))))

 (\EFk{defun} \EFf{+org-ml-transient-mu4e-action} (msg)
 (\EFk{setq} mu4e-view-actions
 (delete (cons \EFs{"apply patch to org"} \#'+org-ml-transient-mu4e-action)
 mu4e-view-actions))
 (+workspace/other)
 (magit-status +org-ml-target-dir)
 (+org-ml-apply-patch msg)))
\end{Verbatim}
\end{Code}
\item Mail list archive links
\label{sec:org8088cb8}

The other thing which it's good to be easily able to do is grab a link to the
current message on \url{https://list.orgmode.org}.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} mu4e
 (\EFk{defun} \EFf{+mu4e-ml-message-link} (msg)
 \EFd{"Copy the link to MSG on the mailing list archives."}
 (\EFk{let*} ((list-addr (\EFk{or} (mu4e-message-field msg \EFb{:list})
 (\EFk{thread-last} (append (mu4e-message-field-raw msg \EFb{:list-post})
 (mu4e-message-field msg \EFb{:to})
 (mu4e-message-field msg \EFb{:cc}))
 (mapcar (\EFk{lambda} (e) (plist-get e \EFb{:email})))
 (mapcar (\EFk{lambda} (addr)
 (\EFk{when} (string-match-p \EFs{"emacs.*@gnu\char92{}\char92{}.org\$"} addr)
 (replace-regexp-in-string \EFs{"@"} \EFs{"."} addr))))
 (delq nil)
 (car))))
 (msg-url
 (\EFk{pcase} list-addr
 (\EFs{"emacs-orgmode.gnu.org"}
 (format \EFs{"https://list.orgmode.org/\%s"} (mu4e-message-field msg \EFb{:message-id})))
 (_ (\EFwr{user-error} \EFs{"Mailing list \%s not supported"} list-addr)))))
 (gui-select-text msg-url)
 (message \EFs{"Link \%s copied to clipboard"}
 (propertize msg-url 'face '((\EFb{:weight} normal \EFb{:underline} nil) link)))
 msg-url))

 (add-to-list 'mu4e-view-actions (cons \EFs{"link to message ML"} \#'+mu4e-ml-message-link) t))
\end{Verbatim}
\end{Code}

In a similar manner, when clicking on such a link (say when someone uses a link
to the archive to refer to an earlier email) I'd much rather look at it in mu4e.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{+browse-url-orgmode-ml} (url \EFt{\&optional} _)
 \EFd{"Open an orgmode list url using notmuch."}
 (\EFk{let} ((id (\EFk{and} (\EFk{or} (string-match \EFs{"\char94{}https?://orgmode\char92{}\char92{}.org/list/}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{/]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{"} url)
 (string-match \EFs{"\char94{}https?://list\char92{}\char92{}.orgmode\char92{}\char92{}.org/}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{/]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{"} url))
 (match-string 1 url))))
 (mu4e-view-message-with-message-id id)))

(add-to-list 'browse-url-handlers (cons \EFs{"\char94{}https?://orgmode\char92{}\char92{}.org/list"} \#'+browse-url-orgmode-ml))
(add-to-list 'browse-url-handlers (cons \EFs{"\char94{}https?://list\char92{}\char92{}.orgmode\char92{}\char92{}.org/"} \#'+browse-url-orgmode-ml))
\end{Verbatim}
\end{Code}
\item Setup when composing a new email
\label{sec:orgd970f58}

Thanks to having a dedicated address for my interactions with the Org ML, and
Doom's \texttt{+mu4e-set-from-address-h}, we can tell at the end of compose setup whether
I'm composing an email to the Org ML and then do a little setup for convenience,
namely:
\begin{itemize}
\item Pre-fill the \verb~To~ address
\item Ensure that \verb~org-msg~ is set up to send plaintext only
\item Set \texttt{default-directory} to my local Org repository (where patch files are
generated)
\item Move \texttt{(point)} to the \verb~Subject:~ line
\item Use a special Org-ML-specific signature
\end{itemize}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{+mu4e-compose-org-ml-setup} ()
 (\EFk{when} (string-match-p \EFs{"\char92{}\char92{}`orgmode@"} user-mail-address)
 (goto-char (point-min))
 (\EFk{save-restriction}
 (mail-narrow-to-head)
 (\EFk{when} (string-empty-p (mail-fetch-field \EFs{"to"}))
 (re-search-forward \EFs{"\char94{}To: .*\$"})
 (replace-match \EFs{"To: emacs-orgmode@gnu.org"})
 (advice-add 'message-goto-to \EFb{:after} \#'+mu4e-goto-subject-not-to-once)))
 (\EFk{when} (\EFk{and} org-msg-mode
 (re-search-forward \EFs{"\char94{}:alternatives: (}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{utf-8 html}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{)"} nil t))
 (replace-match \EFs{"utf-8"} t t nil 1))
 (\EFk{if} org-msg-mode
 (\EFk{let} ((final-elem (org-element-at-point (point-max))))
 (\EFk{when} (equal (org-element-property \EFb{:type} final-elem) \EFs{"signature"})
 (goto-char (org-element-property \EFb{:contents-begin} final-elem))
 (delete-region (org-element-property \EFb{:contents-begin} final-elem)
 (org-element-property \EFb{:contents-end} final-elem))
 (\EFk{setq-local} org-msg-signature
 (format \EFs{"\char92{}n\char92{}n\#+begin_signature\char92{}n\%s\char92{}n\#+end_signature"}
 (cdr +mu4e-org-ml-signature)))
 (insert (cdr +mu4e-org-ml-signature) \EFs{"\char92{}n"})))
 (goto-char (point-max))
 (insert (car +mu4e-org-ml-signature)))
 (\EFk{setq} default-directory
 (file-name-concat doom-user-dir \EFs{"lisp/org/"}))))

(\EFk{defun} \EFf{+mu4e-goto-subject-not-to-once} ()
 (message-goto-subject)
 (advice-remove 'message-goto-to \#'+mu4e-goto-subject-not-to-once))
\end{Verbatim}
\end{Code}

Now let's set up that signature.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{+mu4e-org-ml-signature}
 (cons
 \EFs{"All the best,}
\EFs{Timothy}

\EFs{-- \char92{}}
\EFs{Timothy (â��}\textcolor[HTML]{b751b6}{tecosaur}\EFs{â��/â��}\textcolor[HTML]{b751b6}{TEC}\EFs{â��), Org mode contributor.}
\EFs{Learn more about Org mode at <https://orgmode.org/>.}
\EFs{Support Org development at <https://liberapay.com/org-mode>,}
\EFs{or support my work at <https://liberapay.com/tec>.}
\EFs{"}
 \EFs{"All the best,\char92{}\char92{}\char92{}\char92{}}
\EFs{@@html:@@Timothy@@html:@@}

\EFs{-\char92{}u200b- \char92{}\char92{}\char92{}\char92{}}
\EFs{Timothy (â��}\textcolor[HTML]{b751b6}{tecosaur}\EFs{â��/â��}\textcolor[HTML]{b751b6}{TEC}\EFs{â��), Org mode contributor.\char92{}\char92{}\char92{}\char92{}}
\EFs{Learn more about Org mode at https://orgmode.org/.\char92{}\char92{}\char92{}\char92{}}
\EFs{Support Org development at https://liberapay.com/org-mode,\char92{}\char92{}\char92{}\char92{}}
\EFs{or support my work at https://liberapay.com/tec."})
 \EFd{"Plain and Org version of the org-ml specific signature."})
\end{Verbatim}
\end{Code}

Now to make this take effect, we can just add it a bit later on in
\texttt{mu4e-compose-mode-hook} (after \texttt{org-msg-post-setup}) by setting a hook depth of 1.

\begin{Code}
\begin{Verbatim}
\color{EFD}(add-hook 'mu4e-compose-mode-hook \#'+mu4e-compose-org-ml-setup 1)
\end{Verbatim}
\end{Code}
\end{enumerate}
\end{enumerate}
\subsection{Org Msg}
\label{sec:orgc106533}

Doom does a fantastic stuff with the defaults with this, so we only make a few
minor tweaks. First, some stylistic things:

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} org-msg-greeting-fmt \EFs{"\char92{}nHi\%s,\char92{}n\char92{}n"}
 org-msg-signature \EFs{"\char92{}n\char92{}n\#+begin_signature\char92{}nAll the best,\char92{}\char92{}\char92{}\char92{}\char92{}n@@html:@@Timothy@@html:@@\char92{}n\#+end_signature"})
\end{Verbatim}
\end{Code}

We also want to set the accent colour used in the Doom \verb~mu4e~ module's
construction of the default org-msg style.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} +org-msg-accent-color \EFs{"\#1a5fb4"})
\end{Verbatim}
\end{Code}

Now, it would be nice to easily jump to and between the ends of the message
body, so let's make a function for this.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{+org-msg-goto-body} (\EFt{\&optional} end)
 \EFd{"Go to either the beginning or the end of the body.}
\EFd{END can be the symbol top, bottom, or nil to toggle."}
 (\EFk{interactive})
 (\EFk{let} ((initial-pos (point)))
 (org-msg-goto-body)
 (\EFk{when} (\EFk{or} (eq end 'top)
 (\EFk{and} (\EFk{or} (memq initial-pos \EFcd{;} \EFc{Already at bottom}
 (list (point) (1- (point))))
 (<= initial-pos \EFcd{;} \EFc{Above message body}
 (\EFk{save-excursion}
 (message-goto-body)
 (point))))
 (not (eq end 'bottom))))
 (message-goto-body)
 (re-search-forward
 (format (regexp-quote org-msg-greeting-fmt) \EFcd{;} \EFc{\%s is unaffected.}
 (concat \EFs{"}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(?:}} \EFs{"} (regexp-quote (org-msg-get-to-name)) \EFs{"}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{?"}))))))
\end{Verbatim}
\end{Code}

We can replace the evil binding of \verb~mu4e-compose-goto-bottom~ with this function.

\begin{Code}
\begin{Verbatim}
\color{EFD}(map! \EFb{:map} org-msg-edit-mode-map
 \EFb{:after} org-msg
 \EFb{:n} \EFs{"G"} \#'+org-msg-goto-body)
\end{Verbatim}
\end{Code}

It would also be good to call this when replying to a message. This has to be
implemented as advice as the compose hooks are run before \texttt{mu4e\textasciitilde{}compose-handler}
moves the point with \texttt{message-goto-<location>}.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{+org-msg-goto-body-when-replying} (compose-type \EFt{\&rest} _)
 \EFd{"Call `}\textcolor[HTML]{b751b6}{\textit{+org-msg-goto-body}}\EFd{' when the current message is a reply."}
 (\EFk{when} (\EFk{and} org-msg-edit-mode (eq compose-type 'reply))
 (+org-msg-goto-body)))

(advice-add 'mu4e\char126{}compose-handler \EFb{:after} \#'+org-msg-goto-body-when-replying)
\end{Verbatim}
\end{Code}
\chapter{Language configuration}
\label{sec:org6ef3352}
\section{General}
\label{sec:org2fdbecc}
\subsection{File Templates}
\label{sec:org91630ad}

For some file types, we overwrite defaults in the \href{./snippets}{snippets} directory, others
need to have a template assigned.

\begin{Code}
\begin{Verbatim}
\color{EFD}(set-file-template! \EFs{"\char92{}\char92{}.tex\$"} \EFb{:trigger} \EFs{"__"} \EFb{:mode} 'latex-mode)
(set-file-template! \EFs{"\char92{}\char92{}.org\$"} \EFb{:trigger} \EFs{"__"} \EFb{:mode} 'org-mode)
(set-file-template! \EFs{"/LICEN[CS]E\$"} \EFb{:trigger} '+file-templates/insert-license)
\end{Verbatim}
\end{Code}
\section{Plaintext}
\label{sec:orgea40d15}

\subsection{Ansi colours}
\label{sec:orgdb66c49}

It's nice to see ANSI colour codes displayed, however we don't want to disrupt
ANSI codes in Org src blocks.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} text-mode
 (\EFk{add-hook!} 'text-mode-hook
 (\EFk{unless} (derived-mode-p 'org-mode)
 \EFcd{;;} \EFc{Apply ANSI color codes}
 (\EFk{with-silent-modifications}
 (ansi-color-apply-on-region (point-min) (point-max) t)))))
\end{Verbatim}
\end{Code}
\subsection{Margin without line numbers}
\label{sec:orga09ab91}

Display-wise, somehow I don't mind code buffers without any margin on the left,
but it feels a bit off with text buffers once the padding provided by line
numbers is stripped away.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{+text-mode-left-margin-width} 1
 \EFd{"The `}\textcolor[HTML]{b751b6}{\textit{left-margin-width}}\EFd{' to be used in `}\textcolor[HTML]{b751b6}{\textit{text-mode}}\EFd{' buffers."})

(\EFk{defun} \EFf{+setup-text-mode-left-margin} ()
 (\EFk{when} (\EFk{and} (derived-mode-p 'text-mode)
 (not (\EFk{and} (\EFk{bound-and-true-p} visual-fill-column-mode)
 visual-fill-column-center-text))
 (eq (current-buffer) \EFcd{;} \EFc{Check current buffer is active.}
 (window-buffer (frame-selected-window))))
 (\EFk{setq} left-margin-width (\EFk{if} display-line-numbers
 0 +text-mode-left-margin-width))
 (set-window-buffer (get-buffer-window (current-buffer))
 (current-buffer))))

\end{Verbatim}
\end{Code}

Now we just need to hook this up to all the events which could either indicate a
change in the conditions or require the setup to be re-applied.

\begin{Code}
\begin{Verbatim}
\color{EFD}(add-hook 'window-configuration-change-hook \#'+setup-text-mode-left-margin)
(add-hook 'display-line-numbers-mode-hook \#'+setup-text-mode-left-margin)
(add-hook 'text-mode-hook \#'+setup-text-mode-left-margin)
\end{Verbatim}
\end{Code}

There's one little niggle with Doom, as \texttt{doom/toggle-line-numbers} doesn't run
\texttt{display-line-numbers-mode-hook}, so some advice is needed.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defadvice!} +doom/toggle-line-numbers--call-hook-a ()
 \EFb{:after} \#'doom/toggle-line-numbers
 (run-hooks 'display-line-numbers-mode-hook))
\end{Verbatim}
\end{Code}

Lastly, I think I actually like this enough that I'll go ahead and remove line
numbers in text mode.

\begin{Code}
\begin{Verbatim}
\color{EFD}(remove-hook 'text-mode-hook \#'display-line-numbers-mode)
\end{Verbatim}
\end{Code}
\section{Org}
\label{sec:orge77ab31}
I really like org mode, I've given some thought to why, and below is the result.

\begin{center}
\small
\begin{tabular}{*{8}{p{0.105\linewidth}}}
\toprule
Format & Fine-grained control & Initial ease of use & Syntax simplicity & Editor Support & Integrations & Ease-of-referencing & Versatility\\
\midrule
Word & 2 & 4 & 4 & 2 & 3 & 2 & 2\\
\LaTeX{} & 4 & 1 & 1 & 3 & 2 & 4 & 3\\
Org Mode & 4 & 2 & 3.5 & 1 & 4 & 4 & 4\\
Markdown & 1 & 3 & 3 & 4 & 3 & 3 & 1\\
Markdown + Pandoc & 2.5 & 2.5 & 2.5 & 3 & 3 & 3 & 2\\
\bottomrule
\end{tabular}
\end{center}

\begin{center}
\includesvg[inkscapelatex=false,width=.9\linewidth]{misc/document-format-comparison}
\end{center}

Beyond the elegance in the markup language, tremendously rich integrations with
Emacs allow for some fantastic \href{https://orgmode.org/features.html}{features}, such as what seems to be the best
support for \href{https://en.wikipedia.org/wiki/Literate_programming}{literate programming} of any currently available technology.

\phantomsection
\label{orgca3d913}
\begin{verbatim}
 â�­â��â�´Codeâ�¶â��â�® â�­â��â�´Raw Codeâ�¶â��â�¶ Computer
Ideasâ�ºâ�¥ â��â��â�¶ Org Modeâ�ºâ�¥
 â�°â��â�´Textâ�¶â��â�¯ â�°â��â�´Documentâ�¶â��â�¶ People
\end{verbatim}

An \verb~.org~ file can contain blocks of code (with \href{https://en.wikipedia.org/wiki/Noweb}{noweb} templating support), which
can be \href{https://orgmode.org/manual/Extracting-Source-Code.html}{tangled} to dedicated source code files, and \href{https://orgmode.org/manual/Extracting-Source-Code.html}{woven} into a document
(report, documentation, presentation, etc.) through various (\emph{extensible}) methods.
These source blocks may even create images or other content to be included in
the document, or generate source code.

\phantomsection
\label{orgba4e1db}
\begin{verbatim}
 â�­â��â�¶ .pdf â�«
 pdfLaTeX â�¶â��â��â��â��â��â��â��â��â��â��â��â��â��â��â��â��â�® â�ª
 â�¿ â�¿ â�� â�ª
 â�� â�� â�� â�ª
 .tex â�� â�� â�ª
 â�¿ â�� â�� â�ª
 â�­â��â��â�´â��â��â�® â�� â�� style.scss â�¬ Weaving
graphc.png â��â�® â�� embedded TeX â�� â�½ â�ª (Documents)
image.jpeg â��â�¤ filters â�¿ â�� .css â�ª
 â�� â�¿ â�� â�� â�¾â�� â�ª
figure.pngâ�¶â��â�§â��â�¶ PROJECT.ORG â�¶â��â��â��â�´filtersâ�¶â��â��â��â�§â��â��â��â��â��â��â�ªâ��â��â�¶ .html â�ª
 â�¿ â�¿â�� â�� â�� â�°â��â��â��â�·â��â�� embedded html â�¶â��â��â��â��â�¯ â�ª
 â��â��â��â��â��â��â��â��â�·â��â��â��â�¯â�� â�� â�� â�ª
 resultâ�¶â��â��â��â��â��â�® â�� â�� â��â��â��â��â��â��â��â�´filtersâ�¶â��â��â��â��â��â��â��â��â��â��â��â��â��â��â��â��â�¶ .txt â�ª
 â��â�´ â�� â�� â�� â�� â�ª
 execution â�� â�� â�� â�°â��â��â��â��â��â��â�´filtersâ�¶â��â��â��â��â��â��â��â��â��â��â��â��â��â��â��â��â�¶ .md â�­
 â��â�´ â�� â�� â��
 code blocksâ��â�¯ â�� â��â�¶ .c â�«
 â�°â��â��â��â��â��â��â��â��â��â��â��â��â�¯ â��â�¶ .sh â�¬ Tangling
 â��â�¶ .hs â�ª (Code)
 â��â�¶ .el â�­
\end{verbatim}
\subsection{System config}
\label{sec:org4cd65c7}
\begin{enumerate}
\item Mime types
\label{sec:orgbd788e2}

Org mode isn't recognised as it's own mime type by default, but that can easily
be changed with the following file. For system-wide changes try
\texttt{/usr/share/mime/packages/org.xml}.
\begin{Code}
\begin{Verbatim}
\color{EFD}<\textcolor[HTML]{a626a4}{mime-info} \textcolor[HTML]{a626a4}{xmlns}=\EFs{'http://www.freedesktop.org/standards/shared-mime-info'}>
 <\textcolor[HTML]{a626a4}{mime-type} \textcolor[HTML]{6a1868}{type}=\EFs{"text/org"}>
 <\textcolor[HTML]{a626a4}{comment}>Emacs Org-mode File</\textcolor[HTML]{a626a4}{comment}>
 <\textcolor[HTML]{a626a4}{glob} \textcolor[HTML]{6a1868}{pattern}=\EFs{"*.org"}/>
 <\textcolor[HTML]{a626a4}{alias} \textcolor[HTML]{6a1868}{type}=\EFs{"text/org"}/>
 </\textcolor[HTML]{a626a4}{mime-type}>
</\textcolor[HTML]{a626a4}{mime-info}>
\end{Verbatim}
\end{Code}
What's nice is that Papirus \href{https://github.com/PapirusDevelopmentTeam/papirus-icon-theme/commit/a10fb7f2423d5e30b9c4477416ccdc93c4f3849d}{now} has an icon for \verb~text/org~.
One simply needs to refresh their mime database
\begin{Code}
\begin{Verbatim}
\color{EFD}update-mime-database \char126{}/.local/share/mime
\end{Verbatim}
\end{Code}
Then set Emacs as the default editor
\begin{Code}
\begin{Verbatim}
\color{EFD}xdg-mime default emacs.desktop text/org
\end{Verbatim}
\end{Code}

Once again, we will add \verb~doctor~ checks around this.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{if} (string= (shell-command-to-string \EFs{"xdg-mime query default text/org"}) \EFs{""})
 (warn! \EFs{"text/org is not a registered mime type."})
 (\EFk{unless} (string= (shell-command-to-string \EFs{"xdg-mime query default text/org"}) \EFs{"emacs-client.desktop\char92{}n"})
 (warn! \EFs{"Emacs(client) is not set up as the text/org handler."})))
\end{Verbatim}
\end{Code}
\item Git diffs
\label{sec:org0753729}

Protesilaos wrote a \href{https://protesilaos.com/codelog/2021-01-26-git-diff-hunk-elisp-org/}{very helpful article} in which he explains how to change the
git diff chunk heading to something more useful than just the immediate line
above the hunk --- like the parent heading.

This can be achieved by first adding a new diff mode to git in \verb,~/.config/git/attributes,
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFk{*}.org \EFv{diff}=org
\end{Verbatim}
\end{Code}

Then adding a regex for it to \verb,~/.config/git/config,
\begin{Code}
\begin{Verbatim}
\color{EFD}[\EFt{diff} \EFf{"org"}]
 \EFv{xfuncname} = \EFs{"\char94{}(\char92{}\char92{}*+ +.*)\$"}
\end{Verbatim}
\end{Code}
\end{enumerate}
\subsection{Packages}
\label{sec:org690a8cb}
\begin{enumerate}
\item Org itself
\label{sec:orgb9ed67d}

There are actually three possible package statements I may want to use for Org.

If I'm on a machine where I can push changes, I want to be able to develop Org.
I can check this by checking the content of the SSH key \verb,~/.ssh/id_ed25519.pub,.
\begin{enumerate}
\item If this key exists and there isn't a repo at
\verb~$doom-user-dir/lisp/org~ with the right remote, we should
install it as such.
\item If the key exists and repo are both set up, the package should just be ignored.
\item If the key does not exist, the Org's \texttt{HEAD} should just be used
\end{enumerate}

To account for this situation properly, we need a short script to determine the
correct package statement needed.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{or} (\EFk{require} '\EFo{doom} (expand-file-name \EFs{"lisp/doom.el"}
 (\EFk{or} (\EFk{bound-and-true-p} doom-emacs-dir)
 user-emacs-directory)))
 (\EFk{setq} doom-local-dir
 (expand-file-name \EFs{".local/"} (\EFk{or} (\EFk{bound-and-true-p} doom-emacs-dir)
 user-emacs-directory))))
(\EFk{let} ((dev-key-p (\EFk{and} (file-exists-p \EFs{"\char126{}/.ssh/id_ed25519.pub"})
 (= 0 (shell-command \EFs{"cat \char126{}/.ssh/id_ed25519.pub | grep -q AAAAC3NzaC1lZDI1NTE5AAAAIOZZqcJOLdN+QFHKyW8ST2zz750+8TdvO9IT5geXpQVt"}))))
 (recipe-common '(\EFb{:files} (\EFb{:defaults} \EFs{"etc"})
 \EFb{:build} t
 \EFb{:pre-build}
 (\EFk{with-temp-file} \EFs{"lisp/org-version.el"}
 (\EFk{require} '\EFo{lisp-mnt})
 (\EFk{let} ((version \EFcd{;;} \EFc{(lm-version "lisp/org.el")}
 (\EFk{with-temp-buffer}
 (insert-file-contents \EFs{"lisp/org.el"})
 (lm-header \EFs{"version"})))
 (git-version (string-trim
 (\EFk{with-temp-buffer}
 (call-process \EFs{"git"} nil t nil
 \EFs{"rev-parse"} \EFs{"--short"} \EFs{"HEAD"})
 (buffer-string)))))
 (insert (format \EFs{"(defun org-release () \char92{}"The release version of Org.\char92{}" \%S)\char92{}n"}
 version)
 (format \EFs{"(defun org-git-version () \char92{}"The truncate git commit hash of Org mode.\char92{}" \%S)\char92{}n"}
 git-version)
 \EFs{"(provide 'org-version)\char92{}n"}))))))
 (\EFk{with-temp-buffer}
 (insert
 (pp `(\EFk{package!} org
 \EFb{:recipe} (,@(\EFk{if} dev-key-p
 (list \EFb{:host} nil \EFb{:repo} \EFs{"tec@git.savannah.gnu.org:/srv/git/emacs/org-mode.git"} \EFb{:local-repo} \EFs{"lisp/org"}
 \EFb{:fork} (list \EFb{:host} nil \EFb{:repo} \EFs{"git@ssh.tecosaur.net:tec/org-mode.git"} \EFb{:branch} \EFs{"dev"} \EFb{:remote} \EFs{"tecosaur"}))
 (list \EFb{:host} nil \EFb{:repo} \EFs{"https://code.tecosaur.net/mirrors/org-mode.git"} \EFb{:remote} \EFs{"mirror"}
 \EFb{:fork} (list \EFb{:host} nil \EFb{:repo} \EFs{"https://code.tecosaur.net/tec/org-mode.git"} \EFb{:branch} \EFs{"dev"} \EFb{:remote} \EFs{"tecosaur"})))
 ,@recipe-common)
 \EFb{:pin} nil)))
 (untabify (point-min) (point-max))
 (buffer-string)))
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}<<org-pkg-statement()>>
(\EFk{unpin!} org) \EFcd{;} \EFc{there be bugs}
(\EFk{package!} org-contrib
 \EFcd{;;} \EFc{The `}\textcolor[HTML]{b751b6}{sr.ht}\EFc{' repo has been a bit flaky as of late.}
 \EFb{:recipe} (\EFb{:host} github \EFb{:repo} \EFs{"emacsmirror/org-contrib"}
 \EFb{:files} (\EFs{"lisp/*.el"}))
 \EFb{:pin} \EFs{"8d14a600a2069ffc494edfc9a12b8e5fc8840bf1"})
\end{Verbatim}
\end{Code}
\item Visuals
\label{sec:org6bbfea7}
\begin{enumerate}
\item Org Modern
\label{sec:org0469141}

Fontifying \verb~org-mode~ buffers to be as pretty as possible is of paramount importance,
and Minad's lovely \verb~org-modern~ goes a long way in this regard.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} org-modern \EFb{:pin} \EFs{"a58534475b4312b0920aa9d3824272470c8e3500"})
\end{Verbatim}
\end{Code}

\ldots{}with a touch of configuration\ldots{}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} org-modern
 \EFb{:hook} (org-mode . org-modern-mode)
 \EFb{:config}
 (\EFk{setq} org-modern-star '(\EFs{"â��"} \EFs{"â��"} \EFs{"â�¸"} \EFs{"â�¿"} \EFs{"â�¤"} \EFs{"â��"} \EFs{"â��"} \EFs{"â�¶"})
 org-modern-table-vertical 1
 org-modern-table-horizontal 0.2
 org-modern-list '((43 . \EFs{"â�¤"})
 (45 . \EFs{"â��"})
 (42 . \EFs{"â�¢"}))
 org-modern-todo-faces
 '((\EFs{"TODO"} \EFb{:inverse-video} t \EFb{:inherit} org-todo)
 (\EFs{"PROJ"} \EFb{:inverse-video} t \EFb{:inherit} +org-todo-project)
 (\EFs{"STRT"} \EFb{:inverse-video} t \EFb{:inherit} +org-todo-active)
 (\EFs{"[-]"} \EFb{:inverse-video} t \EFb{:inherit} +org-todo-active)
 (\EFs{"HOLD"} \EFb{:inverse-video} t \EFb{:inherit} +org-todo-onhold)
 (\EFs{"WAIT"} \EFb{:inverse-video} t \EFb{:inherit} +org-todo-onhold)
 (\EFs{"[?]"} \EFb{:inverse-video} t \EFb{:inherit} +org-todo-onhold)
 (\EFs{"KILL"} \EFb{:inverse-video} t \EFb{:inherit} +org-todo-cancel)
 (\EFs{"NO"} \EFb{:inverse-video} t \EFb{:inherit} +org-todo-cancel))
 org-modern-footnote
 (cons nil (cadr org-script-display))
 org-modern-block-fringe nil
 org-modern-block-name
 '((t . t)
 (\EFs{"src"} \EFs{"Â»"} \EFs{"Â«"})
 (\EFs{"example"} \EFs{"Â»â��"} \EFs{"â��Â«"})
 (\EFs{"quote"} \EFs{"â��"} \EFs{"â��"})
 (\EFs{"export"} \EFs{"â�©"} \EFs{"â�ª"}))
 org-modern-progress nil
 org-modern-priority nil
 org-modern-horizontal-rule (make-string 36 ?â��)
 org-modern-keyword
 '((t . t)
 (\EFs{"title"} . \EFs{"ð���"})
 (\EFs{"subtitle"} . \EFs{"ð��©"})
 (\EFs{"author"} . \EFs{"ð��¼"})
 (\EFs{"email"} . \EFs{"ï�¯"})
 (\EFs{"date"} . \EFs{"ð��¿"})
 (\EFs{"property"} . \EFs{"ó° ³"})
 (\EFs{"options"} . \#(\EFs{"ó°�µ"} 0 1 (display (height 0.75))))
 (\EFs{"startup"} . \EFs{"â�»"})
 (\EFs{"macro"} . \EFs{"ð���"})
 (\EFs{"bind"} . \EFs{"ó°�·"})
 (\EFs{"bibliography"} . \EFs{"ï��"})
 (\EFs{"print_bibliography"} . \EFs{"ó°�±"})
 (\EFs{"cite_export"} . \EFs{"ï��â®­"})
 (\EFs{"print_glossary"} . \EFs{"ó°�±á´¬á¶»"})
 (\EFs{"glossary_sources"} . \EFs{"ó°�»"})
 (\EFs{"include"} . \EFs{"â�¤"})
 (\EFs{"setupfile"} . \EFs{"â��"})
 (\EFs{"html_head"} . \EFs{"ð��·"})
 (\EFs{"html"} . \EFs{"ð���"})
 (\EFs{"latex_class"} . \EFs{"ð��»"})
 (\EFs{"latex_class_options"} . \EFs{"ð��»ó°��"})
 (\EFs{"latex_header"} . \EFs{"ð��»"})
 (\EFs{"latex_header_extra"} . \EFs{"ð��»â�º"})
 (\EFs{"latex"} . \EFs{"ð���"})
 (\EFs{"beamer_theme"} . \EFs{"ð��±"})
 (\EFs{"beamer_color_theme"} . \EFs{"ð��±ó°��"})
 (\EFs{"beamer_font_theme"} . \EFs{"ð��±ð���"})
 (\EFs{"beamer_header"} . \EFs{"ð��±"})
 (\EFs{"beamer"} . \EFs{"ð���"})
 (\EFs{"attr_latex"} . \EFs{"ð���"})
 (\EFs{"attr_html"} . \EFs{"ð���"})
 (\EFs{"attr_org"} . \EFs{"â�ª"})
 (\EFs{"call"} . \EFs{"ó°��"})
 (\EFs{"name"} . \EFs{"â��"})
 (\EFs{"header"} . \EFs{"â�º"})
 (\EFs{"caption"} . \EFs{"â�°"})
 (\EFs{"results"} . \EFs{"ð� ¶"})))
 (custom-set-faces! '(org-modern-statistics \EFb{:inherit} org-checkbox-statistics-todo)))
\end{Verbatim}
\end{Code}

Since \verb~org-modern~'s tag face supplants Org's tag face, we need to adjust the
spell-check face ignore list

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} spell-fu
 (\EFk{cl-pushnew} 'org-modern-tag (alist-get 'org-mode +spell-excluded-faces-alist)))
\end{Verbatim}
\end{Code}
\item Emphasis markers
\label{sec:org3a3d583}

While \texttt{org-hide-emphasis-markers} is very nice, it can sometimes make edits which
occur at the border a bit more fiddley. We can improve this situation without
sacrificing visual amenities with the \verb~org-appear~ package.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} org-appear \EFb{:recipe} (\EFb{:host} github \EFb{:repo} \EFs{"awth13/org-appear"})
 \EFb{:pin} \EFs{"32ee50f8fdfa449bbc235617549c1bccb503cb09"})
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} org-appear
 \EFb{:hook} (org-mode . org-appear-mode)
 \EFb{:config}
 (\EFk{setq} org-appear-autoemphasis t
 org-appear-autosubmarkers t
 org-appear-autolinks nil)
 \EFcd{;;} \EFc{for proper first-time setup, `}\textcolor[HTML]{b751b6}{org-appear--set-elements}\EFc{'}
 \EFcd{;;} \EFc{needs to be run after other hooks have acted.}
 (run-at-time nil nil \#'org-appear--set-elements))
\end{Verbatim}
\end{Code}
\item Heading structure
\label{sec:org468fbd9}

Speaking of headlines, a nice package for viewing and managing the heading
structure has come to my attention.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} org-ol-tree \EFb{:recipe} (\EFb{:host} github \EFb{:repo} \EFs{"Townk/org-ol-tree"})
 \EFb{:pin} \EFs{"207c748aa5fea8626be619e8c55bdb1c16118c25"})
\end{Verbatim}
\end{Code}

We'll bind this to \verb~O~ on the org-mode localleader, and manually apply a \href{https://github.com/Townk/org-ol-tree/pull/13}{PR
recognising the pgtk window system}.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} org-ol-tree
 \EFb{:commands} org-ol-tree
 \EFb{:config}
 (\EFk{setq} org-ol-tree-ui-icon-set
 (\EFk{if} (\EFk{and} (display-graphic-p)
 (fboundp 'all-the-icons-material))
 'all-the-icons
 'unicode))
 (org-ol-tree-ui--update-icon-set))

(map! \EFb{:map} org-mode-map
 \EFb{:after} org
 \EFb{:localleader}
 \EFb{:desc} \EFs{"Outline"} \EFs{"O"} \#'org-ol-tree)
\end{Verbatim}
\end{Code}
\end{enumerate}
\item Extra functionality
\label{sec:orgb6d4a3a}
\begin{enumerate}
\item Julia support
\label{sec:org7ac674c}

\verb~ob-julia~ is currently a bit borked, but there's an effort to improve this.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} ob-julia \EFb{:recipe} (\EFb{:local-repo} \EFs{"lisp/ob-julia"} \EFb{:files} (\EFs{"*.el"} \EFs{"julia"})))
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} ob-julia
 \EFb{:commands} org-babel-execute:julia
 \EFb{:config}
 (\EFk{setq} org-babel-julia-command-arguments
 `(\EFs{"--sysimage"}
 ,(\EFk{when-let} ((img \EFs{"\char126{}/.local/lib/julia.so"})
 (exists? (file-exists-p img)))
 (expand-file-name img))
 \EFs{"--threads"}
 ,(number-to-string (- (doom-system-cpus) 2))
 \EFs{"--banner=no"})))
\end{Verbatim}
\end{Code}
\item HTTP requests
\label{sec:orgff09f56}

I like the idea of being able to make HTTP requests with Babel.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} ob-http \EFb{:pin} \EFs{"b1428ea2a63bcb510e7382a1bf5fe82b19c104a7"})
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} ob-http
 \EFb{:commands} org-babel-execute:http)
\end{Verbatim}
\end{Code}
\item RSS feeds
\label{sec:orgcd71c8e}

I need this for blog publishing. It used to be bundled with Org, but now it's
pretty much abandoned.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} ox-rss \EFb{:pin} \EFs{"d2964eca3614f84db85b498d065862a1e341868d"})
\end{Verbatim}
\end{Code}
\item Transclusion
\label{sec:org523f09f}

There's a really cool package in development to \emph{transclude} Org document content.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} org-transclusion \EFb{:recipe} (\EFb{:host} github \EFb{:repo} \EFs{"nobiot/org-transclusion"})
 \EFb{:pin} \EFs{"e9728b0b14b5c2e5d3b68af98f772ed99e136b48"})
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} org-transclusion
 \EFb{:commands} org-transclusion-mode
 \EFb{:init}
 (map! \EFb{:after} org \EFb{:map} org-mode-map
 \EFs{"<f12>"} \#'org-transclusion-mode))
\end{Verbatim}
\end{Code}
\item Heading graph
\label{sec:org8488b39}

Came across this and \ldots{} it's cool
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} org-graph-view \EFb{:recipe} (\EFb{:host} github \EFb{:repo} \EFs{"alphapapa/org-graph-view"})
 \EFb{:pin} \EFs{"172157aee1131ea59f0bd724a10abfdbccbd860e"})
\end{Verbatim}
\end{Code}
\item Cooking recipes
\label{sec:org2c7c86b}

I \textbf{need} this in my life. It take a URL to a recipe from a common site, and
inserts an org-ified version at point. Isn't that just great.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} org-chef \EFb{:pin} \EFs{"1710b54441ed744dcdfb125d08fb88cfaf452f10"})
\end{Verbatim}
\end{Code}

Loading after org seems a bit premature. Let's just load it when we try to use
it, either by command or in a capture template.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} org-chef
 \EFb{:commands} (org-chef-insert-recipe org-chef-get-recipe-from-url))
\end{Verbatim}
\end{Code}
\item Importing with Pandoc
\label{sec:org71ab0d5}

Sometimes I'm given non-org files, that's very sad. Luckily Pandoc offers a way
to make that right again, and this package makes that even easier to do.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} org-pandoc-import \EFb{:recipe}
 (\EFb{:local-repo} \EFs{"lisp/org-pandoc-import"} \EFb{:files} (\EFs{"*.el"} \EFs{"filters"} \EFs{"preprocessors"})))
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} org-pandoc-import
 \EFb{:after} org)
\end{Verbatim}
\end{Code}
\item Glossaries and more
\label{sec:org74fc0c0}

For glossary-type entries, there's a nice package for this I'm developing.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} org-glossary \EFb{:recipe} (\EFb{:local-repo} \EFs{"lisp/org-glossary"}))
\end{Verbatim}
\end{Code}

Other than hooking this to \verb~org-mode~, we also want to set a collection root and
improve the \LaTeX{} usage references with \verb~cleveref~'s \texttt{\textbackslash{}labelcpageref} command.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} org-glossary
 \EFb{:hook} (org-mode . org-glossary-mode)
 \EFb{:config}
 (\EFk{setq} org-glossary-collection-root \EFs{"\char126{}/.config/doom/misc/glossaries/"})
 (\EFk{defun} \EFf{+org-glossary--latex-cdef} (backend info term-entry form \EFt{\&optional} ref-index plural-p capitalized-p extra-parameters)
 (org-glossary--export-template
 (\EFk{if} (plist-get term-entry \EFb{:uses})
 \EFs{"*\%d*\char92{}\char92{}emsp\{\}\%v\char92{}\char92{}ensp\{\}@@latex:\char92{}\char92{}labelcpageref\{@@\%b@@latex:\}@@\char92{}n"}
 \EFs{"*\%d*\char92{}\char92{}emsp\{\}\%v\char92{}n"})
 backend info term-entry ref-index
 plural-p capitalized-p extra-parameters))
 (org-glossary-set-export-spec
 'latex t
 \EFb{:backref} \EFs{"gls-\%K-use-\%r"}
 \EFb{:backref-seperator} \EFs{","}
 \EFb{:definition-structure} \#'+org-glossary--latex-cdef))
\end{Verbatim}
\end{Code}
\item Document comparison
\label{sec:orgfced3ee}

It's quite nice to compare Org files, and the richest way to compare content is
probably \verb~latexdiff~. There are a few annoying steps involved here, and so I've
written a package to streamline the process.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} orgdiff \EFb{:recipe} (\EFb{:local-repo} \EFs{"lisp/orgdiff"}))
\end{Verbatim}
\end{Code}

The only little annoyance is the fact that \verb~latexdiff~ uses \texttt{\#FF0000} and \texttt{\#0000FF} as
the red/blue change indication colours. We can make this a bit nicer by
post-processing the \verb~latexdiff~ result.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} orgdiff
 \EFb{:defer} t
 \EFb{:config}
 (\EFk{defun} \EFf{+orgdiff-nicer-change-colours} ()
 (goto-char (point-min))
 \EFcd{;;} \EFc{Set red/blue based on whether chameleon is being used}
 (\EFk{if} (search-forward \EFs{"\%\% make document follow Emacs theme"} nil t)
 (\EFk{setq} red (substring (doom-blend 'red 'fg 0.8) 1)
 blue (substring (doom-blend 'blue 'teal 0.6) 1))
 (\EFk{setq} red \EFs{"c82829"}
 blue \EFs{"00618a"}))
 (\EFk{when} (\EFk{and} (search-forward \EFs{"\%DIF PREAMBLE EXTENSION ADDED BY LATEXDIFF"} nil t)
 (search-forward \EFs{"\char92{}\char92{}RequirePackage\{color\}"} nil t))
 (\EFk{when} (re-search-forward \EFs{"definecolor\{red\}\{rgb\}\{1,0,0\}"} (cdr (bounds-of-thing-at-point 'line)) t)
 (replace-match (format \EFs{"definecolor\{red\}\{HTML\}\{\%s\}"} red)))
 (\EFk{when} (re-search-forward \EFs{"definecolor\{blue\}\{rgb\}\{0,0,1\}"} (cdr (bounds-of-thing-at-point 'line)) t)
 (replace-match (format \EFs{"definecolor\{blue\}\{HTML\}\{\%s\}"} blue)))))
 (\EFk{setq} orgdiff-latexdiff-args '(\EFs{"--append-safecmd=acr,acrs"}))
 (add-to-list 'orgdiff-latexdiff-postprocess-hooks \#'+orgdiff-nicer-change-colours))
\end{Verbatim}
\end{Code}
\item Org music
\label{sec:org4b26877}

It's nice to be able to link to music
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} org-music \EFb{:recipe} (\EFb{:local-repo} \EFs{"lisp/org-music"}))
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} org-music
 \EFb{:after} org
 \EFb{:config}
 (\EFk{setq} org-music-mpris-player \EFs{"Lollypop"}
 org-music-track-search-method 'beets
 org-music-beets-db \EFs{"\char126{}/Music/library.db"}))
\end{Verbatim}
\end{Code}
\end{enumerate}
\end{enumerate}
\subsection{Behaviour}
\label{sec:orgc702778}

\begin{enumerate}
\item Tweaking defaults
\label{sec:org2d47ef0}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} org-directory (expand-file-name \EFs{"org"} (xdg-data-home)) \EFcd{;} \EFc{Let's put files here.}
 org-agenda-files (list org-directory) \EFcd{;} \EFc{Seems like the obvious place.}
 org-use-property-inheritance t \EFcd{;} \EFc{It's convenient to have properties inherited.}
 org-log-done 'time \EFcd{;} \EFc{Having the time a item is done sounds convenient.}
 org-list-allow-alphabetical t \EFcd{;} \EFc{Have a. A. a) A) list bullets.}
 org-catch-invisible-edits 'smart \EFcd{;} \EFc{Try not to accidently do weird stuff in invisible regions.}
 org-export-with-sub-superscripts '\{\} \EFcd{;} \EFc{Don't treat lone _ / \char94{} as sub/superscripts, require _\{\} / \char94{}\{\}.}
 org-export-allow-bind-keywords t \EFcd{;} \EFc{Bind keywords can be handy}
 org-image-actual-width '(0.9)) \EFcd{;} \EFc{Make the in-buffer display closer to the exported result..}
\end{Verbatim}
\end{Code}
I also like the \Verb[commandchars=\\\{\},highlightcolor=white!95!black!80!blue,breaklines=true,breaksymbol=\color{white!60!black}\tiny\ensuremath{\hookrightarrow}]{\color{EFD}\EFb{:comments}} header-argument, so let's make that a
default.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} org-babel-default-header-args
 '((\EFb{:session} . \EFs{"none"})
 (\EFb{:results} . \EFs{"replace"})
 (\EFb{:exports} . \EFs{"code"})
 (\EFb{:cache} . \EFs{"no"})
 (\EFb{:noweb} . \EFs{"no"})
 (\EFb{:hlines} . \EFs{"no"})
 (\EFb{:tangle} . \EFs{"no"})
 (\EFb{:comments} . \EFs{"link"})))
\end{Verbatim}
\end{Code}

By default, \texttt{visual-line-mode} is turned \verb~on~, and \texttt{auto-fill-mode} \verb~off~ by a hook.
However this messes with tables in Org-mode, and other plaintext files (e.g.
markdown, \LaTeX) so I'll turn it off for this, and manually enable it for more
specific modes as desired.
\begin{Code}
\begin{Verbatim}
\color{EFD}(remove-hook 'text-mode-hook \#'visual-line-mode)
(add-hook 'text-mode-hook \#'auto-fill-mode)
\end{Verbatim}
\end{Code}

There also seem to be a few keybindings which use \verb~hjkl~, but miss arrow key equivalents.
\begin{Code}
\begin{Verbatim}
\color{EFD}(map! \EFb{:map} evil-org-mode-map
 \EFb{:after} evil-org
 \EFb{:n} \EFs{"g <up>"} \#'org-backward-heading-same-level
 \EFb{:n} \EFs{"g <down>"} \#'org-forward-heading-same-level
 \EFb{:n} \EFs{"g <left>"} \#'org-up-element
 \EFb{:n} \EFs{"g <right>"} \#'org-down-element)
\end{Verbatim}
\end{Code}
\item Extra functionality
\label{sec:org03a4786}

\begin{enumerate}
\item The utility of zero-width spaces
\label{sec:org72eb71d}

Occasionally in Org you run into annoyances where you want to have two seperate
blocks right together without a space. For example, to \textbf{empâ��h}â��asise part of a word,
or put a currency symbol immediately before an inline source block.
There is a solution to this, it just sounds slightly hacky --- zero width spaces.
Because this is Emacs, we can make this feel much less hacky by making a minor
addition to the Org key map ð���.

\begin{Code}
\begin{Verbatim}
\color{EFD}(map! \EFb{:map} org-mode-map
 \EFb{:nie} \EFs{"M-SPC M-SPC"} (\EFk{cmd!} (insert \EFs{"\char92{}u200B"})))
\end{Verbatim}
\end{Code}

We then want to stop the space from being included in exports, which is done \hyperref[sec:org9043dbc]{here}.
\item List bullet sequence
\label{sec:org0806171}

I think it makes sense to have list bullets change with depth
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} org-list-demote-modify-bullet '((\EFs{"+"} . \EFs{"-"}) (\EFs{"-"} . \EFs{"+"}) (\EFs{"*"} . \EFs{"+"}) (\EFs{"1."} . \EFs{"a."})))
\end{Verbatim}
\end{Code}
\item Easier file links
\label{sec:org37b692c}

While \texttt{org-insert-link} is all very well and good, a large portion of the time I
want to insert a file, and so it would be good to have a way to skip straight to
that and avoid the description prompt. Looking at \texttt{org-link-parameters}, we can
see that the \verb~"file"~ link type uses the completion function
\texttt{org-link-complete-file}, so let's use that to make a little file-link inserting
function.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{+org-insert-file-link} ()
 \EFd{"Insert a file link. At the prompt, enter the filename."}
 (\EFk{interactive})
 (org-insert-link nil (org-link-complete-file)))
\end{Verbatim}
\end{Code}

Now we'll just add that under the Org mode link localleader for convenience.

\begin{Code}
\begin{Verbatim}
\color{EFD}(map! \EFb{:after} org
 \EFb{:map} org-mode-map
 \EFb{:localleader}
 \EFs{"l f"} \#'+org-insert-file-link)
\end{Verbatim}
\end{Code}
\item Citation
\label{sec:org2d8e014}

\begin{quote}
Extending the \verb~:tools biblio~ module.
\end{quote}

References in Org are fairly easy now, thanks to \verb~org-cite~. The \verb~:tools biblio~
module gives a fairly decent basic setup, but it would be nice to take it a bit
further. This mostly consists of tweaking settings, but there is one extra
package I'll grab for prettier in-buffer citations.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} org-cite-csl-activate \EFb{:recipe} (\EFb{:host} github \EFb{:repo} \EFs{"andras-simonyi/org-cite-csl-activate"}) \EFb{:pin} \EFs{"ccadbdcdfd1b4cb0cea132324cc1912e0f1900b6"})
\end{Verbatim}
\end{Code}

In particular, by setting \texttt{org-cite-csl-activate-use-document-style}, we can have
the in-buffer displayed citations be the same as the exported form. Isn't that lovely!

Unfortunately, there's currently a potential for undesirable buffer
modifications, so we'll put all the activation code behind a function we can
call when we want it.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} oc-csl-activate
 \EFb{:after} oc
 \EFb{:config}
 (\EFk{setq} org-cite-csl-activate-use-document-style t)
 (\EFk{defun} \EFf{+org-cite-csl-activate/enable} ()
 (\EFk{interactive})
 (\EFk{setq} org-cite-activate-processor 'csl-activate)
 (\EFk{add-hook!} 'org-mode-hook '((\EFk{lambda} () (cursor-sensor-mode 1)) org-cite-csl-activate-render-all))
 (\EFk{defadvice!} +org-cite-csl-activate-render-all-silent (orig-fn)
 \EFb{:around} \#'org-cite-csl-activate-render-all
 (\EFk{with-silent-modifications} (funcall orig-fn)))
 (\EFk{when} (eq major-mode 'org-mode)
 (\EFk{with-silent-modifications}
 (\EFk{save-excursion}
 (goto-char (point-min))
 (org-cite-activate (point-max)))
 (org-cite-csl-activate-render-all)))
 (fmakunbound \#'+org-cite-csl-activate/enable)))
\end{Verbatim}
\end{Code}

Now that \verb~oc-csl-activate~ is set up, let's go ahead and customise some of the
packages already loaded. For starters, we can make use of the my Zotero files
with \verb~citar~, and make the symbols a bit prettier.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} citar
 (\EFk{setq} org-cite-global-bibliography
 (\EFk{let} ((libfile-search-names '(\EFs{"library.json"} \EFs{"Library.json"} \EFs{"library.bib"} \EFs{"Library.bib"}))
 (libfile-dir \EFs{"\char126{}/Zotero"})
 paths)
 (\EFk{dolist} (libfile libfile-search-names)
 (\EFk{when} (\EFk{and} (not paths)
 (file-exists-p (expand-file-name libfile libfile-dir)))
 (\EFk{setq} paths (list (expand-file-name libfile libfile-dir)))))
 paths)
 citar-bibliography org-cite-global-bibliography
 citar-symbols
 `((file ,(nerd-icons-faicon \EFs{"nf-fa-file_o"} \EFb{:face} 'nerd-icons-green \EFb{:v-adjust} -0.1) . \EFs{" "})
 (note ,(nerd-icons-octicon \EFs{"nf-oct-note"} \EFb{:face} 'nerd-icons-blue \EFb{:v-adjust} -0.3) . \EFs{" "})
 (link ,(nerd-icons-octicon \EFs{"nf-oct-link"} \EFb{:face} 'nerd-icons-orange \EFb{:v-adjust} 0.01) . \EFs{" "}))))
\end{Verbatim}
\end{Code}

We can also make the Zotero CSL styles available to use.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} oc-csl
 (\EFk{setq} org-cite-csl-styles-dir \EFs{"\char126{}/Zotero/styles"}))
\end{Verbatim}
\end{Code}

Since CSL works so nicely everywhere, we might as well use it as the default
citation export processor for everything.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} oc
 (\EFk{setq} org-cite-export-processors '((t csl))))
\end{Verbatim}
\end{Code}

Then, for convenience we'll cap things off by putting the citation command under
Org's localleader.

\begin{Code}
\begin{Verbatim}
\color{EFD}(map! \EFb{:after} org
 \EFb{:map} org-mode-map
 \EFb{:localleader}
 \EFb{:desc} \EFs{"Insert citation"} \EFs{"@"} \#'org-cite-insert)
\end{Verbatim}
\end{Code}

Lastly, just in case I come across any old citations of mine, I think it would
be nice to have a function to convert \verb~org-ref~ citations to \verb~org-cite~ forms.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} oc
 (\EFk{defun} \EFf{org-ref-to-org-cite} ()
 \EFd{"Attempt to convert org-ref citations to org-cite syntax."}
 (\EFk{interactive})
 (\EFk{let*} ((cite-conversions '((\EFs{"cite"} . \EFs{"//b"}) (\EFs{"Cite"} . \EFs{"//bc"})
 (\EFs{"nocite"} . \EFs{"/n"})
 (\EFs{"citep"} . \EFs{""}) (\EFs{"citep*"} . \EFs{"//f"})
 (\EFs{"parencite"} . \EFs{""}) (\EFs{"Parencite"} . \EFs{"//c"})
 (\EFs{"citeauthor"} . \EFs{"/a/f"}) (\EFs{"citeauthor*"} . \EFs{"/a"})
 (\EFs{"citeyear"} . \EFs{"/na/b"})
 (\EFs{"Citep"} . \EFs{"//c"}) (\EFs{"Citealp"} . \EFs{"//bc"})
 (\EFs{"Citeauthor"} . \EFs{"/a/cf"}) (\EFs{"Citeauthor*"} . \EFs{"/a/c"})
 (\EFs{"autocite"} . \EFs{""}) (\EFs{"Autocite"} . \EFs{"//c"})
 (\EFs{"notecite"} . \EFs{"/l/b"}) (\EFs{"Notecite"} . \EFs{"/l/bc"})
 (\EFs{"pnotecite"} . \EFs{"/l"}) (\EFs{"Pnotecite"} . \EFs{"/l/bc"})))
 (cite-regexp (\EFk{rx} (regexp (regexp-opt (mapcar \#'car cite-conversions) t))
 \EFs{":"} (group (+ (not (any \EFs{"\char92{}n 	,.)]\}"})))))))
 (\EFk{save-excursion}
 (goto-char (point-min))
 (\EFk{while} (re-search-forward cite-regexp nil t)
 (message (format \EFs{"[cite\%s:@\%s]"}
 (cdr (assoc (match-string 1) cite-conversions))
 (match-string 2)))
 (replace-match (format \EFs{"[cite\%s:@\%s]"}
 (cdr (assoc (match-string 1) cite-conversions))
 (match-string 2))))))))
\end{Verbatim}
\end{Code}
\item cdlatex environments
\label{sec:org79026fc}

I prefer \verb~auto-activating-snippets~ to \verb~cdlatex~, but do like
\texttt{org-cdlatex-environment-indent} (bound to \verb~C-c }~). I almost always want to edit
them afterwards though, so let's make that happen by default.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defadvice!} +org-edit-latex-env-after-insert-a (\EFt{\&rest} _)
 \EFb{:after} \#'org-cdlatex-environment-indent
 (org-edit-latex-environment))
\end{Verbatim}
\end{Code}

At some point in the future it could be good to investigate \href{https://scripter.co/splitting-an-org-block-into-two/}{splitting org blocks}.
Likewise \href{https://archive.casouri.cat/note/2020/insert-math-symbol-in-emacs/}{this} looks good for symbols.
\item LSP support in \texttt{src} blocks
\label{sec:org2693776}

Now, by default, LSPs don't really function at all in \texttt{src} blocks.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{cl-defmacro} \EFf{lsp-org-babel-enable} (lang)
 \EFd{"Support LANG in org source code block."}
 (\EFk{setq} centaur-lsp 'lsp-mode)
 (\EFwr{cl-check-type} lang string)
 (\EFk{let*} ((edit-pre (intern (format \EFs{"org-babel-edit-prep:\%s"} lang)))
 (intern-pre (intern (format \EFs{"lsp--\%s"} (symbol-name edit-pre)))))
 `(\EFk{progn}
 (\EFk{defun} ,intern-pre (info)
 (\EFk{let} ((file-name (\EFk{->>} info caddr (alist-get \EFb{:file}))))
 (\EFk{unless} file-name
 (\EFk{setq} file-name (make-temp-file \EFs{"babel-lsp-"})))
 (\EFk{setq} buffer-file-name file-name)
 (lsp-deferred)))
 (put ',intern-pre 'function-documentation
 (format \EFs{"Enable lsp-mode in the buffer of org source block (\%s)."}
 (upcase ,lang)))
 (\EFk{if} (fboundp ',edit-pre)
 (advice-add ',edit-pre \EFb{:after} ',intern-pre)
 (\EFk{progn}
 (\EFk{defun} ,edit-pre (info)
 (,intern-pre info))
 (put ',edit-pre 'function-documentation
 (format \EFs{"Prepare local buffer environment for org source block (\%s)."}
 (upcase ,lang))))))))
(\EFk{defvar} \EFv{org-babel-lang-list}
 '(\EFs{"go"} \EFs{"python"} \EFs{"ipython"} \EFs{"bash"} \EFs{"sh"}))
(\EFk{dolist} (lang org-babel-lang-list)
 (eval `(lsp-org-babel-enable ,lang)))
\end{Verbatim}
\end{Code}
\item View exported file
\label{sec:org7ac9d6f}

\verb~'localeader v~ has no pre-existing binding, so I may as well use it with the same
functionality as in \LaTeX{}. Let's try viewing possible output files with this.
\begin{Code}
\begin{Verbatim}
\color{EFD}(map! \EFb{:map} org-mode-map
 \EFb{:localleader}
 \EFb{:desc} \EFs{"View exported file"} \EFs{"v"} \#'org-view-output-file)

(\EFk{defun} \EFf{org-view-output-file} (\EFt{\&optional} org-file-path)
 \EFd{"Visit buffer open on the first output file (if any) found, using `}\textcolor[HTML]{b751b6}{\textit{org-view-output-file-extensions}}\EFd{'"}
 (\EFk{interactive})
 (\EFk{let*} ((org-file-path (\EFk{or} org-file-path (buffer-file-name) \EFs{""}))
 (dir (file-name-directory org-file-path))
 (basename (file-name-base org-file-path))
 (output-file nil))
 (\EFk{dolist} (ext org-view-output-file-extensions)
 (\EFk{unless} output-file
 (\EFk{when} (file-exists-p
 (concat dir basename \EFs{"."} ext))
 (\EFk{setq} output-file (concat dir basename \EFs{"."} ext)))))
 (\EFk{if} output-file
 (\EFk{if} (member (file-name-extension output-file) org-view-external-file-extensions)
 (browse-url-xdg-open output-file)
 (pop-to-buffer (\EFk{or} (find-buffer-visiting output-file)
 (find-file-noselect output-file))))
 (message \EFs{"No exported file found"}))))

(\EFk{defvar} \EFv{org-view-output-file-extensions} '(\EFs{"pdf"} \EFs{"md"} \EFs{"rst"} \EFs{"txt"} \EFs{"tex"} \EFs{"html"})
 \EFd{"Search for output files with these extensions, in order, viewing the first that matches"})
(\EFk{defvar} \EFv{org-view-external-file-extensions} '(\EFs{"html"})
 \EFd{"File formats that should be opened externally."})
\end{Verbatim}
\end{Code}
\end{enumerate}
\item Super agenda
\label{sec:org70d4f8a}

The agenda is nice, but a souped up version is nicer.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} org-super-agenda \EFb{:pin} \EFs{"fb20ad9c8a9705aa05d40751682beae2d094e0fe"})
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} org-super-agenda
 \EFb{:commands} org-super-agenda-mode)
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} org-agenda
 (\EFk{let} ((inhibit-message t))
 (org-super-agenda-mode)))

(\EFk{setq} org-agenda-skip-scheduled-if-done t
 org-agenda-skip-deadline-if-done t
 org-agenda-include-deadlines t
 org-agenda-block-separator nil
 org-agenda-tags-column 100 \EFcd{;;} \EFc{from testing this seems to be a good value}
 org-agenda-compact-blocks t)

(\EFk{setq} org-agenda-custom-commands
 '((\EFs{"o"} \EFs{"Overview"}
 ((agenda \EFs{""} ((org-agenda-span 'day)
 (org-super-agenda-groups
 '((\EFb{:name} \EFs{"Today"}
 \EFb{:time-grid} t
 \EFb{:date} today
 \EFb{:todo} \EFs{"TODAY"}
 \EFb{:scheduled} today
 \EFb{:order} 1)))))
 (alltodo \EFs{""} ((org-agenda-overriding-header \EFs{""})
 (org-super-agenda-groups
 '((\EFb{:name} \EFs{"Next to do"}
 \EFb{:todo} \EFs{"NEXT"}
 \EFb{:order} 1)
 (\EFb{:name} \EFs{"Important"}
 \EFb{:tag} \EFs{"Important"}
 \EFb{:priority} \EFs{"A"}
 \EFb{:order} 6)
 (\EFb{:name} \EFs{"Due Today"}
 \EFb{:deadline} today
 \EFb{:order} 2)
 (\EFb{:name} \EFs{"Due Soon"}
 \EFb{:deadline} future
 \EFb{:order} 8)
 (\EFb{:name} \EFs{"Overdue"}
 \EFb{:deadline} past
 \EFb{:face} error
 \EFb{:order} 7)
 (\EFb{:name} \EFs{"Assignments"}
 \EFb{:tag} \EFs{"Assignment"}
 \EFb{:order} 10)
 (\EFb{:name} \EFs{"Issues"}
 \EFb{:tag} \EFs{"Issue"}
 \EFb{:order} 12)
 (\EFb{:name} \EFs{"Emacs"}
 \EFb{:tag} \EFs{"Emacs"}
 \EFb{:order} 13)
 (\EFb{:name} \EFs{"Projects"}
 \EFb{:tag} \EFs{"Project"}
 \EFb{:order} 14)
 (\EFb{:name} \EFs{"Research"}
 \EFb{:tag} \EFs{"Research"}
 \EFb{:order} 15)
 (\EFb{:name} \EFs{"To read"}
 \EFb{:tag} \EFs{"Read"}
 \EFb{:order} 30)
 (\EFb{:name} \EFs{"Waiting"}
 \EFb{:todo} \EFs{"WAITING"}
 \EFb{:order} 20)
 (\EFb{:name} \EFs{"University"}
 \EFb{:tag} \EFs{"uni"}
 \EFb{:order} 32)
 (\EFb{:name} \EFs{"Trivial"}
 \EFb{:priority<=} \EFs{"E"}
 \EFb{:tag} (\EFs{"Trivial"} \EFs{"Unimportant"})
 \EFb{:todo} (\EFs{"SOMEDAY"})
 \EFb{:order} 90)
 (\EFb{:discard} (\EFb{:tag} (\EFs{"Chore"} \EFs{"Routine"} \EFs{"Daily"})))))))))))
\end{Verbatim}
\end{Code}
\item Capture
\label{sec:org014185f}

Let's setup some org-capture templates, and make them visually nice to access.

\begin{center}
\includegraphics[width=.9\linewidth]{/tmp/org-persist-IRkN4n/c2/f56382-3daf-4843-be4c-da4d109b357e-126fc07d869878fb28a99d107d4c8e25.png}
\end{center}

\texttt{doct} (Declarative Org Capture Templates) seems to be a nicer way to
set up org-capture.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} doct
 \EFb{:recipe} (\EFb{:host} github \EFb{:repo} \EFs{"progfolio/doct"})
 \EFb{:pin} \EFs{"5cab660dab653ad88c07b0493360252f6ed1d898"})
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} doct
 \EFb{:commands} doct)
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} org-capture
 <<prettify-capture>>

 (\EFk{defun} \EFf{+doct-icon-declaration-to-icon} (declaration)
 \EFd{"Convert :icon declaration to icon"}
 (\EFk{let} ((name (\EFk{pop} declaration))
 (set (intern (concat \EFs{"nerd-icons-"} (plist-get declaration \EFb{:set}))))
 (face (intern (concat \EFs{"nerd-icons-"} (plist-get declaration \EFb{:color}))))
 (v-adjust (\EFk{or} (plist-get declaration \EFb{:v-adjust}) 0.01)))
 (apply set `(,name \EFb{:face} ,face \EFb{:v-adjust} ,v-adjust))))

 (\EFk{defun} \EFf{+doct-iconify-capture-templates} (groups)
 \EFd{"Add declaration's :icon to each template group in GROUPS."}
 (\EFk{let} ((templates (doct-flatten-lists-in groups)))
 (\EFk{setq} doct-templates (mapcar (\EFk{lambda} (template)
 (\EFk{when-let*} ((props (nthcdr (\EFk{if} (= (length template) 4) 2 5) template))
 (spec (plist-get (plist-get props \EFb{:doct}) \EFb{:icon})))
 (\EFk{setf} (nth 1 template) (concat (+doct-icon-declaration-to-icon spec)
 \EFs{"\char92{}t"}
 (nth 1 template))))
 template)
 templates))))

 (\EFk{setq} doct-after-conversion-functions '(+doct-iconify-capture-templates))

 (\EFk{defvar} \EFv{+org-capture-recipies} \EFs{"\char126{}/Desktop/TEC/Organisation/recipies.org"})

 (\EFk{defun} \EFf{set-org-capture-templates} ()
 (\EFk{setq} org-capture-templates
 (doct `((\EFs{"Personal todo"} \EFb{:keys} \EFs{"t"}
 \EFb{:icon} (\EFs{"nf-oct-checklist"} \EFb{:set} \EFs{"octicon"} \EFb{:color} \EFs{"green"})
 \EFb{:file} +org-capture-todo-file
 \EFb{:prepend} t
 \EFb{:headline} \EFs{"Inbox"}
 \EFb{:type} entry
 \EFb{:template} (\EFs{"* TODO \%?"}
 \EFs{"\%i \%a"}))
 (\EFs{"Personal note"} \EFb{:keys} \EFs{"n"}
 \EFb{:icon} (\EFs{"nf-fa-sticky_note_o"} \EFb{:set} \EFs{"faicon"} \EFb{:color} \EFs{"green"})
 \EFb{:file} +org-capture-todo-file
 \EFb{:prepend} t
 \EFb{:headline} \EFs{"Inbox"}
 \EFb{:type} entry
 \EFb{:template} (\EFs{"* \%?"}
 \EFs{"\%i \%a"}))
 (\EFs{"Email"} \EFb{:keys} \EFs{"e"}
 \EFb{:icon} (\EFs{"nf-fa-envelope"} \EFb{:set} \EFs{"faicon"} \EFb{:color} \EFs{"blue"})
 \EFb{:file} +org-capture-todo-file
 \EFb{:prepend} t
 \EFb{:headline} \EFs{"Inbox"}
 \EFb{:type} entry
 \EFb{:template} (\EFs{"* TODO \%\char94{}\{type|reply to|contact\} \%\char92{}\char92{}3 \%? :email:"}
 \EFs{"Send an email \%\char94{}\{urgancy|soon|ASAP|anon|at some point|eventually\} to \%\char94{}\{recipiant\}"}
 \EFs{"about \%\char94{}\{topic\}"}
 \EFs{"\%U \%i \%a"}))
 (\EFs{"Interesting"} \EFb{:keys} \EFs{"i"}
 \EFb{:icon} (\EFs{"nf-fa-eye"} \EFb{:set} \EFs{"faicon"} \EFb{:color} \EFs{"lcyan"})
 \EFb{:file} +org-capture-todo-file
 \EFb{:prepend} t
 \EFb{:headline} \EFs{"Interesting"}
 \EFb{:type} entry
 \EFb{:template} (\EFs{"* [] \%\{desc\}\%? :\%\{i-type\}:"}
 \EFs{"\%i \%a"})
 \EFb{:children} ((\EFs{"Webpage"} \EFb{:keys} \EFs{"w"}
 \EFb{:icon} (\EFs{"nf-fa-globe"} \EFb{:set} \EFs{"faicon"} \EFb{:color} \EFs{"green"})
 \EFb{:desc} \EFs{"\%(org-cliplink-capture) "}
 \EFb{:i-type} \EFs{"read:web"})
 (\EFs{"Article"} \EFb{:keys} \EFs{"a"}
 \EFb{:icon} (\EFs{"nf-fa-file_text_o"} \EFb{:set} \EFs{"faicon"} \EFb{:color} \EFs{"yellow"})
 \EFb{:desc} \EFs{""}
 \EFb{:i-type} \EFs{"read:reaserch"})
 (\EFs{"\char92{}tRecipie"} \EFb{:keys} \EFs{"r"}
 \EFb{:icon} (\EFs{"nf-fa-spoon"} \EFb{:set} \EFs{"faicon"} \EFb{:color} \EFs{"dorange"})
 \EFb{:file} +org-capture-recipies
 \EFb{:headline} \EFs{"Unsorted"}
 \EFb{:template} \EFs{"\%(org-chef-get-recipe-from-url)"})
 (\EFs{"Information"} \EFb{:keys} \EFs{"i"}
 \EFb{:icon} (\EFs{"nf-fa-info_circle"} \EFb{:set} \EFs{"faicon"} \EFb{:color} \EFs{"blue"})
 \EFb{:desc} \EFs{""}
 \EFb{:i-type} \EFs{"read:info"})
 (\EFs{"Idea"} \EFb{:keys} \EFs{"I"}
 \EFb{:icon} (\EFs{"nf-md-chart_bubble"} \EFb{:set} \EFs{"mdicon"} \EFb{:color} \EFs{"silver"})
 \EFb{:desc} \EFs{""}
 \EFb{:i-type} \EFs{"idea"})))
 (\EFs{"Tasks"} \EFb{:keys} \EFs{"k"}
 \EFb{:icon} (\EFs{"nf-oct-inbox"} \EFb{:set} \EFs{"octicon"} \EFb{:color} \EFs{"yellow"})
 \EFb{:file} +org-capture-todo-file
 \EFb{:prepend} t
 \EFb{:headline} \EFs{"Tasks"}
 \EFb{:type} entry
 \EFb{:template} (\EFs{"* TODO \%? \%\char94{}G\%\{extra\}"}
 \EFs{"\%i \%a"})
 \EFb{:children} ((\EFs{"General Task"} \EFb{:keys} \EFs{"k"}
 \EFb{:icon} (\EFs{"nf-oct-inbox"} \EFb{:set} \EFs{"octicon"} \EFb{:color} \EFs{"yellow"})
 \EFb{:extra} \EFs{""})
 (\EFs{"Task with deadline"} \EFb{:keys} \EFs{"d"}
 \EFb{:icon} (\EFs{"nf-md-timer"} \EFb{:set} \EFs{"mdicon"} \EFb{:color} \EFs{"orange"} \EFb{:v-adjust} -0.1)
 \EFb{:extra} \EFs{"\char92{}nDEADLINE: \%\char94{}\{Deadline:\}t"})
 (\EFs{"Scheduled Task"} \EFb{:keys} \EFs{"s"}
 \EFb{:icon} (\EFs{"nf-oct-calendar"} \EFb{:set} \EFs{"octicon"} \EFb{:color} \EFs{"orange"})
 \EFb{:extra} \EFs{"\char92{}nSCHEDULED: \%\char94{}\{Start time:\}t"})))
 (\EFs{"Project"} \EFb{:keys} \EFs{"p"}
 \EFb{:icon} (\EFs{"nf-oct-repo"} \EFb{:set} \EFs{"octicon"} \EFb{:color} \EFs{"silver"})
 \EFb{:prepend} t
 \EFb{:type} entry
 \EFb{:headline} \EFs{"Inbox"}
 \EFb{:template} (\EFs{"* \%\{time-or-todo\} \%?"}
 \EFs{"\%i"}
 \EFs{"\%a"})
 \EFb{:file} \EFs{""}
 \EFb{:custom} (\EFb{:time-or-todo} \EFs{""})
 \EFb{:children} ((\EFs{"Project-local todo"} \EFb{:keys} \EFs{"t"}
 \EFb{:icon} (\EFs{"nf-oct-checklist"} \EFb{:set} \EFs{"octicon"} \EFb{:color} \EFs{"green"})
 \EFb{:time-or-todo} \EFs{"TODO"}
 \EFb{:file} +org-capture-project-todo-file)
 (\EFs{"Project-local note"} \EFb{:keys} \EFs{"n"}
 \EFb{:icon} (\EFs{"nf-fa-sticky_note"} \EFb{:set} \EFs{"faicon"} \EFb{:color} \EFs{"yellow"})
 \EFb{:time-or-todo} \EFs{"\%U"}
 \EFb{:file} +org-capture-project-notes-file)
 (\EFs{"Project-local changelog"} \EFb{:keys} \EFs{"c"}
 \EFb{:icon} (\EFs{"nf-fa-list"} \EFb{:set} \EFs{"faicon"} \EFb{:color} \EFs{"blue"})
 \EFb{:time-or-todo} \EFs{"\%U"}
 \EFb{:heading} \EFs{"Unreleased"}
 \EFb{:file} +org-capture-project-changelog-file)))
 (\EFs{"\char92{}tCentralised project templates"}
 \EFb{:keys} \EFs{"o"}
 \EFb{:type} entry
 \EFb{:prepend} t
 \EFb{:template} (\EFs{"* \%\{time-or-todo\} \%?"}
 \EFs{"\%i"}
 \EFs{"\%a"})
 \EFb{:children} ((\EFs{"Project todo"}
 \EFb{:keys} \EFs{"t"}
 \EFb{:prepend} nil
 \EFb{:time-or-todo} \EFs{"TODO"}
 \EFb{:heading} \EFs{"Tasks"}
 \EFb{:file} +org-capture-central-project-todo-file)
 (\EFs{"Project note"}
 \EFb{:keys} \EFs{"n"}
 \EFb{:time-or-todo} \EFs{"\%U"}
 \EFb{:heading} \EFs{"Notes"}
 \EFb{:file} +org-capture-central-project-notes-file)
 (\EFs{"Project changelog"}
 \EFb{:keys} \EFs{"c"}
 \EFb{:time-or-todo} \EFs{"\%U"}
 \EFb{:heading} \EFs{"Unreleased"}
 \EFb{:file} +org-capture-central-project-changelog-file)))))))

 (set-org-capture-templates)
 (\EFk{unless} (display-graphic-p)
 (add-hook 'server-after-make-frame-hook
 (\EFk{defun} \EFf{org-capture-reinitialise-hook} ()
 (\EFk{when} (display-graphic-p)
 (set-org-capture-templates)
 (remove-hook 'server-after-make-frame-hook
 \#'org-capture-reinitialise-hook))))))
\end{Verbatim}
\end{Code}
It would also be nice to improve how the capture dialogue looks
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{org-capture-select-template-prettier} (\EFt{\&optional} keys)
 \EFd{"Select a capture template, in a prettier way than default}
\EFd{Lisp programs can force the template by setting KEYS to a string."}
 (\EFk{let} ((org-capture-templates
 (\EFk{or} (org-contextualize-keys
 (org-capture-upgrade-templates org-capture-templates)
 org-capture-templates-contexts)
 '((\EFs{"t"} \EFs{"Task"} entry (file+headline \EFs{""} \EFs{"Tasks"})
 \EFs{"* TODO \%?\char92{}n \%u\char92{}n \%a"})))))
 (\EFk{if} keys
 (\EFk{or} (assoc keys org-capture-templates)
 (\EFwr{error} \EFs{"No capture template referred to by \char92{}"\%s\char92{}" keys"} keys))
 (org-mks org-capture-templates
 \EFs{"Select a capture template\char92{}nâ��"}
 \EFs{"Template key: "}
 `((\EFs{"q"} ,(concat (nerd-icons-octicon \EFs{"nf-oct-stop"} \EFb{:face} 'nerd-icons-red \EFb{:v-adjust} 0.01) \EFs{"\char92{}tAbort"})))))))
(advice-add 'org-capture-select-template \EFb{:override} \#'org-capture-select-template-prettier)

(\EFk{defun} \EFf{org-mks-pretty} (table title \EFt{\&optional} prompt specials)
 \EFd{"Select a member of an alist with multiple keys. Prettified.}

\EFd{TABLE is the alist which should contain entries where the car is a string.}
\EFd{There should be two types of entries.}

\EFd{1. prefix descriptions like (\char92{}"a\char92{}" \char92{}"Description\char92{}")}
 \EFd{This indicates that `}\textcolor[HTML]{b751b6}{\textit{a}}\EFd{' is a prefix key for multi-letter selection, and}
 \EFd{that there are entries following with keys like \char92{}"ab\char92{}", \char92{}"ax\char92{}"â�¦}

\EFd{2. Select-able members must have more than two elements, with the first}
 \EFd{being the string of keys that lead to selecting it, and the second a}
 \EFd{short description string of the item.}

\EFd{The command will then make a temporary buffer listing all entries}
\EFd{that can be selected with a single key, and all the single key}
\EFd{prefixes. When you press the key for a single-letter entry, it is selected.}
\EFd{When you press a prefix key, the commands (and maybe further prefixes)}
\EFd{under this key will be shown and offered for selection.}

\EFd{TITLE will be placed over the selection in the temporary buffer,}
\EFd{PROMPT will be used when prompting for a key. SPECIALS is an}
\EFd{alist with (\char92{}"key\char92{}" \char92{}"description\char92{}") entries. When one of these}
\EFd{is selected, only the bare key is returned."}
 (\EFk{save-window-excursion}
 (\EFk{let} ((inhibit-quit t)
 (buffer (org-switch-to-buffer-other-window \EFs{"*Org Select*"}))
 (prompt (\EFk{or} prompt \EFs{"Select: "}))
 case-fold-search
 current)
 (\EFk{unwind-protect}
 (\EFk{catch} '\EFo{exit}
 (\EFk{while} t
 (\EFk{setq-local} evil-normal-state-cursor (list nil))
 (erase-buffer)
 (insert title \EFs{"\char92{}n\char92{}n"})
 (\EFk{let} ((des-keys nil)
 (allowed-keys '(\EFs{"\char92{}C-g"}))
 (tab-alternatives '(\EFs{"\char92{}s"} \EFs{"\char92{}t"} \EFs{"\char92{}r"}))
 (cursor-type nil))
 \EFcd{;;} \EFc{Populate allowed keys and descriptions keys}
 \EFcd{;;} \EFc{available with CURRENT selector.}
 (\EFk{let} ((re (format \EFs{"\char92{}\char92{}`\%s}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{.}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{\char92{}\char92{}'"}
 (\EFk{if} current (regexp-quote current) \EFs{""})))
 (prefix (\EFk{if} current (concat current \EFs{" "}) \EFs{""})))
 (\EFk{dolist} (entry table)
 (\EFk{pcase} entry
 \EFcd{;;} \EFc{Description.}
 (`(,(\EFk{and} key (pred (string-match re))) ,desc)
 (\EFk{let} ((k (match-string 1 key)))
 (\EFk{push} k des-keys)
 \EFcd{;;} \EFc{Keys ending in tab, space or RET are equivalent.}
 (\EFk{if} (member k tab-alternatives)
 (\EFk{push} \EFs{"\char92{}t"} allowed-keys)
 (\EFk{push} k allowed-keys))
 (insert (propertize prefix 'face 'font-lock-comment-face) (propertize k 'face 'bold) (propertize \EFs{"â�º"} 'face 'font-lock-comment-face) \EFs{" "} desc \EFs{"â�¦"} \EFs{"\char92{}n"})))
 \EFcd{;;} \EFc{Usable entry.}
 (`(,(\EFk{and} key (pred (string-match re))) ,desc . ,_)
 (\EFk{let} ((k (match-string 1 key)))
 (insert (propertize prefix 'face 'font-lock-comment-face) (propertize k 'face 'bold) \EFs{" "} desc \EFs{"\char92{}n"})
 (\EFk{push} k allowed-keys)))
 (_ nil))))
 \EFcd{;;} \EFc{Insert special entries, if any.}
 (\EFk{when} specials
 (insert \EFs{"â��\char92{}n"})
 (\EFk{pcase-dolist} (`(,key ,description) specials)
 (insert (format \EFs{"\%s \%s\char92{}n"} (propertize key 'face '(bold nerd-icons-red)) description))
 (\EFk{push} key allowed-keys)))
 \EFcd{;;} \EFc{Display UI and let user select an entry or}
 \EFcd{;;} \EFc{a sub-level prefix.}
 (goto-char (point-min))
 (\EFk{unless} (pos-visible-in-window-p (point-max))
 (org-fit-window-to-buffer))
 (\EFk{let} ((pressed (org--mks-read-key allowed-keys
 prompt
 (not (pos-visible-in-window-p (1- (point-max)))))))
 (\EFk{setq} current (concat current pressed))
 (\EFk{cond}
 ((equal pressed \EFs{"\char92{}C-g"}) (\EFwr{user-error} \EFs{"Abort"}))
 \EFcd{;;} \EFc{Selection is a prefix: open a new menu.}
 ((member pressed des-keys))
 \EFcd{;;} \EFc{Selection matches an association: return it.}
 ((\EFk{let} ((entry (assoc current table)))
 (\EFk{and} entry (\EFk{throw} '\EFo{exit} entry))))
 \EFcd{;;} \EFc{Selection matches a special entry: return the}
 \EFcd{;;} \EFc{selection prefix.}
 ((assoc current specials) (\EFk{throw} '\EFo{exit} current))
 (t (\EFwr{error} \EFs{"No entry available"})))))))
 (\EFk{when} buffer (kill-buffer buffer))))))
(advice-add 'org-mks \EFb{:override} \#'org-mks-pretty)
\end{Verbatim}
\end{Code}
The \href{file:///home/runner/.config/emacs/bin/org-capture}{org-capture bin} is rather nice, but I'd be nicer with a smaller frame, and
no modeline.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setf} (alist-get 'height +org-capture-frame-parameters) 15)
\EFcd{;;} \EFc{(alist-get 'name +org-capture-frame-parameters) "â�� Capture") ;; ATM hardcoded in other places, so changing breaks stuff}
(\EFk{setq} +org-capture-fn
 (\EFk{lambda} ()
 (\EFk{interactive})
 (set-window-parameter nil 'mode-line-format 'none)
 (org-capture)))
\end{Verbatim}
\end{Code}
\item Roam
\label{sec:orgd13acf1}

\begin{enumerate}
\item Basic settings
\label{sec:orgc62841f}

I'll just set this to be within \verb~Organisation~ folder for now, in the future it
could be worth seeing if I could hook this up to a \href{https://nextcloud.com/}{Nextcloud} instance.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} org-roam-directory \EFs{"\char126{}/Desktop/TEC/Organisation/Roam/"})
\end{Verbatim}
\end{Code}

That said, if the directory doesn't exist we likely don't want to be using roam.
Since we don't want to trigger errors (which will happen as soon as roam tries
to initialise), let's not load roam.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} org-roam \EFb{:disable} t)
\end{Verbatim}
\end{Code}
\item Modeline file name
\label{sec:orga1892a3}

All those numbers! It's messy. Let's adjust this in a similar way that I have in
the \hyperref[sec:org1f83c1c]{Window title}.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defadvice!} doom-modeline--buffer-file-name-roam-aware-a (orig-fun)
 \EFb{:around} \#'doom-modeline-buffer-file-name \EFcd{;} \EFc{takes no args}
 (\EFk{if} (string-match-p (regexp-quote org-roam-directory) (\EFk{or} buffer-file-name \EFs{""}))
 (replace-regexp-in-string
 \EFs{"}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(?:}}\EFs{\char94{}}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{.*/}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[0-9]\char92{}\char92{}\{}\textcolor[HTML]{6a1868}{4\char92{}\char92{}}\EFs{\}}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[0-9]\char92{}\char92{}\{}\textcolor[HTML]{6a1868}{2\char92{}\char92{}}\EFs{\}}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[0-9]\char92{}\char92{}\{}\textcolor[HTML]{6a1868}{2\char92{}\char92{}}\EFs{\}}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{[0-9]*-"}
 \EFs{"ð�¢�(\char92{}\char92{}1-\char92{}\char92{}2-\char92{}\char92{}3) "}
 (subst-char-in-string ?_ ? buffer-file-name))
 (funcall orig-fun)))
\end{Verbatim}
\end{Code}
\item Graph view
\label{sec:org462888b}

Org-roam is nice by itself, but there are so \emph{extra} nice packages which integrate
with it.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} org-roam-ui \EFb{:recipe} (\EFb{:host} github \EFb{:repo} \EFs{"org-roam/org-roam-ui"} \EFb{:files} (\EFs{"*.el"} \EFs{"out"})) \EFb{:pin} \EFs{"5ac74960231db0bf7783c2ba7a19a60f582e91ab"})
(\EFk{package!} websocket \EFb{:pin} \EFs{"40c208eaab99999d7c1e4bea883648da24c03be3"}) \EFcd{;} \EFc{dependency of `}\textcolor[HTML]{b751b6}{org-roam-ui}\EFc{'}
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} websocket
 \EFb{:after} org-roam)

(\EFk{use-package!} org-roam-ui
 \EFb{:after} org-roam
 \EFb{:commands} org-roam-ui-open
 \EFb{:hook} (org-roam . org-roam-ui-mode)
 \EFb{:config}
 (\EFk{require} '\EFo{org-roam}) \EFcd{;} \EFc{in case autoloaded}
 (\EFk{defun} \EFf{org-roam-ui-open} ()
 \EFd{"Ensure the server is active, then open the roam graph."}
 (\EFk{interactive})
 (\EFk{unless} org-roam-ui-mode (org-roam-ui-mode 1))
 (browse-url-xdg-open (format \EFs{"http://localhost:\%d"} org-roam-ui-port))))
\end{Verbatim}
\end{Code}
\end{enumerate}
\item Nicer \texttt{org-return}
\label{sec:orgd66f7ab}

Once again, from \href{https://github.com/alphapapa/unpackaged.el\#org-return-dwim}{unpackaged.el}
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{unpackaged/org-element-descendant-of} (type element)
 \EFd{"Return non-nil if ELEMENT is a descendant of TYPE.}
\EFd{TYPE should be an element type, like `}\textcolor[HTML]{b751b6}{\textit{item}}\EFd{' or `}\textcolor[HTML]{b751b6}{\textit{paragraph}}\EFd{'.}
\EFd{ELEMENT should be a list like that returned by `}\textcolor[HTML]{b751b6}{\textit{org-element-context}}\EFd{'."}
 \EFcd{;;} \EFc{MAYBE: Use `}\textcolor[HTML]{b751b6}{org-element-lineage}\EFc{'.}
 (\EFk{when-let*} ((parent (org-element-property \EFb{:parent} element)))
 (\EFk{or} (eq type (car parent))
 (unpackaged/org-element-descendant-of type parent))))

\EFcd{;;;}\EFc{\#\#\#}\textcolor[HTML]{986801}{autoload}
(\EFk{defun} \EFf{unpackaged/org-return-dwim} (\EFt{\&optional} default)
 \EFd{"A helpful replacement for `}\textcolor[HTML]{b751b6}{\textit{org-return-indent}}\EFd{'. With prefix, call `}\textcolor[HTML]{b751b6}{\textit{org-return-indent}}\EFd{'.}

\EFd{On headings, move point to position after entry content. In}
\EFd{lists, insert a new item or end the list, with checkbox if}
\EFd{appropriate. In tables, insert a new row or end the table."}
 \EFcd{;;} \EFc{Inspired by John Kitchin: http://kitchingroup.cheme.cmu.edu/blog/2017/04/09/A-better-return-in-org-mode/}
 (\EFk{interactive} \EFs{"P"})
 (\EFk{if} default
 (org-return t)
 (\EFk{cond}
 \EFcd{;;} \EFc{Act depending on context around point.}

 \EFcd{;;} \EFc{NOTE: I prefer RET to not follow links, but by uncommenting this block, links will be}
 \EFcd{;;} \EFc{followed.}

 \EFcd{;;} \EFc{((eq 'link (car (org-element-context)))}
 \EFcd{;;} \EFc{;; Link: Open it.}
 \EFcd{;;} \EFc{(org-open-at-point-global))}

 ((org-at-heading-p)
 \EFcd{;;} \EFc{Heading: Move to position after entry content.}
 \EFcd{;;} \EFc{NOTE: This is probably the most interesting feature of this function.}
 (\EFk{let} ((heading-start (org-entry-beginning-position)))
 (goto-char (org-entry-end-position))
 (\EFk{cond} ((\EFk{and} (org-at-heading-p)
 (= heading-start (org-entry-beginning-position)))
 \EFcd{;;} \EFc{Entry ends on its heading; add newline after}
 (end-of-line)
 (insert \EFs{"\char92{}n\char92{}n"}))
 (t
 \EFcd{;;} \EFc{Entry ends after its heading; back up}
 (forward-line -1)
 (end-of-line)
 (\EFk{when} (org-at-heading-p)
 \EFcd{;;} \EFc{At the same heading}
 (forward-line)
 (insert \EFs{"\char92{}n"})
 (forward-line -1))
 (\EFk{while} (not (looking-back \EFs{"}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(?:}}\EFs{[[:blank:]]?\char92{}n}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{\char92{}\char92{}\{}\textcolor[HTML]{6a1868}{3\char92{}\char92{}}\EFs{\}"} nil))
 (insert \EFs{"\char92{}n"}))
 (forward-line -1)))))

 ((org-at-item-checkbox-p)
 \EFcd{;;} \EFc{Checkbox: Insert new item with checkbox.}
 (org-insert-todo-heading nil))

 ((org-in-item-p)
 \EFcd{;;} \EFc{Plain list. Yes, this gets a little complicated...}
 (\EFk{let} ((context (org-element-context)))
 (\EFk{if} (\EFk{or} (eq 'plain-list (car context)) \EFcd{;} \EFc{First item in list}
 (\EFk{and} (eq 'item (car context))
 (not (eq (org-element-property \EFb{:contents-begin} context)
 (org-element-property \EFb{:contents-end} context))))
 (unpackaged/org-element-descendant-of 'item context)) \EFcd{;} \EFc{Element in list item, e.g. a link}
 \EFcd{;;} \EFc{Non-empty item: Add new item.}
 (org-insert-item)
 \EFcd{;;} \EFc{Empty item: Close the list.}
 \EFcd{;;} \EFc{TODO: Do this with org functions rather than operating on the text. Can't seem to find the right function.}
 (delete-region (line-beginning-position) (line-end-position))
 (insert \EFs{"\char92{}n"}))))

 ((\EFk{when} (fboundp 'org-inlinetask-in-task-p)
 (org-inlinetask-in-task-p))
 \EFcd{;;} \EFc{Inline task: Don't insert a new heading.}
 (org-return t))

 ((org-at-table-p)
 (\EFk{cond} ((\EFk{save-excursion}
 (beginning-of-line)
 \EFcd{;;} \EFc{See `}\textcolor[HTML]{b751b6}{org-table-next-field}\EFc{'.}
 (\EFk{cl-loop} with end = (line-end-position)
 for cell = (org-element-table-cell-parser)
 always (equal (org-element-property \EFb{:contents-begin} cell)
 (org-element-property \EFb{:contents-end} cell))
 while (re-search-forward \EFs{"|"} end t)))
 \EFcd{;;} \EFc{Empty row: end the table.}
 (delete-region (line-beginning-position) (line-end-position))
 (org-return t))
 (t
 \EFcd{;;} \EFc{Non-empty row: call `}\textcolor[HTML]{b751b6}{org-return-indent}\EFc{'.}
 (org-return t))))
 (t
 \EFcd{;;} \EFc{All other cases: call `}\textcolor[HTML]{b751b6}{org-return-indent}\EFc{'.}
 (org-return t)))))

(map!
 \EFb{:after} evil-org
 \EFb{:map} evil-org-mode-map
 \EFb{:i} [return] \#'unpackaged/org-return-dwim)
\end{Verbatim}
\end{Code}
\item Snippet Helpers
\label{sec:org8079c31}

I often want to set \verb~src-block~ headers, and it's a pain to
\begin{itemize}
\item type them out
\item remember what the accepted values are
\item oh, and specifying the same language again and again
\end{itemize}

We can solve this in three steps
\begin{itemize}
\item having one-letter snippets, conditioned on \texttt{(point)} being within a src header
\item creating a nice prompt showing accepted values and the current default
\item pre-filling the \verb~src-block~ language with the last language used
\end{itemize}

For header args, the keys I'll use are
\begin{itemize}
\item \verb~r~ for \verb~:results~
\item \verb~e~ for \verb~:exports~
\item \verb~v~ for \verb~:eval~
\item \verb~s~ for \verb~:session~
\item \verb~d~ for \verb~:dir~
\end{itemize}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{+yas/org-src-header-p} ()
 \EFd{"Determine whether `}\textcolor[HTML]{b751b6}{\textit{point}}\EFd{' is within a src-block header or header-args."}
 (\EFk{pcase} (org-element-type (org-element-context))
 ('src-block (< (point) \EFcd{;} \EFc{before code part of the src-block}
 (\EFk{save-excursion} (goto-char (org-element-property \EFb{:begin} (org-element-context)))
 (forward-line 1)
 (point))))
 ('inline-src-block (< (point) \EFcd{;} \EFc{before code part of the inline-src-block}
 (\EFk{save-excursion} (goto-char (org-element-property \EFb{:begin} (org-element-context)))
 (search-forward \EFs{"]\{"})
 (point))))
 ('keyword (string-match-p \EFs{"\char94{}header-args"} (org-element-property \EFb{:value} (org-element-context))))))
\end{Verbatim}
\end{Code}

Now let's write a function we can reference in yasnippets to produce a nice
interactive way to specify header args.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{+yas/org-prompt-header-arg} (arg question values)
 \EFd{"Prompt the user to set ARG header property to one of VALUES with QUESTION.}
\EFd{The default value is identified and indicated. If either default is selected,}
\EFd{or no selection is made: nil is returned."}
 (\EFk{let*} ((src-block-p (not (looking-back \EFs{"\char94{}\#\char92{}\char92{}+property:[\char92{}t]+header-args:.*"} (line-beginning-position))))
 (default
 (\EFk{or}
 (cdr (assoc arg
 (\EFk{if} src-block-p
 (nth 2 (org-babel-get-src-block-info t))
 (org-babel-merge-params
 org-babel-default-header-args
 (\EFk{let} ((lang-headers
 (intern (concat \EFs{"org-babel-default-header-args:"}
 (+yas/org-src-lang)))))
 (\EFk{when} (boundp lang-headers) (eval lang-headers t)))))))
 \EFs{""}))
 default-value)
 (\EFk{setq} values (mapcar
 (\EFk{lambda} (value)
 (\EFk{if} (string-match-p (regexp-quote value) default)
 (\EFk{setq} default-value
 (concat value \EFs{" "}
 (propertize \EFs{"(default)"} 'face 'font-lock-doc-face)))
 value))
 values))
 (\EFk{let} ((selection (consult--read values \EFb{:prompt} question \EFb{:default} default-value)))
 (\EFk{unless} (\EFk{or} (string-match-p \EFs{"(default)\$"} selection)
 (string= \EFs{""} selection))
 selection))))
\end{Verbatim}
\end{Code}

Finally, we fetch the language information for new source blocks.

Since we're getting this info, we might as well go a step further and also
provide the ability to determine the most popular language in the buffer that
doesn't have any \verb~header-args~ set for it (with \verb~#+properties~).

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{+yas/org-src-lang} ()
 \EFd{"Try to find the current language of the src/header at `}\textcolor[HTML]{b751b6}{\textit{point}}\EFd{'.}
\EFd{Return nil otherwise."}
 (\EFk{let} ((context (org-element-context)))
 (\EFk{pcase} (org-element-type context)
 ('src-block (org-element-property \EFb{:language} context))
 ('inline-src-block (org-element-property \EFb{:language} context))
 ('keyword (\EFk{when} (string-match \EFs{"\char94{}header-args:}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}} \EFs{]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{"} (org-element-property \EFb{:value} context))
 (match-string 1 (org-element-property \EFb{:value} context)))))))

(\EFk{defun} \EFf{+yas/org-last-src-lang} ()
 \EFd{"Return the language of the last src-block, if it exists."}
 (\EFk{save-excursion}
 (beginning-of-line)
 (\EFk{when} (re-search-backward \EFs{"\char94{}[\char92{}t]*\#\char92{}\char92{}+begin_src"} nil t)
 (org-element-property \EFb{:language} (org-element-context)))))

(\EFk{defun} \EFf{+yas/org-most-common-no-property-lang} ()
 \EFd{"Find the lang with the most source blocks that has no global header-args, else nil."}
 (\EFk{let} (src-langs header-langs)
 (\EFk{save-excursion}
 (goto-char (point-min))
 (\EFk{while} (re-search-forward \EFs{"\char94{}[\char92{}t]*\#\char92{}\char92{}+begin_src"} nil t)
 (\EFk{push} (+yas/org-src-lang) src-langs))
 (goto-char (point-min))
 (\EFk{while} (re-search-forward \EFs{"\char94{}[\char92{}t]*\#\char92{}\char92{}+property: +header-args"} nil t)
 (\EFk{push} (+yas/org-src-lang) header-langs)))

 (\EFk{setq} src-langs
 (mapcar \#'car
 \EFcd{;;} \EFc{sort alist by frequency (desc.)}
 (sort
 \EFcd{;;} \EFc{generate alist with form (value . frequency)}
 (\EFk{cl-loop} for (n . m) in (seq-group-by \#'identity src-langs)
 collect (cons n (length m)))
 (\EFk{lambda} (a b) (> (cdr a) (cdr b))))))

 (car (cl-set-difference src-langs header-langs \EFb{:test} \#'string=))))
\end{Verbatim}
\end{Code}
\item Translate capital keywords (old) to lower case (new)
\label{sec:org630994b}

Everyone used to use \texttt{\#+CAPITAL} keywords. Then people realised that \texttt{\#+lowercase}
is actually both marginally easier and visually nicer, so now the capital
version is just used in the manual.
\begin{quote}
Org is standardized on lower case. Uppercase is used in the manual as a poor
man's bold, and supported for historical reasons. --- \href{https://orgmode.org/list/87tuuw3n15.fsf@nicolasgoaziou.fr}{Nicolas Goaziou on the Org ML}
\end{quote}

To avoid sometimes having to choose between the hassle out of updating old
documents and using mixed syntax, I'll whip up a basic transcode-y function.
It likely misses some edge cases, but should mostly work.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{org-syntax-convert-keyword-case-to-lower} ()
 \EFd{"Convert all \#+KEYWORDS to \#+keywords."}
 (\EFk{interactive})
 (\EFk{save-excursion}
 (goto-char (point-min))
 (\EFk{let} ((count 0)
 (case-fold-search nil))
 (\EFk{while} (re-search-forward \EFs{"\char94{}[\char92{}t]*\#\char92{}\char92{}+[A-Z_]+"} nil t)
 (\EFk{unless} (string-match-p \EFs{"RESULTS"} (match-string 0))
 (replace-match (downcase (match-string 0)) t)
 (\EFk{setq} count (1+ count))))
 (message \EFs{"Replaced \%d occurances"} count))))
\end{Verbatim}
\end{Code}
\item Extra links
\label{sec:orgb5e3786}
\begin{enumerate}
\item xkcd
\label{sec:orga06a829}

Because xkcd is cool, let's make it as easy and fun as possible to insert them.
Saving seconds adds up after all! (but only so much)

\begin{Code}
\begin{Verbatim}
\color{EFD}(org-link-set-parameters \EFs{"xkcd"}
 \EFb{:image-data-fun} \#'+org-xkcd-image-fn
 \EFb{:follow} \#'+org-xkcd-open-fn
 \EFb{:export} \#'+org-xkcd-export
 \EFb{:complete} \#'+org-xkcd-complete)

(\EFk{defun} \EFf{+org-xkcd-open-fn} (link)
 (+org-xkcd-image-fn nil link nil))

(\EFk{defun} \EFf{+org-xkcd-image-fn} (protocol link description)
 \EFd{"Get image data for xkcd num LINK"}
 (\EFk{let*} ((xkcd-info (+xkcd-fetch-info (string-to-number link)))
 (img (plist-get xkcd-info \EFb{:img}))
 (alt (plist-get xkcd-info \EFb{:alt})))
 (message alt)
 (+org-image-file-data-fn protocol (xkcd-download img (string-to-number link)) description)))

(\EFk{defun} \EFf{+org-xkcd-export} (num desc backend _com)
 \EFd{"Convert xkcd to html/LaTeX form"}
 (\EFk{let*} ((xkcd-info (+xkcd-fetch-info (string-to-number num)))
 (img (plist-get xkcd-info \EFb{:img}))
 (alt (plist-get xkcd-info \EFb{:alt}))
 (title (plist-get xkcd-info \EFb{:title}))
 (file (xkcd-download img (string-to-number num))))
 (\EFk{cond} ((org-export-derived-backend-p backend 'html)
 (format \EFs{""} img (subst-char-in-string ?\char92{}" ?\EFwr{â��} alt) title))
 ((org-export-derived-backend-p backend 'latex)
 (format \EFs{"\char92{}\char92{}begin\{figure\}[!htb]}
 \EFs{\char92{}\char92{}centering}
 \EFs{\char92{}\char92{}includegraphics[scale=0.4]\{\%s\}\%s}
\EFs{\char92{}\char92{}end\{figure\}"} file (\EFk{if} (equal desc (format \EFs{"xkcd:\%s"} num)) \EFs{""}
 (format \EFs{"\char92{}n \char92{}\char92{}caption*\{\char92{}\char92{}label\{xkcd:\%s\} \%s\}"}
 num
 (\EFk{or} desc
 (format \EFs{"\char92{}\char92{}textbf\{\%s\} \%s"} title alt))))))
 (t (format \EFs{"https://xkcd.com/\%s"} num)))))

(\EFk{defun} \EFf{+org-xkcd-complete} (\EFt{\&optional} arg)
 \EFd{"Complete xkcd using `}\textcolor[HTML]{b751b6}{\textit{+xkcd-stored-info}}\EFd{'"}
 (format \EFs{"xkcd:\%d"} (+xkcd-select)))
\end{Verbatim}
\end{Code}
\item YouTube
\label{sec:org67d5f41}

The \texttt{[[yt:...]]} links preview nicely, but don't export nicely. Thankfully, we can
fix that.
\begin{Code}
\begin{Verbatim}
\color{EFD}(org-link-set-parameters \EFs{"yt"} \EFb{:export} \#'+org-export-yt)
(\EFk{defun} \EFf{+org-export-yt} (path desc backend _com)
 (\EFk{cond} ((org-export-derived-backend-p backend 'html)
 (format \EFs{"<iframe width='}\textcolor[HTML]{b751b6}{440}\EFs{' \char92{}}
\EFs{height='}\textcolor[HTML]{b751b6}{335}\EFs{' \char92{}}
\EFs{src='}\textcolor[HTML]{b751b6}{https://www.youtube.com/embed/\%s}\EFs{' \char92{}}
\EFs{frameborder='}\textcolor[HTML]{b751b6}{0}\EFs{' \char92{}}
\EFs{allowfullscreen>\%s</iframe>"} path (\EFk{or} \EFs{""} desc)))
 ((org-export-derived-backend-p backend 'latex)
 (format \EFs{"\char92{}\char92{}href\{https://youtu.be/\%s\}\{\%s\}"} path (\EFk{or} desc \EFs{"youtube"})))
 (t (format \EFs{"https://youtu.be/\%s"} path))))
\end{Verbatim}
\end{Code}
\end{enumerate}
\item Fix problematic hooks
\label{sec:org70cbed6}

When one of the \Verb[commandchars=\\\{\},highlightcolor=white!95!black!80!blue,breaklines=true,breaksymbol=\color{white!60!black}\tiny\ensuremath{\hookrightarrow}]{\color{EFD}org-mode-hook} functions errors, it halts the hook
execution. This is problematic, and there are two hooks in particular which
cause issues. Let's make their failure less eventful.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defadvice!} shut-up-org-problematic-hooks (orig-fn \EFt{\&rest} args)
 \EFb{:around} \#'org-fancy-priorities-mode
 (\EFk{ignore-errors} (apply orig-fn args)))
\end{Verbatim}
\end{Code}
\item Flycheck with org-lint
\label{sec:org48e72cb}

Org may be simple, but that doesn't mean there's no such thing as malformed Org.
Thankfully, malformed Org is a much less annoying affair than malformed zipped
XML (looks at DOCX/ODT\ldots{}), particularly because there's a rather helpful little
tool called \texttt{org-lint} bundled with Org that can tell you about your mistakes.

Flycheck doesn't currently support Org, and there's aren't any packages to do so
Â¿. However, in an issue on \texttt{org-lint} there is \href{https://github.com/flycheck/flycheck/issues/1757\#issuecomment-759546940}{some code} which apparently works.
Surely this is what the clipboard was invented for? With that said, let's
regurgitate the code, cross our fingers, and hope it works.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defconst} \EFv{flycheck-org-lint-form}
 (\EFk{flycheck-prepare-emacs-lisp-form}
 (\EFk{require} '\EFo{org})
 (\EFk{require} '\EFo{org-lint})
 (\EFk{require} '\EFo{org-attach})
 (\EFk{let} ((source (car command-line-args-left))
 (process-default-directory default-directory))
 (\EFk{with-temp-buffer}
 (insert-file-contents source 'visit)
 (\EFk{setq} buffer-file-name source)
 (\EFk{setq} default-directory process-default-directory)
 (\EFk{delay-mode-hooks} (org-mode))
 (\EFk{setq} delayed-mode-hooks nil)
 (\EFk{dolist} (err (org-lint))
 (\EFk{let} ((inf (cl-second err)))
 (princ (elt inf 0))
 (princ \EFs{": "})
 (princ (elt inf 2))
 (terpri)))))))

(\EFk{defconst} \EFv{flycheck-org-lint-variables}
 '(org-directory
 org-id-locations
 org-id-locations-file
 org-attach-id-dir
 org-attach-use-inheritance
 org-attach-id-to-path-function-list
 org-link-parameters)
 \EFd{"Variables inherited by the org-lint subprocess."})

(\EFk{defconst} \EFv{flycheck-org-lint-babel-langs}
 '<<org-babel-list-langs()>>
 \EFs{"Languages that org-babel should know of."})

(\EFk{defun} \EFf{flycheck-org-lint-variables-form} ()
 (\EFk{require} '\EFo{org-attach}) \EFcd{;} \EFc{Needed to make variables available}
 `(\EFk{progn}
 ,@(seq-map (\EFk{lambda} (opt) `(\EFk{setq-default} ,opt ',(symbol-value opt)))
 (seq-filter \#'boundp flycheck-org-lint-variables))))

(\EFk{defun} \EFf{flycheck-org-lint-babel-langs-form} ()
 `(\EFk{progn}
 ,@(mapcar
 (\EFk{lambda} (lang)
 `(\EFk{defun} ,(intern (format \EFs{"org-babel-execute:\%s"} lang)) (_body _params)
 \EFd{"Stub for org-lint."}))
 flycheck-org-lint-babel-langs)))

(eval \EFcd{;} \EFc{To preveant eager macro expansion form loading flycheck early.}
 '(flycheck-define-checker org-lint
 \EFd{"Org buffer checker using `}\textcolor[HTML]{b751b6}{\textit{org-lint}}\EFd{'."}
 \EFb{:command} (\EFs{"emacs"} (eval flycheck-emacs-args)
 \EFs{"--eval"} (eval (concat \EFs{"(add-to-list 'load-path \char92{}""}
 (file-name-directory (locate-library \EFs{"org"}))
 \EFs{"\char92{}")"}))
 \EFs{"--eval"} (eval (flycheck-sexp-to-string
 (flycheck-org-lint-variables-form)))
 \EFs{"--eval"} (eval (flycheck-sexp-to-string
 (flycheck-org-lint-customisations-form)))
 \EFs{"--eval"} (eval (flycheck-sexp-to-string
 (flycheck-org-lint-babel-langs-form)))
 \EFs{"--eval"} (eval flycheck-org-lint-form)
 \EFs{"--"} source)
 \EFb{:error-patterns}
 ((\EFwr{error} line-start line \EFs{": "} (message) line-end))
 \EFb{:modes} org-mode))
\end{Verbatim}
\end{Code}

Turns out it almost works. Running \verb~M-x flycheck-verify-setup~ after running that
snippet produces the following:
\begin{verbatim}
The following syntax checkers are not registered:
 - org-lint
Try adding these syntax checkers to `flycheck-checkers'.
\end{verbatim}

Well that's very nice and helpful. We'll just do that ð���.
\begin{Code}
\begin{Verbatim}
\color{EFD}(add-to-list 'flycheck-checkers 'org-lint)
\end{Verbatim}
\end{Code}

It was missing custom link types, but that's easily fixed just by adding
\texttt{org-link-parameters} to \texttt{flycheck-org-lint-variables}.

One remaining little annoyance is that it reports extra \verb~#+options~ that I've
added to Org as errors. So we need to tell \texttt{org-lint} about them without having it
load my whole config. Code duplication isn't great, but at least this isn't
much.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{flycheck-org-lint-customisations-form} ()
 `(\EFk{progn}
 (\EFk{require} '\EFo{ox})
 (\EFk{cl-pushnew} '(\EFb{:latex-cover-page} nil \EFs{"coverpage"} nil)
 (org-export-backend-options (org-export-get-backend 'latex)))
 (\EFk{cl-pushnew} '(\EFb{:latex-font-set} nil \EFs{"fontset"} nil)
 (org-export-backend-options (org-export-get-backend 'latex)))))
\end{Verbatim}
\end{Code}

A larger annoyance is that org-lint doesn't actually know what languages
org-babel should recognise, with Doom's lazy loading system. Since the list of
languages should really only change when packages are added/removed, we might as
well statically determine a list of all org-babel languages at configuration
generation time.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{let} (langs)
 (\EFk{dolist} (dir load-path)
 (\EFk{when} (file-directory-p dir)
 (\EFk{dolist} (file (directory-files dir t \EFs{"\char92{}\char92{}.elc?\$"}))
 (\EFk{let} ((basename (file-name-base file)))
 (\EFk{when} (string-prefix-p \EFs{"ob-"} basename)
 (\EFk{ignore-errors}
 (\EFk{require} (intern basename) file t)))))))
 (mapatoms
 (\EFk{lambda} (symb)
 (\EFk{when} (functionp symb)
 (\EFk{let} ((name (symbol-name symb)))
 (\EFk{let} ((fn (symbol-function symb)))
 (\EFk{when} (symbolp fn)
 (\EFk{setq} symb (symbol-function symb)
 fn (symbol-function symb)))
 (\EFk{when} (\EFk{and} (string-suffix-p \EFs{"-mode"} name)
 (autoloadp fn))
 (\EFk{ignore-errors} (autoload-do-load fn))))
 (\EFk{cond}
 ((string-prefix-p \EFs{"org-babel-execute:"} name)
 (\EFk{push} (replace-regexp-in-string \EFs{"\char94{}org-babel-execute:"} \EFs{""} name)
 langs))
 ((\EFk{and} (string-suffix-p \EFs{"-mode"} name)
 (provided-mode-derived-p
 symb 'prog-mode 'text-mode 'conf-mode))
 (\EFk{push} (replace-regexp-in-string \EFs{"-mode\$"} \EFs{""} name)
 langs))))))
 obarray)
 (\EFk{dolist} (mode-mapping org-src-lang-modes)
 (\EFk{push} (car mode-mapping) langs))
 (mapcar \#'intern
 (sort (delete-dups langs) \#'string<)))
\end{Verbatim}
\end{Code}

This increases the tangle time by about 10--20\%, but I think it's worth it to be
extra thorough. If this really becomes a pain, we can always think about doing
some sort of cache file based on the load-path/packages installed.
\end{enumerate}
\subsection{Visuals}
\label{sec:orgcd9efa6}

Here I try to do two things: improve the styling of the various documents, via
font changes etc, and also propagate colours from the current theme.
\begin{enumerate}
\item Font Display
\label{sec:org532d4db}

Mixed pitch is great. As is \texttt{+org-pretty-mode}, let's use them.
\begin{Code}
\begin{Verbatim}
\color{EFD}(add-hook 'org-mode-hook \#'+org-pretty-mode)
\end{Verbatim}
\end{Code}

Let's make headings a bit bigger
\begin{Code}
\begin{Verbatim}
\color{EFD}(custom-set-faces!
 '(outline-1 \EFb{:weight} extra-bold \EFb{:height} 1.25)
 '(outline-2 \EFb{:weight} bold \EFb{:height} 1.15)
 '(outline-3 \EFb{:weight} bold \EFb{:height} 1.12)
 '(outline-4 \EFb{:weight} semi-bold \EFb{:height} 1.09)
 '(outline-5 \EFb{:weight} semi-bold \EFb{:height} 1.06)
 '(outline-6 \EFb{:weight} semi-bold \EFb{:height} 1.03)
 '(outline-8 \EFb{:weight} semi-bold)
 '(outline-9 \EFb{:weight} semi-bold))
\end{Verbatim}
\end{Code}

And the same with the title.
\begin{Code}
\begin{Verbatim}
\color{EFD}(custom-set-faces!
 '(org-document-title \EFb{:height} 1.2))
\end{Verbatim}
\end{Code}

It seems reasonable to have deadlines in the error face when they're passed.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} org-agenda-deadline-faces
 '((1.001 . error)
 (1.0 . org-warning)
 (0.5 . org-upcoming-deadline)
 (0.0 . org-upcoming-distant-deadline)))
\end{Verbatim}
\end{Code}

We can then have quote blocks stand out a bit more by making them \emph{italic}.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} org-fontify-quote-and-verse-blocks t)
\end{Verbatim}
\end{Code}

Org files can be rather nice to look at, particularly with some of the
customisations here. This comes at a cost however, expensive font-lock.
Feeling like you're typing through molasses in large files is no fun, but there
is a way I can defer font-locking when typing to make the experience more
responsive.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{locally-defer-font-lock} ()
 \EFd{"Set jit-lock defer and stealth, when buffer is over a certain size."}
 (\EFk{when} (> (buffer-size) 50000)
 (\EFk{setq-local} jit-lock-defer-time 0.05
 jit-lock-stealth-time 1)))

(add-hook 'org-mode-hook \#'locally-defer-font-lock)
\end{Verbatim}
\end{Code}
Apparently this causes issues with some people, but I haven't noticed anything
problematic beyond the expected slight delay in some fontification, so until I
do I'll use the above.
\item Reduced text indent
\label{sec:org730df94}

Thanks to the various bits and bobs of setup we have here, the non-heading lines
tend to appear over-indented in \texttt{org-indent-mode}. We can adjust this by modifying
the generated text prefixes.

There's another issue we can have when using mixed-pitch mode, where the line
height is set by the indent prefix displayed with the fixed-pitch font. This
means that on 0-indent lines the line spacing can be different, which doesn't
look very good. We can also solve this problem by modifying the generated text
prefixes to but a fixed-pitch zero width space at the start of 0-indent lines
instead of nothing.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defadvice!} +org-indent--reduced-text-prefixes ()
 \EFb{:after} \#'org-indent--compute-prefixes
 (\EFk{setq} org-indent--text-line-prefixes
 (make-vector org-indent--deepest-level nil))
 (\EFk{when} (> org-indent-indentation-per-level 0)
 (\EFk{dotimes} (n org-indent--deepest-level)
 (aset org-indent--text-line-prefixes
 n
 (org-add-props
 (concat (make-string (* n (1- org-indent-indentation-per-level))
 ?\char92{}s)
 (\EFk{if} (> n 0)
 (char-to-string org-indent-boundary-char)
 \EFs{"\char92{}u200b"}))
 nil 'face 'org-indent)))))
\end{Verbatim}
\end{Code}
\item Fontifying inline src blocks
\label{sec:org6ad6616}

Org does lovely things with \verb~#+begin_src~ blocks, like using font-lock for
language's major-mode behind the scenes and pulling out the lovely colourful
results. By contrast, inline \verb~src_~ blocks are somewhat neglected.

I am not the first person to feel this way, thankfully others have \href{https://stackoverflow.com/questions/20309842/how-to-syntax-highlight-for-org-mode-inline-source-code-src-lang/28059832}{taken to
stackexchange} to voice their desire for inline src fontification. I was going to
steal their work, but unfortunately they didn't perform \emph{true} source code
fontification, but simply applied the \verb~org-code~ face to the content.

We can do better than that, and we shall! Using \texttt{org-src-font-lock-fontify-block}
we can apply language-appropriate syntax highlighting. Then, continuing on to
\verb~{{{results(...)}}}~ , it can have the \verb~org-block~ face applied to match, and then
the value-surrounding constructs hidden by mimicking the behaviour of
\texttt{prettify-symbols-mode}.

\begin{warning}
This currently only highlights a single inline src block per line.
I have no idea why it stops, but I'd rather it didn't.
If you have any idea what's going on or how to fix this \emph{please} get in touch.
\end{warning}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} org-inline-src-prettify-results '(\EFs{"â�¨"} . \EFs{"â�©"}))
\end{Verbatim}
\end{Code}

Doom theme's extra fontification is more problematic than helpful.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} doom-themes-org-fontify-special-tags nil)
\end{Verbatim}
\end{Code}
\item Symbols
\label{sec:org0354c0c}

It's also nice to change the character used for collapsed items (by default \texttt{â�¦}),
I think \texttt{â�¾} is better for indicating 'collapsed section'.
and add an extra \texttt{org-bullet} to the default list of four.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} org-ellipsis \EFs{" â�¾ "}
 org-hide-leading-stars t
 org-priority-highest ?A
 org-priority-lowest ?E
 org-priority-faces
 '((?A . 'nerd-icons-red)
 (?B . 'nerd-icons-orange)
 (?C . 'nerd-icons-yellow)
 (?D . 'nerd-icons-green)
 (?E . 'nerd-icons-blue)))
\end{Verbatim}
\end{Code}

It's also nice to make use of the \verb~prettify-symbols-mode~ for a few Org syntactic
tokens which we'd like to prettify that aren't covered by \verb~org-modern~ or any
other settings.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{appendq!} +ligatures-extra-symbols
 (list \EFb{:list_property} \EFs{"â�·"}
 \EFb{:em_dash} \EFs{"â��"}
 \EFb{:ellipses} \EFs{"â�¦"}
 \EFb{:arrow_right} \EFs{"â��"}
 \EFb{:arrow_left} \EFs{"â��"}
 \EFb{:arrow_lr} \EFs{"â��"}
 \EFb{:properties} \EFs{"â��"}
 \EFb{:end} \EFs{"â��"}
 \EFb{:priority_a} \#(\EFs{"â��"} 0 1 (face nerd-icons-red))
 \EFb{:priority_b} \#(\EFs{"â¬�"} 0 1 (face nerd-icons-orange))
 \EFb{:priority_c} \#(\EFs{"â� "} 0 1 (face nerd-icons-yellow))
 \EFb{:priority_d} \#(\EFs{"â¬�"} 0 1 (face nerd-icons-green))
 \EFb{:priority_e} \#(\EFs{"â��"} 0 1 (face nerd-icons-blue))))

(\EFk{defadvice!} +org-init-appearance-h--no-ligatures-a ()
 \EFb{:after} \#'+org-init-appearance-h
 (set-ligatures! 'org-mode nil)
 (set-ligatures! 'org-mode
 \EFb{:list_property} \EFs{"::"}
 \EFb{:em_dash} \EFs{"---"}
 \EFb{:ellipsis} \EFs{"..."}
 \EFb{:arrow_right} \EFs{"->"}
 \EFb{:arrow_left} \EFs{"<-"}
 \EFb{:arrow_lr} \EFs{"<->"}
 \EFb{:properties} \EFs{":PROPERTIES:"}
 \EFb{:end} \EFs{":END:"}
 \EFb{:priority_a} \EFs{"[\#A]"}
 \EFb{:priority_b} \EFs{"[\#B]"}
 \EFb{:priority_c} \EFs{"[\#C]"}
 \EFb{:priority_d} \EFs{"[\#D]"}
 \EFb{:priority_e} \EFs{"[\#E]"}))
\end{Verbatim}
\end{Code}

While we're at it we may as well make tags prettier as well ð���
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{;;} \EFc{(package! org-pretty-tags :pin "5c7521651b35ae9a7d3add4a66ae8cc176ae1c76")}
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{;;} \EFc{(use-package org-pretty-tags}
\EFcd{;;} \EFc{:config}
\EFcd{;;} \EFc{(setq org-pretty-tags-surrogate-strings}
\EFcd{;;} \EFc{`(("uni" . ,(all-the-icons-faicon "graduation-cap" :face 'all-the-icons-purple :v-adjust 0.01))}
\EFcd{;;} \EFc{("ucc" . ,(all-the-icons-material "computer" :face 'all-the-icons-silver :v-adjust 0.01))}
\EFcd{;;} \EFc{("assignment" . ,(all-the-icons-material "library_books" :face 'all-the-icons-orange :v-adjust 0.01))}
\EFcd{;;} \EFc{("test" . ,(all-the-icons-material "timer" :face 'all-the-icons-red :v-adjust 0.01))}
\EFcd{;;} \EFc{("lecture" . ,(all-the-icons-fileicon "keynote" :face 'all-the-icons-orange :v-adjust 0.01))}
\EFcd{;;} \EFc{("email" . ,(all-the-icons-faicon "envelope" :face 'all-the-icons-blue :v-adjust 0.01))}
\EFcd{;;} \EFc{("read" . ,(all-the-icons-octicon "book" :face 'all-the-icons-lblue :v-adjust 0.01))}
\EFcd{;;} \EFc{("article" . ,(all-the-icons-octicon "file-text" :face 'all-the-icons-yellow :v-adjust 0.01))}
\EFcd{;;} \EFc{("web" . ,(all-the-icons-faicon "globe" :face 'all-the-icons-green :v-adjust 0.01))}
\EFcd{;;} \EFc{("info" . ,(all-the-icons-faicon "info-circle" :face 'all-the-icons-blue :v-adjust 0.01))}
\EFcd{;;} \EFc{("issue" . ,(all-the-icons-faicon "bug" :face 'all-the-icons-red :v-adjust 0.01))}
\EFcd{;;} \EFc{("someday" . ,(all-the-icons-faicon "calendar-o" :face 'all-the-icons-cyan :v-adjust 0.01))}
\EFcd{;;} \EFc{("idea" . ,(all-the-icons-octicon "light-bulb" :face 'all-the-icons-yellow :v-adjust 0.01))}
\EFcd{;;} \EFc{("emacs" . ,(all-the-icons-fileicon "emacs" :face 'all-the-icons-lpurple :v-adjust 0.01))))}
\EFcd{;;} \EFc{(org-pretty-tags-global-mode))}
\end{Verbatim}
\end{Code}
\item \LaTeX{} Fragments
\label{sec:orgd79eea8}
\begin{enumerate}
\item Prettier highlighting
\label{sec:orgb541cae}

First off, we want those fragments to look good.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} org-highlight-latex-and-related '(latex script entities))
\end{Verbatim}
\end{Code}

However, by using \verb~native~ highlighting the \verb~org-block~ face is added, and that
doesn't look too great --- particularly when the fragments are previewed.

Ideally \texttt{org-src-font-lock-fontify-block} wouldn't add the \verb~org-block~ face, but we
can avoid advising that entire function by just adding another face with
\verb~:inherit default~ which will override the background colour.

Inspecting \texttt{org-do-latex-and-related} shows that \verb~"latex"~ is the language argument
passed, and so we can override the background as discussed above.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{require} '\EFo{org-src})
(add-to-list 'org-src-block-faces '(\EFs{"latex"} (\EFb{:inherit} default \EFb{:extend} t)))
\end{Verbatim}
\end{Code}
\item Automatic previewing
\label{sec:org12278b6}

It would be nice if fragments could automatically be previewed after being
typed, and the overlays automatically showed and hidden when moving the point in
and out of the \LaTeX{} fragments.

Thankfully, all we need to do to make this happen is use \texttt{org-latex-preview-auto-mode}.

\begin{Code}
\begin{Verbatim}
\color{EFD}(add-hook 'org-mode-hook \#'org-latex-preview-auto-mode)
\end{Verbatim}
\end{Code}
\item Prettier rendering
\label{sec:org916d12b}

It's nice to customise the look of \LaTeX{} fragments so they fit better in the
text --- like this \(\sqrt{\beta^2+3}-\sum_{\phi=1}^\infty \frac{x^\phi-1}{\Gamma(a)}\).

The default snippet preamble basically just sets the margins and text size, with
templates to be filled in by \texttt{org-latex-default-packages-alist} and
\verb~#+latex_header:~ entries (but not \verb~#+latex_header_extra:~).

\begin{Code}
\begin{Verbatim}
\color{EFD}\textcolor[HTML]{e45649}{\char92{}documentclass}\{\EFf{article}\}
[\EFv{DEFAULT-PACKAGES}]
[PACKAGES]
\textcolor[HTML]{e45649}{\char92{}usepackage}\{\EFf{xcolor}\}
\end{Verbatim}
\end{Code}

To this, we make two additions:
\begin{itemize}
\item Selection of a maths font that fits better with displayed text.
\item My collection \hyperref[sec:orge19749a]{mathematical notation conveniences}.
\end{itemize}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} org-latex-preview-preamble
 (concat
 <<grab(\EFs{"latex-default-snippet-preamble"})>>
 \EFs{"\char92{}n\% Custom font\char92{}n\char92{}\char92{}usepackage\{arev\}\char92{}n\char92{}n"}
 <<grab(\EFs{"latex-maths-conveniences"})>>))
\end{Verbatim}
\end{Code}

Since we can, instead of making the background colour match the \verb~default~ face,
let's make it transparent.

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{;;} \EFc{Calibrated based on the TeX font and org-buffer font.}
(plist-put org-format-latex-options \EFb{:zoom} 0.93)
\end{Verbatim}
\end{Code}
\item Rendering speed tests
\label{sec:org546ea3b}

We can either render from a \texttt{dvi} or \texttt{pdf} file, so let's benchmark \texttt{latex} and
\texttt{pdflatex}.
\begin{center}
\begin{tabular}{ll}
\toprule
\texttt{latex} time & \texttt{pdflatex} time\\
\midrule
135 \textpm{} 2 ms & 215 \textpm{} 3 ms\\
\bottomrule
\end{tabular}
\end{center}

On the rendering side, there are two \texttt{.dvi}-to-image converters which I am
interested in: \texttt{dvipng} and \texttt{dvisvgm}.

Using the above latex expression and benchmarking lead to the following results:
\begin{center}
\begin{tabular}{lll}
\toprule
\texttt{dvipng} time & \texttt{dvisvgm} time & \texttt{pdf2svg} time\\
\midrule
89 \textpm{} 2 ms & 178 \textpm{} 2 ms & 12 \textpm{} 2 ms\\
\bottomrule
\end{tabular}
\end{center}

Now let's combine this to see what's best
\begin{center}
\begin{tabular}{lll}
\toprule
Tool chain & Total time & Resulting file size\\
\midrule
\texttt{latex} + \texttt{dvipng} & 226 \textpm{} 2 ms & 7 KiB\\
\texttt{latex} + \texttt{dvisvgm} & 392 \textpm{} 4 ms & 8 KiB\\
\texttt{pdflatex} + \texttt{pdf2svg} & 230 \textpm{} 2 ms & 16 KiB\\
\bottomrule
\end{tabular}
\end{center}

So, let's use \texttt{dvipng} for previewing \LaTeX{} fragments in-Emacs, but \texttt{dvisvgm} for \cref{sec:org2dbc855}.

\begin{warning}
Unfortunately, it seems that SVG sizing is annoying ATM, so let's actually not do this right now.
\end{warning}
\end{enumerate}
\item Org Plot
\label{sec:org9313308}

We can use some of the variables in \verb~org-plot~ to use the current doom theme
colours.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{+org-plot-term-size} '(1050 . 650)
 \EFd{"The size of the GNUPlot terminal, in the form (WIDTH . HEIGHT)."})

(\EFk{after!} org-plot
 (\EFk{defun} \EFf{+org-plot-generate-theme} (_type)
 \EFd{"Use the current Doom theme colours to generate a GnuPlot preamble."}
 (format \EFs{"}
\EFs{fgt = \char92{}"textcolor rgb '}\textcolor[HTML]{b751b6}{\%s}\EFs{'\char92{}" \# foreground text}
\EFs{fgat = \char92{}"textcolor rgb '}\textcolor[HTML]{b751b6}{\%s}\EFs{'\char92{}" \# foreground alt text}
\EFs{fgl = \char92{}"linecolor rgb '}\textcolor[HTML]{b751b6}{\%s}\EFs{'\char92{}" \# foreground line}
\EFs{fgal = \char92{}"linecolor rgb '}\textcolor[HTML]{b751b6}{\%s}\EFs{'\char92{}" \# foreground alt line}

\EFs{\# foreground colors}
\EFs{set border lc rgb '}\textcolor[HTML]{b751b6}{\%s}\EFs{'}
\EFs{\# change text colors of tics}
\EFs{set xtics @fgt}
\EFs{set ytics @fgt}
\EFs{\# change text colors of labels}
\EFs{set title @fgt}
\EFs{set xlabel @fgt}
\EFs{set ylabel @fgt}
\EFs{\# change a text color of key}
\EFs{set key @fgt}

\EFs{\# line styles}
\EFs{set linetype 1 lw 2 lc rgb '}\textcolor[HTML]{b751b6}{\%s}\EFs{' \# red}
\EFs{set linetype 2 lw 2 lc rgb '}\textcolor[HTML]{b751b6}{\%s}\EFs{' \# blue}
\EFs{set linetype 3 lw 2 lc rgb '}\textcolor[HTML]{b751b6}{\%s}\EFs{' \# green}
\EFs{set linetype 4 lw 2 lc rgb '}\textcolor[HTML]{b751b6}{\%s}\EFs{' \# magenta}
\EFs{set linetype 5 lw 2 lc rgb '}\textcolor[HTML]{b751b6}{\%s}\EFs{' \# orange}
\EFs{set linetype 6 lw 2 lc rgb '}\textcolor[HTML]{b751b6}{\%s}\EFs{' \# yellow}
\EFs{set linetype 7 lw 2 lc rgb '}\textcolor[HTML]{b751b6}{\%s}\EFs{' \# teal}
\EFs{set linetype 8 lw 2 lc rgb '}\textcolor[HTML]{b751b6}{\%s}\EFs{' \# violet}

\EFs{\# border styles}
\EFs{set tics out nomirror}
\EFs{set border 3}

\EFs{\# palette}
\EFs{set palette maxcolors 8}
\EFs{set palette defined (0 '}\textcolor[HTML]{b751b6}{\%s}\EFs{',\char92{}}
\EFs{1 '}\textcolor[HTML]{b751b6}{\%s}\EFs{',\char92{}}
\EFs{2 '}\textcolor[HTML]{b751b6}{\%s}\EFs{',\char92{}}
\EFs{3 '}\textcolor[HTML]{b751b6}{\%s}\EFs{',\char92{}}
\EFs{4 '}\textcolor[HTML]{b751b6}{\%s}\EFs{',\char92{}}
\EFs{5 '}\textcolor[HTML]{b751b6}{\%s}\EFs{',\char92{}}
\EFs{6 '}\textcolor[HTML]{b751b6}{\%s}\EFs{',\char92{}}
\EFs{7 '}\textcolor[HTML]{b751b6}{\%s}\EFs{')}
\EFs{"}
 (doom-color 'fg)
 (doom-color 'fg-alt)
 (doom-color 'fg)
 (doom-color 'fg-alt)
 (doom-color 'fg)
 \EFcd{;;} \EFc{colours}
 (doom-color 'red)
 (doom-color 'blue)
 (doom-color 'green)
 (doom-color 'magenta)
 (doom-color 'orange)
 (doom-color 'yellow)
 (doom-color 'teal)
 (doom-color 'violet)
 \EFcd{;;} \EFc{duplicated}
 (doom-color 'red)
 (doom-color 'blue)
 (doom-color 'green)
 (doom-color 'magenta)
 (doom-color 'orange)
 (doom-color 'yellow)
 (doom-color 'teal)
 (doom-color 'violet)))

 (\EFk{defun} \EFf{+org-plot-gnuplot-term-properties} (_type)
 (format \EFs{"background rgb '}\textcolor[HTML]{b751b6}{\%s}\EFs{' size \%s,\%s"}
 (doom-color 'bg) (car +org-plot-term-size) (cdr +org-plot-term-size)))

 (\EFk{setq} org-plot/gnuplot-script-preamble \#'+org-plot-generate-theme)
 (\EFk{setq} org-plot/gnuplot-term-extra \#'+org-plot-gnuplot-term-properties))
\end{Verbatim}
\end{Code}
\end{enumerate}
\subsection{Exporting}
\label{sec:org78161c0}

\begin{enumerate}
\item General settings
\label{sec:org4ea2f94}

By default Org only exports the first three levels of headings as \ldots{} headings.
This is rather unfortunate as my documents frequently stray far beyond three
levels of depth. The two main formats I care about exporting to are \LaTeX{} and
HTML. When using an \verb~article~ class, \LaTeX{} headlines go from \verb~\section~,
\verb~\subsection~, \verb~\subsubsection~, and \verb~\paragraph~ to \verb~\subgraph~ --- \emph{five} levels.
HTML5 has six levels of headings (\verb~<h1>~ to \verb~<h6>~), but first level Org headings
get exported as \verb~<h2>~ elements --- leaving \emph{five} usable levels.

As such, it would seem to make sense to recognise the first \emph{five} levels of Org
headings when exporting.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} org-export-headline-levels 5) \EFcd{;} \EFc{I like nesting}
\end{Verbatim}
\end{Code}

I'm also going to make use of an item in \verb~ox-extra~ so that I can add an \verb~:ignore:~
tag to headings for the content to be kept, but the heading itself ignored
(unlike \verb~:noexport:~ which ignored both heading and content). This is useful when
I want to use headings to provide a structure for writing that doesn't appear in
the final documents.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{require} '\EFo{ox-extra})
(ox-extras-activate '(ignore-headlines))
\end{Verbatim}
\end{Code}

Since I (roughly) track Org \texttt{HEAD}, it makes sense to include the git version in
the creator string.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} org-export-creator-string
 (format \EFs{"Emacs \%s (Org mode \%sâ��\%s)"} emacs-version (org-release) (org-git-version)))
\end{Verbatim}
\end{Code}
\item Acronym formatting
\label{sec:org94e0c79}

I like automatically using spaced small caps for acronyms. For strings I want to
be unaffected let's use \texttt{;} as a prefix to prevent the transformation --- i.e.\
\texttt{;JFK} (as one would want for two-letter geographic locations and names).

This has to be implemented on a per-format basis, currently HTML and \LaTeX{}
exports are supported.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{org-export-filter-text-acronym} (text backend _info)
 \EFd{"Wrap suspected acronyms in acronyms-specific formatting.}
\EFd{Treat sequences of 2+ capital letters (optionally succeeded by \char92{}"s\char92{}") as an acronym.}
\EFd{Ignore if preceeded by \char92{}";\char92{}" (for manual prevention) or \char92{}"\char92{}\char92{}\char92{}" (for LaTeX commands).}

\EFd{TODO abstract backend implementations."}
 (\EFk{let} ((base-backend
 (\EFk{cond}
 ((org-export-derived-backend-p backend 'latex) 'latex)
 \EFcd{;;} \EFc{Markdown is derived from HTML, but we don't want to format it}
 ((org-export-derived-backend-p backend 'md) nil)
 ((org-export-derived-backend-p backend 'html) 'html)))
 (case-fold-search nil))
 (\EFk{when} base-backend
 (replace-regexp-in-string
 \EFs{"[;\char92{}\char92{}\char92{}\char92{}]?\char92{}\char92{}b[A-Z][A-Z]+s?}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(?:}}\EFs{[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{A-Za-z]}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{\char92{}\char92{}b}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{"}
 (\EFk{lambda} (all-caps-str)
 (\EFk{cond} ((equal (aref all-caps-str 0) ?\char92{}\char92{}) all-caps-str) \EFcd{;} \EFc{don't format LaTeX commands}
 ((equal (aref all-caps-str 0) ?\char92{};) (substring all-caps-str 1)) \EFcd{;} \EFc{just remove not-acronym indicator char ";"}
 (t (\EFk{let*} ((final-char (\EFk{if} (string-match-p \EFs{"[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{A-Za-z]"} (substring all-caps-str -1 (length all-caps-str)))
 (substring all-caps-str -1 (length all-caps-str))
 nil)) \EFcd{;} \EFc{needed to re-insert the [}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFc{A-Za-z] at the end}
 (trailing-s (equal (aref all-caps-str (- (length all-caps-str) (\EFk{if} final-char 2 1))) ?s))
 (acr (\EFk{if} final-char
 (substring all-caps-str 0 (\EFk{if} trailing-s -2 -1))
 (substring all-caps-str 0 (+ (\EFk{if} trailing-s -1 (length all-caps-str)))))))
 (\EFk{pcase} base-backend
 ('latex (concat \EFs{"\char92{}\char92{}acr\{"} (downcase acr) \EFs{"\}"} (\EFk{when} trailing-s \EFs{"\char92{}\char92{}acrs\{\}"}) final-char))
 ('html (concat \EFs{""} acr \EFs{""} (\EFk{when} trailing-s \EFs{"<small>s</small>"}) final-char)))))))
 text t t))))

(add-to-list 'org-export-filter-plain-text-functions
 \#'org-export-filter-text-acronym)

\EFcd{;;} \EFc{We won't use `}\textcolor[HTML]{b751b6}{org-export-filter-headline-functions}\EFc{' because it}
\EFcd{;;} \EFc{passes (and formats) the entire section contents. That's no good.}

(\EFk{defun} \EFf{org-html-format-headline-acronymised} (todo todo-type priority text tags info)
 \EFd{"Like `}\textcolor[HTML]{b751b6}{\textit{org-html-format-headline-default-function}}\EFd{', but with acronym formatting."}
 (org-html-format-headline-default-function
 todo todo-type priority (org-export-filter-text-acronym text 'html info) tags info))
(\EFk{setq} org-html-format-headline-function \#'org-html-format-headline-acronymised)

(\EFk{defun} \EFf{org-latex-format-headline-acronymised} (todo todo-type priority text tags info)
 \EFd{"Like `}\textcolor[HTML]{b751b6}{\textit{org-latex-format-headline-default-function}}\EFd{', but with acronym formatting."}
 (org-latex-format-headline-default-function
 todo todo-type priority (org-export-filter-text-acronym text 'latex info) tags info))
(\EFk{setq} org-latex-format-headline-function \#'org-latex-format-headline-acronymised)
\end{Verbatim}
\end{Code}
\item Nicer generated heading IDs
\label{sec:orgde2cfb3}

Thanks to alphapapa's \href{https://github.com/alphapapa/unpackaged.el\#export-to-html-with-useful-anchors}{unpackaged.el}.

By default, Org generated heading IDs like \verb~#org80fc2a5~ which \ldots{} works, but has
two issues
\begin{itemize}
\item It's completely uninformative, I have no idea what's being referenced
\item If I export the same file, everything will change.
Now, while without hardcoded values it's impossible to set references in
stone, it would be nice for there to be a decent chance of staying the same.
\end{itemize}

Both of these issues can be addressed by generating IDs like
\verb~#language-configuration~, which is what I'll do here.

It's worth noting that alphapapa's use of \texttt{url-hexify-string} seemed to cause me
some issues. Replacing that in \texttt{a53899} resolved this for me. To go one step
further, I create a function for producing nice short links, like an inferior
version of \texttt{reftex-label}.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{org-reference-contraction-max-words} 3
 \EFd{"Maximum number of words in a reference reference."})
(\EFk{defvar} \EFv{org-reference-contraction-max-length} 35
 \EFd{"Maximum length of resulting reference reference, including joining characters."})
(\EFk{defvar} \EFv{org-reference-contraction-stripped-words}
 '(\EFs{"the"} \EFs{"on"} \EFs{"in"} \EFs{"off"} \EFs{"a"} \EFs{"for"} \EFs{"by"} \EFs{"of"} \EFs{"and"} \EFs{"is"} \EFs{"to"} \EFs{"as"})
 \EFd{"Superfluous words to be removed from a reference."})
(\EFk{defvar} \EFv{org-reference-contraction-joining-char} \EFs{"-"}
 \EFd{"Character used to join words in the reference reference."})

(\EFk{defun} \EFf{org-reference-contraction-truncate-words} (words)
 \EFd{"Using `}\textcolor[HTML]{b751b6}{\textit{org-reference-contraction-max-length}}\EFd{' as the total character '}\textcolor[HTML]{b751b6}{\textit{budget}}\EFd{' for the WORDS}
\EFd{and truncate individual words to conform to this budget.}

\EFd{To arrive at a budget that accounts for words undershooting their requisite average length,}
\EFd{the number of characters in the budget freed by short words is distributed among the words}
\EFd{exceeding the average length. This adjusts the per-word budget to be the maximum feasable for}
\EFd{this particular situation, rather than the universal maximum average.}

\EFd{This budget-adjusted per-word maximum length is given by the mathematical expression below:}

\EFd{max length = \char92{}\char92{}floor\{ \char92{}\char92{}frac\{total length - chars for seperators - \char92{}\char92{}sum_\{word \char92{}\char92{}leq average length\} length(word) \}\{num(words) > average length\} \}"}
 \EFcd{;;} \EFc{trucate each word to a max word length determined by}
 \EFcd{;;}
 (\EFk{let*} ((total-length-budget (- org-reference-contraction-max-length \EFcd{;} \EFc{how many non-separator chars we can use}
 (1- (length words))))
 (word-length-budget (/ total-length-budget \EFcd{;} \EFc{max length of each word to keep within budget}
 org-reference-contraction-max-words))
 (num-overlong (-count (\EFk{lambda} (word) \EFcd{;} \EFc{how many words exceed that budget}
 (> (length word) word-length-budget))
 words))
 (total-short-length (-sum (mapcar (\EFk{lambda} (word) \EFcd{;} \EFc{total length of words under that budget}
 (\EFk{if} (<= (length word) word-length-budget)
 (length word) 0))
 words)))
 (max-length (/ (- total-length-budget total-short-length) \EFcd{;} \EFc{max(max-length) that we can have to fit within the budget}
 num-overlong)))
 (mapcar (\EFk{lambda} (word)
 (\EFk{if} (<= (length word) max-length)
 word
 (substring word 0 max-length)))
 words)))

(\EFk{defun} \EFf{org-reference-contraction} (reference-string)
 \EFd{"Give a contracted form of REFERENCE-STRING that is only contains alphanumeric characters.}
\EFd{Strips '}\textcolor[HTML]{b751b6}{\textit{joining}}\EFd{' words present in `}\textcolor[HTML]{b751b6}{\textit{org-reference-contraction-stripped-words}}\EFd{',}
\EFd{and then limits the result to the first `}\textcolor[HTML]{b751b6}{\textit{org-reference-contraction-max-words}}\EFd{' words.}
\EFd{If the total length is > `}\textcolor[HTML]{b751b6}{\textit{org-reference-contraction-max-length}}\EFd{' then individual words are}
\EFd{truncated to fit within the limit using `}\textcolor[HTML]{b751b6}{\textit{org-reference-contraction-truncate-words}}\EFd{'."}
 (\EFk{let} ((reference-words
 (cl-remove-if-not
 (\EFk{lambda} (word)
 (not (member word org-reference-contraction-stripped-words)))
 (\EFk{let} ((str reference-string))
 (\EFk{setq} str (downcase str))
 (\EFk{setq} str (replace-regexp-in-string \EFs{"\char92{}\char92{}[\char92{}\char92{}[[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{]]+\char92{}\char92{}]\char92{}\char92{}[}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{]]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{\char92{}\char92{}]\char92{}\char92{}]"} \EFs{"\char92{}\char92{}1"} str)) \EFcd{;} \EFc{get description from org-link}
 (\EFk{setq} str (replace-regexp-in-string \EFs{"[-/]+"} \EFs{" "} str)) \EFcd{;} \EFc{replace seperator-type chars with space}
 (\EFk{setq} str (puny-encode-string str))
 (\EFk{setq} str (replace-regexp-in-string \EFs{"\char94{}xn--}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{.*?}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}} \EFs{?-?}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[a-z0-9]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{\$"} \EFs{"\char92{}\char92{}2 \char92{}\char92{}1"} str)) \EFcd{;} \EFc{rearrange punycode}
 (\EFk{setq} str (replace-regexp-in-string \EFs{"[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{A-Za-z0-9]"} \EFs{""} str)) \EFcd{;} \EFc{strip chars which need \%-encoding in a uri}
 (split-string str \EFs{" +"})))))
 (\EFk{when} (> (length reference-words)
 org-reference-contraction-max-words)
 (\EFk{setq} reference-words
 (cl-subseq reference-words 0 org-reference-contraction-max-words)))

 (\EFk{when} (> (apply \#'+ (1- (length reference-words))
 (mapcar \#'length reference-words))
 org-reference-contraction-max-length)
 (\EFk{setq} reference-words (org-reference-contraction-truncate-words reference-words)))

 (string-join reference-words org-reference-contraction-joining-char)))
\end{Verbatim}
\end{Code}

Now here's alphapapa's subtly tweaked mode.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{define-minor-mode} \EFf{unpackaged/org-export-html-with-useful-ids-mode}
 \EFd{"Attempt to export Org as HTML with useful link IDs.}
\EFd{Instead of random IDs like \char92{}"\#orga1b2c3\char92{}", use heading titles,}
\EFd{made unique when necessary."}
 \EFb{:global} t
 (\EFk{if} unpackaged/org-export-html-with-useful-ids-mode
 (advice-add \#'org-export-get-reference \EFb{:override} \#'unpackaged/org-export-get-reference)
 (advice-remove \#'org-export-get-reference \#'unpackaged/org-export-get-reference)))
(unpackaged/org-export-html-with-useful-ids-mode 1) \EFcd{;} \EFc{ensure enabled, and advice run}

(\EFk{defun} \EFf{unpackaged/org-export-get-reference} (datum info)
 \EFd{"Like `}\textcolor[HTML]{b751b6}{\textit{org-export-get-reference}}\EFd{', except uses heading titles instead of random numbers."}
 (\EFk{let} ((cache (plist-get info \EFb{:internal-references})))
 (\EFk{or} (car (rassq datum cache))
 (\EFk{let*} ((crossrefs (plist-get info \EFb{:crossrefs}))
 (cells (org-export-search-cells datum))
 \EFcd{;;} \EFc{Preserve any pre-existing association between}
 \EFcd{;;} \EFc{a search cell and a reference, i.e., when some}
 \EFcd{;;} \EFc{previously published document referenced a location}
 \EFcd{;;} \EFc{within current file (see}
 \EFcd{;;} \EFc{`}\textcolor[HTML]{b751b6}{org-publish-resolve-external-link}\EFc{').}
 \EFcd{;;}
 \EFcd{;;} \EFc{However, there is no guarantee that search cells are}
 \EFcd{;;} \EFc{unique, e.g., there might be duplicate custom ID or}
 \EFcd{;;} \EFc{two headings with the same title in the file.}
 \EFcd{;;}
 \EFcd{;;} \EFc{As a consequence, before re-using any reference to}
 \EFcd{;;} \EFc{an element or object, we check that it doesn't refer}
 \EFcd{;;} \EFc{to a previous element or object.}
 (new (\EFk{or} (cl-some
 (\EFk{lambda} (cell)
 (\EFk{let} ((stored (cdr (assoc cell crossrefs))))
 (\EFk{when} stored
 (\EFk{let} ((old (org-export-format-reference stored)))
 (\EFk{and} (not (assoc old cache)) stored)))))
 cells)
 (\EFk{when} (org-element-property \EFb{:raw-value} datum)
 \EFcd{;;} \EFc{Heading with a title}
 (unpackaged/org-export-new-named-reference datum cache))
 (\EFk{when} (member (car datum) '(src-block table example fixed-width property-drawer))
 \EFcd{;;} \EFc{Nameable elements}
 (unpackaged/org-export-new-named-reference datum cache))
 \EFcd{;;} \EFc{NOTE: This probably breaks some Org Export}
 \EFcd{;;} \EFc{feature, but if it does what I need, fine.}
 (org-export-format-reference
 (org-export-new-reference cache))))
 (reference-string new))
 \EFcd{;;} \EFc{Cache contains both data already associated to}
 \EFcd{;;} \EFc{a reference and in-use internal references, so as to make}
 \EFcd{;;} \EFc{unique references.}
 (\EFk{dolist} (cell cells) (\EFk{push} (cons cell new) cache))
 \EFcd{;;} \EFc{Retain a direct association between reference string and}
 \EFcd{;;} \EFc{DATUM since (1) not every object or element can be given}
 \EFcd{;;} \EFc{a search cell (2) it permits quick lookup.}
 (\EFk{push} (cons reference-string datum) cache)
 (plist-put info \EFb{:internal-references} cache)
 reference-string))))

(\EFk{defun} \EFf{unpackaged/org-export-new-named-reference} (datum cache)
 \EFd{"Return new reference for DATUM that is unique in CACHE."}
 (\EFk{cl-macrolet} ((inc-suffixf (place)
 `(\EFk{progn}
 (string-match (\EFk{rx} bos
 (minimal-match (group (1+ anything)))
 (optional \EFs{"--"} (group (1+ digit)))
 eos)
 ,place)
 \EFcd{;;} \EFc{HACK: `}\textcolor[HTML]{b751b6}{s1}\EFc{' instead of a gensym.}
 (\EFk{let*} ((s1 (match-string 1 ,place))
 (suffix-1 (match-string 2 ,place))
 (suffix (\EFk{if} suffix-1 (string-to-number suffix-1) 0)))
 (\EFk{setf} ,place (format \EFs{"\%s--\%s"} s1 (1+ suffix)))))))
 (\EFk{let*} ((headline-p (eq (car datum) 'headline))
 (title (\EFk{if} headline-p
 (org-element-property \EFb{:raw-value} datum)
 (\EFk{or} (org-element-property \EFb{:name} datum)
 (concat (org-element-property \EFb{:raw-value}
 (org-element-property \EFb{:parent}
 (org-element-property \EFb{:parent} datum)))))))
 \EFcd{;;} \EFc{get ascii-only form of title without needing percent-encoding}
 (ref (concat (org-reference-contraction (substring-no-properties title))
 (\EFk{unless} (\EFk{or} headline-p (org-element-property \EFb{:name} datum))
 (concat \EFs{","}
 (\EFk{pcase} (car datum)
 ('src-block \EFs{"code"})
 ('example \EFs{"example"})
 ('fixed-width \EFs{"mono"})
 ('property-drawer \EFs{"properties"})
 (_ (symbol-name (car datum))))
 \EFs{"--1"}))))
 (parent (\EFk{when} headline-p (org-element-property \EFb{:parent} datum))))
 (\EFk{while} (member ref (mapcar \#'car cache))
 \EFcd{;;} \EFc{Title not unique: make it so.}
 (\EFk{if} parent
 \EFcd{;;} \EFc{Append ancestor title.}
 (\EFk{setf} title (concat (org-element-property \EFb{:raw-value} parent)
 \EFs{"--"} title)
 \EFcd{;;} \EFc{get ascii-only form of title without needing percent-encoding}
 ref (org-reference-contraction (substring-no-properties title))
 parent (\EFk{when} headline-p (org-element-property \EFb{:parent} parent)))
 \EFcd{;;} \EFc{No more ancestors: add and increment a number.}
 (inc-suffixf ref)))
 ref)))

(add-hook 'org-load-hook \#'unpackaged/org-export-html-with-useful-ids-mode)
\end{Verbatim}
\end{Code}
We also need to redefine \Verb[commandchars=\\\{\},highlightcolor=white!95!black!80!blue,breaklines=true,breaksymbol=\color{white!60!black}\tiny\ensuremath{\hookrightarrow}]{\color{EFD}(org-export-format-reference)} as it now may
be passed a string as well as a number.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defadvice!} org-export-format-reference-a (reference)
 \EFd{"Format REFERENCE into a string.}

\EFd{REFERENCE is a either a number or a string representing a reference,}
\EFd{as returned by `}\textcolor[HTML]{b751b6}{\textit{org-export-new-reference}}\EFd{'."}
 \EFb{:override} \#'org-export-format-reference
 (\EFk{if} (stringp reference) reference (format \EFs{"org\%07x"} reference)))
\end{Verbatim}
\end{Code}
\item Strip zero width spaces
\label{sec:org9043dbc}

Zero width spaces are handy as a semantic separator, but not something we want
passed through to the exports.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{+org-export-remove-zero-width-space} (text _backend _info)
 \EFd{"Remove zero width spaces from TEXT."}
 (\EFk{unless} (org-export-derived-backend-p 'org)
 (replace-regexp-in-string \EFs{"\char92{}u200B"} \EFs{""} text)))

(add-to-list 'org-export-filter-final-output-functions \#'+org-export-remove-zero-width-space t)
\end{Verbatim}
\end{Code}
\item Exporting Org code
\label{sec:org55b3e1d}

With all our Org config and hooks, exporting an Org code block when using
a font-lock based method can produce undesirable results. To address this, we
can tweak \texttt{+org-babel-mode-alist} when exporting.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{+org-mode--fontlock-only-mode} ()
 \EFd{"Just apply org-mode's font-lock once."}
 (\EFk{let} (org-mode-hook
 org-hide-leading-stars
 org-hide-emphasis-markers)
 (org-set-font-lock-defaults)
 (font-lock-ensure))
 (\EFk{setq-local} major-mode \#'fundamental-mode))

(\EFk{defun} \EFf{+org-export-babel-mask-org-config} (_backend)
 \EFd{"Use `}\textcolor[HTML]{b751b6}{\textit{+org-mode--fontlock-only-mode}}\EFd{' instead of `}\textcolor[HTML]{b751b6}{\textit{org-mode}}\EFd{'."}
 (\EFk{setq-local} org-src-lang-modes
 (append org-src-lang-modes
 (list (cons \EFs{"org"} \#'+org-mode--fontlock-only)))))

(add-hook 'org-export-before-processing-hook \#'+org-export-babel-mask-org-config)
\end{Verbatim}
\end{Code}
\end{enumerate}
\subsection{HTML Export}
\label{sec:orgef75651}

I want to tweak a whole bunch of things. While I'll want my tweaks almost all
the time, occasionally I may want to test how something turns out using a more
default config. With that in mind, a global minor mode seems like the most
appropriate architecture to use.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{define-minor-mode} \EFf{org-fancy-html-export-mode}
 \EFd{"Toggle my fabulous org export tweaks. While this mode itself does a little bit,}
\EFd{the vast majority of the change in behaviour comes from switch statements in:}
 \EFd{- `}\textcolor[HTML]{b751b6}{\textit{org-html-template-fancier}}\EFd{'}
 \EFd{- `}\textcolor[HTML]{b751b6}{\textit{org-html--build-meta-info-extended}}\EFd{'}
 \EFd{- `}\textcolor[HTML]{b751b6}{\textit{org-html-src-block-collapsable}}\EFd{'}
 \EFd{- `}\textcolor[HTML]{b751b6}{\textit{org-html-block-collapsable}}\EFd{'}
 \EFd{- `}\textcolor[HTML]{b751b6}{\textit{org-html-table-wrapped}}\EFd{'}
 \EFd{- `}\textcolor[HTML]{b751b6}{\textit{org-html--format-toc-headline-colapseable}}\EFd{'}
 \EFd{- `}\textcolor[HTML]{b751b6}{\textit{org-html--toc-text-stripped-leaves}}\EFd{'}
 \EFd{- `}\textcolor[HTML]{b751b6}{\textit{org-export-html-headline-anchor}}\EFd{'"}
 \EFb{:global} t
 \EFb{:init-value} t
 (\EFk{if} org-fancy-html-export-mode
 (\EFk{setq} org-html-style-default org-html-style-fancy
 org-html-meta-tags \#'org-html-meta-tags-fancy
 org-html-checkbox-type 'html-span)
 (\EFk{setq} org-html-style-default org-html-style-plain
 org-html-meta-tags \#'org-html-meta-tags-default
 org-html-checkbox-type 'html)))
\end{Verbatim}
\end{Code}
\begin{enumerate}
\item Extra header content
\label{sec:orgfd437a8}

We want to tack on a few more bits to the start of the body. Unfortunately, there
doesn't seem to be any nice variable or hook, so we'll just override the
relevant function.

This is done to allow me to add the date and author to the page header,
implement a CSS-only light/dark theme toggle, and a sprinkle of \href{https://ogp.me/}{Open Graph}
metadata.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defadvice!} org-html-template-fancier (orig-fn contents info)
 \EFd{"Return complete document string after HTML conversion.}
\EFd{CONTENTS is the transcoded contents string. INFO is a plist}
\EFd{holding export options. Adds a few extra things to the body}
\EFd{compared to the default implementation."}
 \EFb{:around} \#'org-html-template
 (\EFk{if} (\EFk{or} (not org-fancy-html-export-mode) (\EFk{bound-and-true-p} org-msg-export-in-progress))
 (funcall orig-fn contents info)
 (concat
 (\EFk{when} (\EFk{and} (not (org-html-html5-p info)) (org-html-xhtml-p info))
 (\EFk{let*} ((xml-declaration (plist-get info \EFb{:html-xml-declaration}))
 (decl (\EFk{or} (\EFk{and} (stringp xml-declaration) xml-declaration)
 (cdr (assoc (plist-get info \EFb{:html-extension})
 xml-declaration))
 (cdr (assoc \EFs{"html"} xml-declaration))
 \EFs{""})))
 (\EFk{when} (not (\EFk{or} (not decl) (string= \EFs{""} decl)))
 (format \EFs{"\%s\char92{}n"}
 (format decl
 (\EFk{or} (\EFk{and} org-html-coding-system
 (fboundp 'coding-system-get)
 (coding-system-get org-html-coding-system 'mime-charset))
 \EFs{"iso-8859-1"}))))))
 (org-html-doctype info)
 \EFs{"\char92{}n"}
 (concat \EFs{"<html"}
 (\EFk{cond} ((org-html-xhtml-p info)
 (format
 \EFs{" xmlns=\char92{}"http://www.w3.org/1999/xhtml\char92{}" lang=\char92{}"\%s\char92{}" xml:lang=\char92{}"\%s\char92{}""}
 (plist-get info \EFb{:language}) (plist-get info \EFb{:language})))
 ((org-html-html5-p info)
 (format \EFs{" lang=\char92{}"\%s\char92{}""} (plist-get info \EFb{:language}))))
 \EFs{">\char92{}n"})
 \EFs{"<head>\char92{}n"}
 (org-html--build-meta-info info)
 (org-html--build-head info)
 (org-html--build-mathjax-config info)
 \EFs{"</head>\char92{}n"}
 \EFs{"<body>\char92{}n<input type='}\textcolor[HTML]{b751b6}{checkbox}\EFs{' id='}\textcolor[HTML]{b751b6}{theme-switch}\EFs{'><div id='}\textcolor[HTML]{b751b6}{page}\EFs{'><label id='}\textcolor[HTML]{b751b6}{switch-label}\EFs{' for='}\textcolor[HTML]{b751b6}{theme-switch}\EFs{'></label>"}
 (\EFk{let} ((link-up (org-trim (plist-get info \EFb{:html-link-up})))
 (link-home (org-trim (plist-get info \EFb{:html-link-home}))))
 (\EFk{unless} (\EFk{and} (string= link-up \EFs{""}) (string= link-home \EFs{""}))
 (format (plist-get info \EFb{:html-home/up-format})
 (\EFk{or} link-up link-home)
 (\EFk{or} link-home link-up))))
 \EFcd{;;} \EFc{Preamble.}
 (org-html--build-pre/postamble 'preamble info)
 \EFcd{;;} \EFc{Document contents.}
 (\EFk{let} ((div (assq 'content (plist-get info \EFb{:html-divs}))))
 (format \EFs{"<\%s id=\char92{}"\%s\char92{}">\char92{}n"} (nth 1 div) (nth 2 div)))
 \EFcd{;;} \EFc{Document title.}
 (\EFk{when} (plist-get info \EFb{:with-title})
 (\EFk{let} ((title (\EFk{and} (plist-get info \EFb{:with-title})
 (plist-get info \EFb{:title})))
 (subtitle (plist-get info \EFb{:subtitle}))
 (html5-fancy (org-html--html5-fancy-p info)))
 (\EFk{when} title
 (format
 (\EFk{if} html5-fancy
 \EFs{"<header class=\char92{}"page-header\char92{}">\%s\char92{}n<h1 class=\char92{}"title\char92{}">\%s</h1>\char92{}n\%s</header>"}
 \EFs{"<h1 class=\char92{}"title\char92{}">\%s\%s</h1>\char92{}n"})
 (\EFk{if} (\EFk{or} (plist-get info \EFb{:with-date})
 (plist-get info \EFb{:with-author}))
 (concat \EFs{"<div class=\char92{}"page-meta\char92{}">"}
 (\EFk{when} (plist-get info \EFb{:with-date})
 (org-export-data (plist-get info \EFb{:date}) info))
 (\EFk{when} (\EFk{and} (plist-get info \EFb{:with-date}) (plist-get info \EFb{:with-author})) \EFs{", "})
 (\EFk{when} (plist-get info \EFb{:with-author})
 (org-export-data (plist-get info \EFb{:author}) info))
 \EFs{"</div>\char92{}n"})
 \EFs{""})
 (org-export-data title info)
 (\EFk{if} subtitle
 (format
 (\EFk{if} html5-fancy
 \EFs{"<p class=\char92{}"subtitle\char92{}" role=\char92{}"doc-subtitle\char92{}">\%s</p>\char92{}n"}
 (concat \EFs{"\char92{}n"} (org-html-close-tag \EFs{"br"} nil info) \EFs{"\char92{}n"}
 \EFs{"\%s\char92{}n"}))
 (org-export-data subtitle info))
 \EFs{""})))))
 contents
 (format \EFs{"</\%s>\char92{}n"} (nth 1 (assq 'content (plist-get info \EFb{:html-divs}))))
 \EFcd{;;} \EFc{Postamble.}
 (org-html--build-pre/postamble 'postamble info)
 \EFcd{;;} \EFc{Possibly use the Klipse library live code blocks.}
 (\EFk{when} (plist-get info \EFb{:html-klipsify-src})
 (concat \EFs{"<script>"} (plist-get info \EFb{:html-klipse-selection-script})
 \EFs{"</script><script src=\char92{}""}
 org-html-klipse-js
 \EFs{"\char92{}"></script><link rel=\char92{}"stylesheet\char92{}" type=\char92{}"text/css\char92{}" href=\char92{}""}
 org-html-klipse-css \EFs{"\char92{}"/>"}))
 \EFcd{;;} \EFc{Closing document.}
 \EFs{"</div>\char92{}n</body>\char92{}n</html>"})))
\end{Verbatim}
\end{Code}

I think it would be nice if "Table of Contents" brought you back to the top of
the page. Well, since we've done this much advising already\ldots{}
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defadvice!} org-html-toc-linked (depth info \EFt{\&optional} scope)
 \EFd{"Build a table of contents.}

\EFd{Just like `}\textcolor[HTML]{b751b6}{\textit{org-html-toc}}\EFd{', except the header is a link to \char92{}"\#\char92{}".}

\EFd{DEPTH is an integer specifying the depth of the table. INFO is}
\EFd{a plist used as a communication channel. Optional argument SCOPE}
\EFd{is an element defining the scope of the table. Return the table}
\EFd{of contents as a string, or nil if it is empty."}
 \EFb{:override} \#'org-html-toc
 (\EFk{let} ((toc-entries
 (mapcar (\EFk{lambda} (headline)
 (cons (org-html--format-toc-headline headline info)
 (org-export-get-relative-level headline info)))
 (org-export-collect-headlines info depth scope))))
 (\EFk{when} toc-entries
 (\EFk{let} ((toc (concat \EFs{"<div id=\char92{}"text-table-of-contents\char92{}">"}
 (org-html--toc-text toc-entries)
 \EFs{"</div>\char92{}n"})))
 (\EFk{if} scope toc
 (\EFk{let} ((outer-tag (\EFk{if} (org-html--html5-fancy-p info)
 \EFs{"nav"}
 \EFs{"div"})))
 (concat (format \EFs{"<\%s id=\char92{}"table-of-contents\char92{}">\char92{}n"} outer-tag)
 (\EFk{let} ((top-level (plist-get info \EFb{:html-toplevel-hlevel})))
 (format \EFs{"<h\%d>\%s</h\%d>\char92{}n"}
 top-level
 (org-html--translate \EFs{"Table of Contents"} info)
 top-level))
 toc
 (format \EFs{"</\%s>\char92{}n"} outer-tag))))))))
\end{Verbatim}
\end{Code}

Lastly, let's pile on some metadata. This gives my pages nice embeds.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{org-html-meta-tags-opengraph-image}
 '(\EFb{:image} \EFs{"https://tecosaur.com/resources/org/nib.png"}
 \EFb{:type} \EFs{"image/png"}
 \EFb{:width} \EFs{"200"}
 \EFb{:height} \EFs{"200"}
 \EFb{:alt} \EFs{"Green fountain pen nib"})
 \EFd{"Plist of og:image:PROP properties and their value, for use in `}\textcolor[HTML]{b751b6}{\textit{org-html-meta-tags-fancy}}\EFd{'."})

(\EFk{defun} \EFf{org-html-meta-tags-fancy} (info)
 \EFd{"Use the INFO plist to construct the meta tags, as described in `}\textcolor[HTML]{b751b6}{\textit{org-html-meta-tags}}\EFd{'."}
 (\EFk{let*} ((title (org-html-plain-text
 (org-element-interpret-data (plist-get info \EFb{:title})) info))
 (author (\EFk{and} (plist-get info \EFb{:with-author})
 (\EFk{let} ((auth (plist-get info \EFb{:author})))
 \EFcd{;;} \EFc{Return raw Org syntax.}
 (\EFk{and} auth (org-html-plain-text
 (org-element-interpret-data auth) info)))))
 (author-first-last
 (\EFk{and} (not (org-string-nw-p author))
 (\EFk{save-match-data}
 (\EFk{if} (string-match \EFs{"\char92{}\char92{}`}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{.+?}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}} \EFs{+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{.+?}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{\char92{}\char92{}'"} author)
 (cons (match-string 1 author)
 (match-string 2 author))
 (cons author nil))))))
 (append
 (list
 (\EFk{when} (org-string-nw-p author)
 (list \EFs{"name"} \EFs{"author"} author))
 (\EFk{when} (org-string-nw-p (plist-get info \EFb{:description}))
 (list \EFs{"name"} \EFs{"description"}
 (plist-get info \EFb{:description})))
 '(\EFs{"name"} \EFs{"generator"} \EFs{"org mode"})
 '(\EFs{"name"} \EFs{"theme-color"} \EFs{"\#77aa99"})
 '(\EFs{"property"} \EFs{"og:type"} \EFs{"article"})
 (list \EFs{"property"} \EFs{"og:title"} title)
 (\EFk{let} ((subtitle (org-export-data (plist-get info \EFb{:subtitle}) info)))
 (\EFk{when} (org-string-nw-p subtitle)
 (list \EFs{"property"} \EFs{"og:description"} subtitle))))
 (\EFk{when} org-html-meta-tags-opengraph-image
 (list (list \EFs{"property"} \EFs{"og:image"} (plist-get org-html-meta-tags-opengraph-image \EFb{:image}))
 (list \EFs{"property"} \EFs{"og:image:type"} (plist-get org-html-meta-tags-opengraph-image \EFb{:type}))
 (list \EFs{"property"} \EFs{"og:image:width"} (plist-get org-html-meta-tags-opengraph-image \EFb{:width}))
 (list \EFs{"property"} \EFs{"og:image:height"} (plist-get org-html-meta-tags-opengraph-image \EFb{:height}))
 (list \EFs{"property"} \EFs{"og:image:alt"} (plist-get org-html-meta-tags-opengraph-image \EFb{:alt}))))
 (list
 (\EFk{when} (car author-first-last)
 (list \EFs{"property"} \EFs{"og:article:author:first_name"} (car author-first-last)))
 (\EFk{when} (cdr author-first-last)
 (list \EFs{"property"} \EFs{"og:article:author:last_name"} (cdr author-first-last)))
 (list \EFs{"property"} \EFs{"og:article:published_time"}
 (format-time-string
 \EFs{"\%FT\%T\%z"}
 (\EFk{or}
 (\EFk{when-let} ((date-str (cadar (org-collect-keywords '(\EFs{"DATE"})))))
 (\EFk{unless} (string= date-str (format-time-string \EFs{"\%F"}))
 (\EFk{ignore-errors} (encode-time (org-parse-time-string date-str)))))
 (\EFk{if} buffer-file-name
 (file-attribute-modification-time (file-attributes buffer-file-name))
 (current-time)))))
 (\EFk{when} buffer-file-name
 (list \EFs{"property"} \EFs{"og:article:modified_time"}
 (format-time-string \EFs{"\%FT\%T\%z"} (file-attribute-modification-time (file-attributes buffer-file-name)))))))))

(\EFk{unless} (functionp \#'org-html-meta-tags-default)
 (\EFk{defalias} '\EFf{org-html-meta-tags-default} \#'ignore))
(\EFk{setq} org-html-meta-tags \#'org-html-meta-tags-fancy)
\end{Verbatim}
\end{Code}
\item Custom CSS/JS
\label{sec:org7d650d8}

The default org HTML export is \ldots{} alright, but we can really jazz it up.
\href{https://lepisma.xyz}{lepisma.xyz} has a really nice style, and from and org export too!
Suffice to say I've snatched it, with a few of my own tweaks applied.

\begin{Code}
\begin{Verbatim}
\color{EFD}<\EFf{link} \EFv{rel}=\EFs{"icon"} \EFv{href}=\EFs{"https://tecosaur.com/resources/org/nib.ico"} \EFv{type}=\EFs{"image/ico"} />

<\EFf{link} \EFv{rel}=\EFs{"preload"} \EFv{as}=\EFs{"font"} \EFv{crossorigin}=\EFs{"anonymous"} \EFv{type}=\EFs{"font/woff2"} \EFv{href}=\EFs{"https://tecosaur.com/resources/org/etbookot-roman-webfont.woff2"}>
<\EFf{link} \EFv{rel}=\EFs{"preload"} \EFv{as}=\EFs{"font"} \EFv{crossorigin}=\EFs{"anonymous"} \EFv{type}=\EFs{"font/woff2"} \EFv{href}=\EFs{"https://tecosaur.com/resources/org/etbookot-italic-webfont.woff2"}>
<\EFf{link} \EFv{rel}=\EFs{"preload"} \EFv{as}=\EFs{"font"} \EFv{crossorigin}=\EFs{"anonymous"} \EFv{type}=\EFs{"font/woff2"} \EFv{href}=\EFs{"https://tecosaur.com/resources/org/Merriweather-TextRegular.woff2"}>
<\EFf{link} \EFv{rel}=\EFs{"preload"} \EFv{as}=\EFs{"font"} \EFv{crossorigin}=\EFs{"anonymous"} \EFv{type}=\EFs{"font/woff2"} \EFv{href}=\EFs{"https://tecosaur.com/resources/org/Merriweather-TextItalic.woff2"}>
<\EFf{link} \EFv{rel}=\EFs{"preload"} \EFv{as}=\EFs{"font"} \EFv{crossorigin}=\EFs{"anonymous"} \EFv{type}=\EFs{"font/woff2"} \EFv{href}=\EFs{"https://tecosaur.com/resources/org/Merriweather-TextBold.woff2"}>
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} org-html-style-plain org-html-style-default
 org-html-htmlize-output-type 'css
 org-html-doctype \EFs{"html5"}
 org-html-html5-fancy t)

(\EFk{defun} \EFf{org-html-reload-fancy-style} ()
 (\EFk{interactive})
 (\EFk{setq} org-html-style-fancy
 (\EFk{with-temp-buffer}
 (insert-file-contents (expand-file-name \EFs{"misc/org-export-header.html"} doom-user-dir))
 (goto-char (point-max))
 (insert \EFs{"<script>\char92{}n"})
 (insert-file-contents (expand-file-name \EFs{"misc/org-css/main.js"} doom-user-dir))
 (goto-char (point-max))
 (insert \EFs{"</script>\char92{}n<style>\char92{}n"})
 (insert-file-contents (expand-file-name \EFs{"misc/org-css/main.min.css"} doom-user-dir))
 (goto-char (point-max))
 (insert \EFs{"</style>"})
 (buffer-string)))
 (\EFk{when} org-fancy-html-export-mode
 (\EFk{setq} org-html-style-default org-html-style-fancy)))
(org-html-reload-fancy-style)
\end{Verbatim}
\end{Code}
\item Collapsable src and example blocks
\label{sec:org0eb44a0}

By wrapping the \texttt{<pre>} element in a \texttt{<details>} block, we can obtain collapsable
blocks with no CSS, though we will toss a little in anyway to have this looking
somewhat spiffy.

Since this collapsability seems useful to have on by default for certain chunks
of code, it would be nice if you could set it with \verb~#+attr_html: :collapsed t~.

It would be nice to also have a corresponding global / session-local way of
setting this, but I haven't quite been able to get that working (yet).

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{org-html-export-collapsed} nil)
(eval '(cl-pushnew '(\EFb{:collapsed} \EFs{"COLLAPSED"} \EFs{"collapsed"} org-html-export-collapsed t)
 (org-export-backend-options (org-export-get-backend 'html))))
(add-to-list 'org-default-properties \EFs{"EXPORT_COLLAPSED"})
\end{Verbatim}
\end{Code}

We can take our src block modification a step further, and add a gutter on the
side of the src block containing both an anchor referencing the current block,
and a button to copy the content of the block.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defadvice!} org-html-src-block-collapsable (orig-fn src-block contents info)
 \EFd{"Wrap the usual <pre> block in a <details>"}
 \EFb{:around} \#'org-html-src-block
 (\EFk{if} (\EFk{or} (not org-fancy-html-export-mode) (\EFk{bound-and-true-p} org-msg-export-in-progress))
 (funcall orig-fn src-block contents info)
 (\EFk{let*} ((properties (cadr src-block))
 (lang (mode-name-to-lang-name
 (plist-get properties \EFb{:language})))
 (name (plist-get properties \EFb{:name}))
 (ref (org-export-get-reference src-block info))
 (collapsed-p (member (\EFk{or} (org-export-read-attribute \EFb{:attr_html} src-block \EFb{:collapsed})
 (plist-get info \EFb{:collapsed}))
 '(\EFs{"y"} \EFs{"yes"} \EFs{"t"} t \EFs{"true"} \EFs{"all"}))))
 (format
 \EFs{"<details id='}\textcolor[HTML]{b751b6}{\%s}\EFs{' class='}\textcolor[HTML]{b751b6}{code}\EFs{'\%s><summary\%s>\%s</summary>}
\EFs{<div class='}\textcolor[HTML]{b751b6}{gutter}\EFs{'>}
\EFs{\#}
\EFs{<button title='Copy to clipboard' onclick='copyPreToClipbord(this)'>â��</button>\char92{}}
\EFs{</div>}
\EFs{\%s}
\EFs{</details>"}
 ref
 (\EFk{if} collapsed-p \EFs{""} \EFs{" open"})
 (\EFk{if} name \EFs{" class='}\textcolor[HTML]{b751b6}{named}\EFs{'"} \EFs{""})
 (concat
 (\EFk{when} name (concat \EFs{""} name \EFs{""}))
 \EFs{""} lang \EFs{""})
 ref
 (\EFk{if} name
 (replace-regexp-in-string (format \EFs{"<pre}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}} \EFs{class=\char92{}"[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{\char92{}"]+\char92{}"}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{? id=\char92{}"\%s\char92{}">"} ref) \EFs{"<pre\char92{}\char92{}1>"}
 (funcall orig-fn src-block contents info))
 (funcall orig-fn src-block contents info))))))

(\EFk{defun} \EFf{mode-name-to-lang-name} (mode)
 (\EFk{or} (cadr (assoc mode
 '((\EFs{"asymptote"} \EFs{"Asymptote"})
 (\EFs{"awk"} \EFs{"Awk"})
 (\EFs{"C"} \EFs{"C"})
 (\EFs{"clojure"} \EFs{"Clojure"})
 (\EFs{"css"} \EFs{"CSS"})
 (\EFs{"D"} \EFs{"D"})
 (\EFs{"ditaa"} \EFs{"ditaa"})
 (\EFs{"dot"} \EFs{"Graphviz"})
 (\EFs{"calc"} \EFs{"Emacs Calc"})
 (\EFs{"emacs-lisp"} \EFs{"Emacs Lisp"})
 (\EFs{"fortran"} \EFs{"Fortran"})
 (\EFs{"gnuplot"} \EFs{"gnuplot"})
 (\EFs{"haskell"} \EFs{"Haskell"})
 (\EFs{"hledger"} \EFs{"hledger"})
 (\EFs{"java"} \EFs{"Java"})
 (\EFs{"js"} \EFs{"Javascript"})
 (\EFs{"latex"} \EFs{"LaTeX"})
 (\EFs{"ledger"} \EFs{"Ledger"})
 (\EFs{"lisp"} \EFs{"Lisp"})
 (\EFs{"lilypond"} \EFs{"Lilypond"})
 (\EFs{"lua"} \EFs{"Lua"})
 (\EFs{"matlab"} \EFs{"MATLAB"})
 (\EFs{"mscgen"} \EFs{"Mscgen"})
 (\EFs{"ocaml"} \EFs{"Objective Caml"})
 (\EFs{"octave"} \EFs{"Octave"})
 (\EFs{"org"} \EFs{"Org mode"})
 (\EFs{"oz"} \EFs{"OZ"})
 (\EFs{"plantuml"} \EFs{"Plantuml"})
 (\EFs{"processing"} \EFs{"Processing.js"})
 (\EFs{"python"} \EFs{"Python"})
 (\EFs{"R"} \EFs{"R"})
 (\EFs{"ruby"} \EFs{"Ruby"})
 (\EFs{"sass"} \EFs{"Sass"})
 (\EFs{"scheme"} \EFs{"Scheme"})
 (\EFs{"screen"} \EFs{"Gnu Screen"})
 (\EFs{"sed"} \EFs{"Sed"})
 (\EFs{"sh"} \EFs{"shell"})
 (\EFs{"sql"} \EFs{"SQL"})
 (\EFs{"sqlite"} \EFs{"SQLite"})
 (\EFs{"forth"} \EFs{"Forth"})
 (\EFs{"io"} \EFs{"IO"})
 (\EFs{"J"} \EFs{"J"})
 (\EFs{"makefile"} \EFs{"Makefile"})
 (\EFs{"maxima"} \EFs{"Maxima"})
 (\EFs{"perl"} \EFs{"Perl"})
 (\EFs{"picolisp"} \EFs{"Pico Lisp"})
 (\EFs{"scala"} \EFs{"Scala"})
 (\EFs{"shell"} \EFs{"Shell Script"})
 (\EFs{"ebnf2ps"} \EFs{"ebfn2ps"})
 (\EFs{"cpp"} \EFs{"C++"})
 (\EFs{"abc"} \EFs{"ABC"})
 (\EFs{"coq"} \EFs{"Coq"})
 (\EFs{"groovy"} \EFs{"Groovy"})
 (\EFs{"bash"} \EFs{"bash"})
 (\EFs{"csh"} \EFs{"csh"})
 (\EFs{"ash"} \EFs{"ash"})
 (\EFs{"dash"} \EFs{"dash"})
 (\EFs{"ksh"} \EFs{"ksh"})
 (\EFs{"mksh"} \EFs{"mksh"})
 (\EFs{"posh"} \EFs{"posh"})
 (\EFs{"ada"} \EFs{"Ada"})
 (\EFs{"asm"} \EFs{"Assembler"})
 (\EFs{"caml"} \EFs{"Caml"})
 (\EFs{"delphi"} \EFs{"Delphi"})
 (\EFs{"html"} \EFs{"HTML"})
 (\EFs{"idl"} \EFs{"IDL"})
 (\EFs{"mercury"} \EFs{"Mercury"})
 (\EFs{"metapost"} \EFs{"MetaPost"})
 (\EFs{"modula-2"} \EFs{"Modula-2"})
 (\EFs{"pascal"} \EFs{"Pascal"})
 (\EFs{"ps"} \EFs{"PostScript"})
 (\EFs{"prolog"} \EFs{"Prolog"})
 (\EFs{"simula"} \EFs{"Simula"})
 (\EFs{"tcl"} \EFs{"tcl"})
 (\EFs{"tex"} \EFs{"LaTeX"})
 (\EFs{"plain-tex"} \EFs{"TeX"})
 (\EFs{"verilog"} \EFs{"Verilog"})
 (\EFs{"vhdl"} \EFs{"VHDL"})
 (\EFs{"xml"} \EFs{"XML"})
 (\EFs{"nxml"} \EFs{"XML"})
 (\EFs{"conf"} \EFs{"Configuration File"}))))
 mode))
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{org-html-block-collapsable} (orig-fn block contents info)
 \EFd{"Wrap the usual block in a <details>"}
 (\EFk{if} (\EFk{or} (not org-fancy-html-export-mode) (\EFk{bound-and-true-p} org-msg-export-in-progress))
 (funcall orig-fn block contents info)
 (\EFk{let} ((ref (org-export-get-reference block info))
 (type (\EFk{pcase} (car block)
 ('property-drawer \EFs{"Properties"})))
 (collapsed-default (\EFk{pcase} (car block)
 ('property-drawer t)
 (_ nil)))
 (collapsed-value (org-export-read-attribute \EFb{:attr_html} block \EFb{:collapsed}))
 (collapsed-p (\EFk{or} (member (org-export-read-attribute \EFb{:attr_html} block \EFb{:collapsed})
 '(\EFs{"y"} \EFs{"yes"} \EFs{"t"} t \EFs{"true"}))
 (member (plist-get info \EFb{:collapsed}) '(\EFs{"all"})))))
 (format
 \EFs{"<details id='}\textcolor[HTML]{b751b6}{\%s}\EFs{' class='}\textcolor[HTML]{b751b6}{code}\EFs{'\%s>}
\EFs{<summary\%s>\%s</summary>}
\EFs{<div class='}\textcolor[HTML]{b751b6}{gutter}\EFs{'>\char92{}}
\EFs{\#}
\EFs{<button title='Copy to clipboard' onclick='copyPreToClipbord(this)'>â��</button>\char92{}}
\EFs{</div>}
\EFs{\%s\char92{}n}
\EFs{</details>"}
 ref
 (\EFk{if} (\EFk{or} collapsed-p collapsed-default) \EFs{""} \EFs{" open"})
 (\EFk{if} type \EFs{" class='}\textcolor[HTML]{b751b6}{named}\EFs{'"} \EFs{""})
 (\EFk{if} type (format \EFs{"\%s"} type) \EFs{""})
 ref
 (funcall orig-fn block contents info)))))

(advice-add 'org-html-example-block \EFb{:around} \#'org-html-block-collapsable)
(advice-add 'org-html-fixed-width \EFb{:around} \#'org-html-block-collapsable)
(advice-add 'org-html-property-drawer \EFb{:around} \#'org-html-block-collapsable)
\end{Verbatim}
\end{Code}
\item Include extra font-locking in htmlize
\label{sec:orgcb647fe}

Org uses \href{https://github.com/hniksic/emacs-htmlize}{htmlize.el} to export buffers with syntax highlighting.

The works fantastically, for the most part. Minor modes that provide
font-locking are \emph{not} loaded, and so do not impact the result.

By enabling these modes in \texttt{htmlize-before-hook} we can correct this behaviour.

\begin{Code}
\begin{Verbatim}
\color{EFD}(autoload \#'highlight-numbers--turn-on \EFs{"highlight-numbers"})
(add-hook 'htmlize-before-hook \#'highlight-numbers--turn-on)
\end{Verbatim}
\end{Code}
\item Handle table overflow
\label{sec:org148d95e}

In order to accommodate wide tables ---particularly on mobile devices--- we want
to set a maximum width and scroll overflow. Unfortunately, this cannot be applied
directly to the \texttt{table} element, so we have to wrap it in a \texttt{div}.

While we're at it, we can a link gutter, as we did with src blocks, and show the
\texttt{\#+name}, if one is given.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defadvice!} org-html-table-wrapped (orig-fn table contents info)
 \EFd{"Wrap the usual <table> in a <div>"}
 \EFb{:around} \#'org-html-table
 (\EFk{if} (\EFk{or} (not org-fancy-html-export-mode) (\EFk{bound-and-true-p} org-msg-export-in-progress))
 (funcall orig-fn table contents info)
 (\EFk{let*} ((name (plist-get (cadr table) \EFb{:name}))
 (ref (org-export-get-reference table info)))
 (format \EFs{"<div id='}\textcolor[HTML]{b751b6}{\%s}\EFs{' class='}\textcolor[HTML]{b751b6}{table}\EFs{'>}
\EFs{<div class='}\textcolor[HTML]{b751b6}{gutter}\EFs{'>\#</div>}
\EFs{<div class='}\textcolor[HTML]{b751b6}{tabular}\EFs{'>}
\EFs{\%s}
\EFs{</div>\char92{}}
\EFs{</div>"}
 ref ref
 (\EFk{if} name
 (replace-regexp-in-string (format \EFs{"<table id=\char92{}"\%s\char92{}""} ref) \EFs{"<table"}
 (funcall orig-fn table contents info))
 (funcall orig-fn table contents info))))))
\end{Verbatim}
\end{Code}
\item TOC as a collapsable tree
\label{sec:org9971f35}

The TOC is much nicer to navigate as a collapsable tree. Unfortunately we cannot
achieve this with CSS alone. Thankfully we can avoid JS though, by adapting the
TOC generation code to use a \texttt{label} for each item, and a hidden \texttt{checkbox} to keep
track of state.

To add this, we need to change one line in \href{lisp/org/lisp/ox-html.el}{org-html--format-toc-headline}.

Since we can actually accomplish the desired effect by adding advice \emph{around} the
function, without overriding it --- let's do that to reduce the bug surface of
this config a tad.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defadvice!} org-html--format-toc-headline-colapseable (orig-fn headline info)
 \EFd{"Add a label and checkbox to `}\textcolor[HTML]{b751b6}{\textit{org-html--format-toc-headline}}\EFd{'s usual output,}
\EFd{to allow the TOC to be a collapseable tree."}
 \EFb{:around} \#'org-html--format-toc-headline
 (\EFk{if} (\EFk{or} (not org-fancy-html-export-mode) (\EFk{bound-and-true-p} org-msg-export-in-progress))
 (funcall orig-fn headline info)
 (\EFk{let} ((id (\EFk{or} (org-element-property \EFb{:CUSTOM_ID} headline)
 (org-export-get-reference headline info))))
 (format \EFs{"<input type='}\textcolor[HTML]{b751b6}{checkbox}\EFs{' id='}\textcolor[HTML]{b751b6}{toc--\%s}\EFs{'/><label for='}\textcolor[HTML]{b751b6}{toc--\%s}\EFs{'>\%s</label>"}
 id id (funcall orig-fn headline info)))))
\end{Verbatim}
\end{Code}

Now, leaves (headings with no children) shouldn't have the \texttt{label} item. The
obvious way to achieve this is by including some \emph{if no children\ldots{}} logic in
\texttt{org-html-{}-{}format-toc-headline-colapseable}. Unfortunately, I can't my elisp isn't
up to par to extract the number of child headings from the mountain of info that
org provides.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defadvice!} org-html--toc-text-stripped-leaves (orig-fn toc-entries)
 \EFd{"Remove label"}
 \EFb{:around} \#'org-html--toc-text
 (\EFk{if} (\EFk{or} (not org-fancy-html-export-mode) (\EFk{bound-and-true-p} org-msg-export-in-progress))
 (funcall orig-fn toc-entries)
 (replace-regexp-in-string \EFs{"<input [}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{>]+><label [}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{>]+>}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{.+?}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{</label>"} \EFs{"\char92{}\char92{}1"}
 (funcall orig-fn toc-entries))))
\end{Verbatim}
\end{Code}
\item Make verbatim different to code
\label{sec:org888cc24}

Since we have \verb~verbatim~ and \texttt{code}, let's make use of the difference.

We can use \texttt{code} exclusively for code snippets and commands like: "calling
\Verb[commandchars=\\\{\},highlightcolor=white!95!black!80!blue,breaklines=true,breaksymbol=\color{white!60!black}\tiny\ensuremath{\hookrightarrow}]{\color{EFD}(message \EFs{"Hello"})} in batch-mode Emacs prints to stdout like \texttt{echo}".
Then we can use \verb~verbatim~ for miscellaneous 'other monospace' like keyboard
shortcuts: "either \verb~C-c C-c~ or \verb~C-g~ is likely the most useful keybinding in Emacs",
or file names: "I keep my configuration in \verb,~/.config/doom/,", among other things.

Then, styling these two cases differently can help improve clarity in a document.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} org-html-text-markup-alist
 '((bold . \EFs{"\%s"})
 (code . \EFs{"<code>\%s</code>"})
 (italic . \EFs{"<i>\%s</i>"})
 (strike-through . \EFs{"\%s"})
 (underline . \EFs{"\%s"})
 (verbatim . \EFs{"<kbd>\%s</kbd>"})))
\end{Verbatim}
\end{Code}
\item Change checkbox type
\label{sec:org11df892}

We also want to use HTML checkboxes, however we want to get a bit fancier than default
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{appendq!} org-html-checkbox-types
 '((html-span
 (on . \EFs{""})
 (off . \EFs{""})
 (trans . \EFs{""}))))
(\EFk{setq} org-html-checkbox-type 'html-span)
\end{Verbatim}
\end{Code}
\begin{itemize}
\item[\checkboxUnchecked] I'm yet to do this
\item[\checkboxTransitive] Work in progress
\item[\checkboxChecked] This is done
\end{itemize}
\item Extra special strings
\label{sec:orge8239d7}

The \texttt{org-html-special-string-regexps} variable defines substitutions for:
\begin{itemize}
\item \verb~\-~, a shy hyphen
\item \verb~---~, an em dash
\item \verb~--~, an en dash
\item \verb~...~, (horizontal) ellipses
\end{itemize}

However I think it would be nice if there was also a substitution for left/right
arrows (\verb~->~ and \verb~<-~). This is a \texttt{defconst}, but as you may tell from the amount of
advice in this config, I'm not above messing with things I'm not 'supposed' to.

The only minor complication is that \verb~<~ and \verb~>~ are converted to \verb~<~ and \verb~>~
before this stage of output processing.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{pushnew!} org-html-special-string-regexps
 '(\EFs{"-\>"} . \EFs{"\&\#8594;"})
 '(\EFs{"\<-"} . \EFs{"\&\#8592;"}))
\end{Verbatim}
\end{Code}
\item Header anchors
\label{sec:orge7ab9db}

I want to add GitHub-style links on hover for headings.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{org-export-html-headline-anchor} (text backend info)
 (\EFk{when} (\EFk{and} (org-export-derived-backend-p backend 'html)
 (not (org-export-derived-backend-p backend 're-reveal))
 org-fancy-html-export-mode)
 (\EFk{unless} (\EFk{bound-and-true-p} org-msg-export-in-progress)
 (replace-regexp-in-string
 \EFs{"<h}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[0-9]}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}} \EFs{id=\char92{}"}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[a-z0-9-]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{\char92{}">}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{.*[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}} \EFs{]}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{<\char92{}\char92{}/h[0-9]>"} \EFcd{;} \EFc{this is quite restrictive, but due to `}\textcolor[HTML]{b751b6}{org-reference-contraction}\EFc{' I can do this}
 \EFs{"<h\char92{}\char92{}1 id=\char92{}"\char92{}\char92{}2\char92{}">\char92{}\char92{}3<a aria-hidden=\char92{}"true\char92{}" href=\char92{}"\#\char92{}\char92{}2\char92{}">\# </h\char92{}\char92{}1>"}
 text))))

(add-to-list 'org-export-filter-headline-functions
 'org-export-html-headline-anchor)
\end{Verbatim}
\end{Code}
\item Link previews
\label{sec:orgeb447b0}

Sometimes it's nice to make a link particularly prominent, an embed/preview like
Twitter does would be nice I think.

We can do this without too much trouble by adding a new link type ever so
slightly different from \verb~https~ --- \verb~Https~.

\begin{Code}
\begin{Verbatim}
\color{EFD}(org-link-set-parameters \EFs{"Https"}
 \EFb{:follow} (\EFk{lambda} (url arg) (browse-url (concat \EFs{"https:"} url) arg))
 \EFb{:export} \#'org-url-fancy-export)
\end{Verbatim}
\end{Code}

Then, if we can fetch a plist of the form \Verb[commandchars=\\\{\},highlightcolor=white!95!black!80!blue,breaklines=true,breaksymbol=\color{white!60!black}\tiny\ensuremath{\hookrightarrow}]{\color{EFD}(\EFb{:title} \EFs{"..."} \EFb{:description} \EFs{"..."} \EFb{:image} \EFs{"..."})} for such links via a function \texttt{org-url-unfurl-metadata}, we
can make a fancy export.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{org-url-fancy-export} (url _desc backend)
 (\EFk{let} ((metadata (org-url-unfurl-metadata (concat \EFs{"https:"} url))))
 (\EFk{cond}
 ((org-export-derived-backend-p backend 'html)
 (concat
 \EFs{"<div class=\char92{}"link-preview\char92{}">"}
 (format \EFs{""} (concat \EFs{"https:"} url))
 (\EFk{when} (plist-get metadata \EFb{:image})
 (format \EFs{""} (plist-get metadata \EFb{:image})))
 \EFs{"<small>"}
 (replace-regexp-in-string \EFs{"//}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(?:}}\EFs{www\char92{}\char92{}.}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{?}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{/]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{/?.*"} \EFs{"\char92{}\char92{}1"} url)
 \EFs{"</small><p>"}
 (\EFk{when} (plist-get metadata \EFb{:title})
 (concat \EFs{""} (org-html-encode-plain-text (plist-get metadata \EFb{:title})) \EFs{"</br>"}))
 (\EFk{when} (plist-get metadata \EFb{:description})
 (org-html-encode-plain-text (plist-get metadata \EFb{:description})))
 \EFs{"</p></div>"}))
 (t url))))
\end{Verbatim}
\end{Code}

Now we just need to actually implement that metadata extraction function.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} org-url-unfurl-metadata--cache nil)
(\EFk{defun} \EFf{org-url-unfurl-metadata} (url)
 (cdr (\EFk{or} (assoc url org-url-unfurl-metadata--cache)
 (car (\EFk{push}
 (cons
 url
 (\EFk{let*} ((head-data
 (cl-remove-if-not
 \#'listp
 (cdaddr
 (\EFk{with-current-buffer}
 (\EFk{progn} (message \EFs{"Fetching metadata from \%s"} url)
 (\EFk{if} (executable-find \EFs{"curl"})
 (\EFk{with-current-buffer} (generate-new-buffer \EFs{" *curl*"})
 (call-process \EFs{"curl"} nil t nil \EFs{"--max-time"} \EFs{"5"} \EFs{"-sSL"} url)
 (current-buffer))
 (url-retrieve-synchronously url t t 5)))
 (goto-char (point-min))
 (delete-region (point-min) (- (search-forward \EFs{"<head"}) 6))
 (delete-region (search-forward \EFs{"</head>"}) (point-max))
 (goto-char (point-min))
 (\EFk{while} (re-search-forward \EFs{"<script[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{\char92{}u2800]+?</script>"} nil t)
 (replace-match \EFs{""}))
 (goto-char (point-min))
 (\EFk{while} (re-search-forward \EFs{"<style[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{\char92{}u2800]+?</style>"} nil t)
 (replace-match \EFs{""}))
 (libxml-parse-html-region (point-min) (point-max))))))
 (meta (delq nil
 (mapcar
 (\EFk{lambda} (tag)
 (\EFk{when} (eq 'meta (car tag))
 (cons (\EFk{or} (cdr (assoc 'name (cadr tag)))
 (cdr (assoc 'property (cadr tag))))
 (cdr (assoc 'content (cadr tag))))))
 head-data))))
 (\EFk{let} ((title (\EFk{or} (cdr (assoc \EFs{"og:title"} meta))
 (cdr (assoc \EFs{"twitter:title"} meta))
 (nth 2 (assq 'title head-data))))
 (description (\EFk{or} (cdr (assoc \EFs{"og:description"} meta))
 (cdr (assoc \EFs{"twitter:description"} meta))
 (cdr (assoc \EFs{"description"} meta))))
 (image (\EFk{or} (cdr (assoc \EFs{"og:image"} meta))
 (cdr (assoc \EFs{"twitter:image"} meta)))))
 (\EFk{when} image
 (\EFk{setq} image (replace-regexp-in-string
 \EFs{"\char94{}/"} (concat \EFs{"https://"} (replace-regexp-in-string \EFs{"//}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{/]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{/?.*"} \EFs{"\char92{}\char92{}1"} url) \EFs{"/"})
 (replace-regexp-in-string
 \EFs{"\char94{}//"} \EFs{"https://"}
 image))))
 (list \EFb{:title} title \EFb{:description} description \EFb{:image} image))))
 org-url-unfurl-metadata--cache)))))
\end{Verbatim}
\end{Code}
\item \LaTeX{} Rendering
\label{sec:org2dbc855}
\begin{enumerate}
\item Pre-rendered
\label{sec:org8c9691d}

I consider \texttt{dvisvgm} to be a rather compelling option. However this isn't scaled
very well at the moment.
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{;;} \EFc{(setq-default org-html-with-latex `dvisvgm)}
\end{Verbatim}
\end{Code}
\item MathJax
\label{sec:orgb3fd9da}

I want to use svg MathJax by default, and with a few of the custom commands that
are part of my \LaTeX{} preamble.

\begin{Code}
\begin{Verbatim}
\color{EFD}(setcdr (assoc 'path org-html-mathjax-options)
 (list \EFs{"https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-svg.js"}))

(\EFk{setq} org-html-mathjax-template
 \EFs{"<script>}
 \EFs{window.MathJax = \{}
 \EFs{loader: \{}
 \EFs{load: ['[tex]/mathtools'],}
 \EFs{\},}
 \EFs{tex: \{}
 \EFs{ams: \{}
 \EFs{multlineWidth: '}\textcolor[HTML]{b751b6}{\%MULTLINEWIDTH}\EFs{'}
 \EFs{\},}
 \EFs{tags: '}\textcolor[HTML]{b751b6}{\%TAGS}\EFs{',}
 \EFs{tagSide: '}\textcolor[HTML]{b751b6}{\%TAGSIDE}\EFs{',}
 \EFs{tagIndent: '}\textcolor[HTML]{b751b6}{\%TAGINDENT}\EFs{',}
 \EFs{packages: \{'[+]': ['}\textcolor[HTML]{b751b6}{mathtools}\EFs{']\},}
 \EFs{macros: \{}
 \EFs{RR: ['\char92{}\char92{}\char92{}\char92{}ifstrempty\{\#1\}\{\char92{}\char92{}\char92{}\char92{}mathbb\{R\}\}\{\char92{}\char92{}\char92{}\char92{}mathbb\{R\}\char94{}\{\#1\}\}', 1, ''],}
 \EFs{NN: ['\char92{}\char92{}\char92{}\char92{}ifstrempty\{\#1\}\{\char92{}\char92{}\char92{}\char92{}mathbb\{N\}\}\{\char92{}\char92{}\char92{}\char92{}mathbb\{N\}\char94{}\{\#1\}\}', 1, ''],}
 \EFs{ZZ: ['\char92{}\char92{}\char92{}\char92{}ifstrempty\{\#1\}\{\char92{}\char92{}\char92{}\char92{}mathbb\{Z\}\}\{\char92{}\char92{}\char92{}\char92{}mathbb\{Z\}\char94{}\{\#1\}\}', 1, ''],}
 \EFs{QQ: ['\char92{}\char92{}\char92{}\char92{}ifstrempty\{\#1\}\{\char92{}\char92{}\char92{}\char92{}mathbb\{Q\}\}\{\char92{}\char92{}\char92{}\char92{}mathbb\{Q\}\char94{}\{\#1\}\}', 1, ''],}
 \EFs{CC: ['\char92{}\char92{}\char92{}\char92{}ifstrempty\{\#1\}\{\char92{}\char92{}\char92{}\char92{}mathbb\{C\}\}\{\char92{}\char92{}\char92{}\char92{}mathbb\{C\}\char94{}\{\#1\}\}', 1, ''],}
 \EFs{EE: '}\textcolor[HTML]{b751b6}{\char92{}\char92{}\char92{}\char92{}mathbb\{E\}}\EFs{',}
 \EFs{Lap: '}\textcolor[HTML]{b751b6}{\char92{}\char92{}\char92{}\char92{}operatorname\{\char92{}\char92{}\char92{}\char92{}mathcal\{L\}\}}\EFs{',}
 \EFs{Var: '}\textcolor[HTML]{b751b6}{\char92{}\char92{}\char92{}\char92{}operatorname\{Var\}}\EFs{',}
 \EFs{Cor: '}\textcolor[HTML]{b751b6}{\char92{}\char92{}\char92{}\char92{}operatorname\{Cor\}}\EFs{',}
 \EFs{E: '}\textcolor[HTML]{b751b6}{\char92{}\char92{}\char92{}\char92{}operatorname\{E\}}\EFs{',}
 \EFs{\},}
 \EFs{mathtools: \{}
 \EFs{pairedDelimiters: \{}
 \EFs{abs: ['}\textcolor[HTML]{b751b6}{\char92{}\char92{}\char92{}\char92{}lvert}\EFs{', '}\textcolor[HTML]{b751b6}{\char92{}\char92{}\char92{}\char92{}rvert}\EFs{'],}
 \EFs{norm: ['}\textcolor[HTML]{b751b6}{\char92{}\char92{}\char92{}\char92{}lVert}\EFs{', '}\textcolor[HTML]{b751b6}{\char92{}\char92{}\char92{}\char92{}rVert}\EFs{'],}
 \EFs{ceil: ['}\textcolor[HTML]{b751b6}{\char92{}\char92{}\char92{}\char92{}lceil}\EFs{', '}\textcolor[HTML]{b751b6}{\char92{}\char92{}\char92{}\char92{}rceil}\EFs{'],}
 \EFs{floor: ['}\textcolor[HTML]{b751b6}{\char92{}\char92{}\char92{}\char92{}lfloor}\EFs{', '}\textcolor[HTML]{b751b6}{\char92{}\char92{}\char92{}\char92{}rfloor}\EFs{'],}
 \EFs{round: ['}\textcolor[HTML]{b751b6}{\char92{}\char92{}\char92{}\char92{}lfloor}\EFs{', '}\textcolor[HTML]{b751b6}{\char92{}\char92{}\char92{}\char92{}rceil}\EFs{'],}
 \EFs{\}}
 \EFs{\}}
 \EFs{\},}
 \EFs{chtml: \{}
 \EFs{scale: \%SCALE,}
 \EFs{displayAlign: '}\textcolor[HTML]{b751b6}{\%ALIGN}\EFs{',}
 \EFs{displayIndent: '}\textcolor[HTML]{b751b6}{\%INDENT}\EFs{'}
 \EFs{\},}
 \EFs{svg: \{}
 \EFs{scale: \%SCALE,}
 \EFs{displayAlign: '}\textcolor[HTML]{b751b6}{\%ALIGN}\EFs{',}
 \EFs{displayIndent: '}\textcolor[HTML]{b751b6}{\%INDENT}\EFs{'}
 \EFs{\},}
 \EFs{output: \{}
 \EFs{font: '}\textcolor[HTML]{b751b6}{\%FONT}\EFs{',}
 \EFs{displayOverflow: '}\textcolor[HTML]{b751b6}{\%OVERFLOW}\EFs{'}
 \EFs{\}}
 \EFs{\};}
\EFs{</script>}

\EFs{<script}
 \EFs{id=\char92{}"MathJax-script\char92{}"}
 \EFs{async}
 \EFs{src=\char92{}"\%PATH\char92{}">}
\EFs{</script>"})
\end{Verbatim}
\end{Code}
\end{enumerate}
\end{enumerate}
\subsection{\LaTeX{} Export}
\label{sec:org992b9e4}

\begin{enumerate}
\item Compiling
\label{sec:orgb8b9737}

By default Org uses \texttt{pdflatex} \texttimes{} 3 + \texttt{bibtex}. This simply won't do in our
modern world. \texttt{latexmk} + \texttt{biber} (which is used automatically with \texttt{latexmk}) is a
simply superior combination.

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{;;} \EFc{org-latex-compilers = ("pdflatex" "xelatex" "lualatex"), which are the possible values for \%latex}
(\EFk{setq} org-latex-pdf-process '(\EFs{"LC_ALL=en_US.UTF-8 latexmk -f -pdf -\%latex -shell-escape -interaction=nonstopmode -output-directory=\%o \%f"}))
\end{Verbatim}
\end{Code}

While \texttt{org-latex-pdf-process} does support a function, and we could use that
instead, this would no longer use the log buffer --- it's a bit blind, you give
it the file name and expect it to do its thing.

The default values of \texttt{org-latex-compilers} is given in commented form to see how
\texttt{org-latex-pdf-process} works with them.

While the \texttt{-\%latex} above is slightly hacky (\texttt{-pdflatex} expects to be given a
value) it allows us to leave \texttt{org-latex-compilers} unmodified.
This is nice in case I open an org file that uses \verb~#+LATEX_COMPILER~ for example,
it should still work.
\item Nicer checkboxes
\label{sec:orgefe75e4}

We'll assume that thanks to the clever preamble the various custom \verb~\checkbox...~
commands below are defined.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{+org-export-latex-fancy-item-checkboxes} (text backend info)
 (\EFk{when} (org-export-derived-backend-p backend 'latex)
 (replace-regexp-in-string
 \EFs{"\char92{}\char92{}\char92{}\char92{}item\char92{}\char92{}[\{\$\char92{}\char92{}\char92{}\char92{}}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{\char92{}\char92{}w+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{\$\}\char92{}\char92{}]"}
 (\EFk{lambda} (fullmatch)
 (concat \EFs{"\char92{}\char92{}\char92{}\char92{}item["} (\EFk{pcase} (substring fullmatch 9 -3) \EFcd{;} \EFc{content of capture group}
 (\EFs{"square"} \EFs{"\char92{}\char92{}\char92{}\char92{}checkboxUnchecked"})
 (\EFs{"boxminus"} \EFs{"\char92{}\char92{}\char92{}\char92{}checkboxTransitive"})
 (\EFs{"boxtimes"} \EFs{"\char92{}\char92{}\char92{}\char92{}checkboxChecked"})
 (_ (substring fullmatch 9 -3))) \textcolor[HTML]{986801}{"]"}\EFwr{))}
 text)))

(add-to-list 'org-export-filter-item-functions
 '+org-export-latex-fancy-item-checkboxes)
\end{Verbatim}
\end{Code}
\item Class templates
\label{sec:orgc6cee71}

I really like the KOMA bundle. It provides a set of mechanisms to tweak document
styling which is both easy to use, and quite comprehensive.
For example, I rather like section numbers in the margin, which can be
accomplished with
\begin{Code}
\begin{Verbatim}
\color{EFD}\textcolor[HTML]{e45649}{\char92{}renewcommand}\textcolor[HTML]{a626a4}{\char92{}sectionformat}\{\textcolor[HTML]{a626a4}{\char92{}llap}\EFf{\{}\textcolor[HTML]{a626a4}{\char92{}thesection}\textcolor[HTML]{a626a4}{\char92{}autodot}\textcolor[HTML]{a626a4}{\char92{}enskip}\EFf{\}}\}
\textcolor[HTML]{e45649}{\char92{}renewcommand}\textcolor[HTML]{a626a4}{\char92{}subsectionformat}\{\textcolor[HTML]{a626a4}{\char92{}llap}\EFf{\{}\textcolor[HTML]{a626a4}{\char92{}thesubsection}\textcolor[HTML]{a626a4}{\char92{}autodot}\textcolor[HTML]{a626a4}{\char92{}enskip}\EFf{\}}\}
\textcolor[HTML]{e45649}{\char92{}renewcommand}\textcolor[HTML]{a626a4}{\char92{}subsubsectionformat}\{\textcolor[HTML]{a626a4}{\char92{}llap}\EFf{\{}\textcolor[HTML]{a626a4}{\char92{}thesubsubsection}\textcolor[HTML]{a626a4}{\char92{}autodot}\textcolor[HTML]{a626a4}{\char92{}enskip}\EFf{\}}\}
\end{Verbatim}
\end{Code}

It can also be nice to have big \verb~\chapter~â��s.
\begin{Code}
\begin{Verbatim}
\color{EFD}\char92{}RedeclareSectionCommand[afterindent=false, beforeskip=0pt, afterskip=0pt, innerskip=0pt]\{chapter\}
\char92{}setkomafont\{chapter\}\{\textcolor[HTML]{e45649}{\char92{}normalfont}\textcolor[HTML]{986801}{\char92{}Huge}\}
\textcolor[HTML]{e45649}{\char92{}renewcommand}\EFk{*}\{\textcolor[HTML]{a626a4}{\char92{}chapterheadstartvskip}\}\{\textcolor[HTML]{a626a4}{\char92{}vspace}\EFf{*\{0}\textcolor[HTML]{a626a4}{\char92{}baselineskip}\EFf{\}}\}
\textcolor[HTML]{e45649}{\char92{}renewcommand}\EFk{*}\{\textcolor[HTML]{a626a4}{\char92{}chapterheadendvskip}\}\{\textcolor[HTML]{a626a4}{\char92{}vspace}\EFf{*\{0}\textcolor[HTML]{a626a4}{\char92{}baselineskip}\EFf{\}}\}
\textcolor[HTML]{e45649}{\char92{}renewcommand}\EFk{*}\{\textcolor[HTML]{a626a4}{\char92{}chapterformat}\}\{\textcolor[HTML]{84888b}{\%}
 \textcolor[HTML]{a626a4}{\char92{}fontsize}\EFf{\{60\}\{30\}}\textcolor[HTML]{a626a4}{\char92{}selectfont}\textcolor[HTML]{a626a4}{\char92{}rlap}\EFf{\{}\textcolor[HTML]{a626a4}{\char92{}hspace}\EFf{\{6pt\}}\textcolor[HTML]{a626a4}{\char92{}thechapter}\EFf{\}}\}
\textcolor[HTML]{e45649}{\char92{}renewcommand}\EFk{*}\textcolor[HTML]{a626a4}{\char92{}chapterlinesformat}[\EFv{3}]\{\textcolor[HTML]{84888b}{\%}
 \textcolor[HTML]{a626a4}{\char92{}parbox}\EFf{[b]\{}\textcolor[HTML]{a626a4}{\char92{}dimexpr}\textcolor[HTML]{a626a4}{\char92{}textwidth}\EFf{-0.5em}\textcolor[HTML]{a626a4}{\char92{}relax}\EFf{\}\{}\textcolor[HTML]{84888b}{\%}
 \textcolor[HTML]{a626a4}{\char92{}raggedleft}\EFf{\{\{}\textcolor[HTML]{a626a4}{\char92{}large}\textcolor[HTML]{a626a4}{\textbf{\char92{}scshape}}\textcolor[HTML]{a626a4}{\char92{}bfseries}\textcolor[HTML]{a626a4}{\char92{}chapapp}\EFf{\}}\textcolor[HTML]{a626a4}{\char92{}vspace}\EFf{\{-0.5ex\}}\textcolor[HTML]{a626a4}{\char92{}par}\textcolor[HTML]{a626a4}{\char92{}Huge}\EFf{\#3\}\}}\textcolor[HTML]{84888b}{\%}
 \textcolor[HTML]{a626a4}{\char92{}hfill}\textcolor[HTML]{a626a4}{\char92{}makebox}\EFf{[0pt][l]\{\#2\}}\}
\end{Verbatim}
\end{Code}

Now let's just sprinkle some KOMA all over the Org \LaTeX{} classes.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} ox-latex
 (\EFk{let*} ((article-sections '((\EFs{"\char92{}\char92{}section\{\%s\}"} . \EFs{"\char92{}\char92{}section*\{\%s\}"})
 (\EFs{"\char92{}\char92{}subsection\{\%s\}"} . \EFs{"\char92{}\char92{}subsection*\{\%s\}"})
 (\EFs{"\char92{}\char92{}subsubsection\{\%s\}"} . \EFs{"\char92{}\char92{}subsubsection*\{\%s\}"})
 (\EFs{"\char92{}\char92{}paragraph\{\%s\}"} . \EFs{"\char92{}\char92{}paragraph*\{\%s\}"})
 (\EFs{"\char92{}\char92{}subparagraph\{\%s\}"} . \EFs{"\char92{}\char92{}subparagraph*\{\%s\}"})))
 (book-sections (append '((\EFs{"\char92{}\char92{}chapter\{\%s\}"} . \EFs{"\char92{}\char92{}chapter*\{\%s\}"}))
 article-sections))
 (hanging-secnum-preamble <<grab(\EFs{"latex-hanging-secnum"})>>)
 (big-chap-preamble <<grab(\EFs{"latex-big-chapter"})>>))
 (setcdr (assoc \EFs{"article"} org-latex-classes)
 `(,(concat \EFs{"\char92{}\char92{}documentclass\{scrartcl\}"} hanging-secnum-preamble)
 ,@article-sections))
 (add-to-list 'org-latex-classes
 `(\EFs{"report"} ,(concat \EFs{"\char92{}\char92{}documentclass\{scrartcl\}"} hanging-secnum-preamble)
 ,@article-sections))
 (add-to-list 'org-latex-classes
 `(\EFs{"book"} ,(concat \EFs{"\char92{}\char92{}documentclass[twoside=false]\{scrbook\}"}
 big-chap-preamble hanging-secnum-preamble)
 ,@book-sections))
 (add-to-list 'org-latex-classes
 `(\EFs{"blank"} \EFs{"[NO-DEFAULT-PACKAGES]\char92{}n[NO-PACKAGES]\char92{}n[EXTRA]"}
 ,@article-sections))
 (add-to-list 'org-latex-classes
 `(\EFs{"bmc-article"} \EFs{"\char92{}\char92{}documentclass[article,code,maths]\{bmc\}\char92{}n[NO-DEFAULT-PACKAGES]\char92{}n[NO-PACKAGES]\char92{}n[EXTRA]"}
 ,@article-sections))
 (add-to-list 'org-latex-classes
 `(\EFs{"bmc"} \EFs{"\char92{}\char92{}documentclass[code,maths]\{bmc\}\char92{}n[NO-DEFAULT-PACKAGES]\char92{}n[NO-PACKAGES]\char92{}n[EXTRA]"}
 ,@book-sections))))

(\EFk{setq} org-latex-tables-booktabs t
 org-latex-hyperref-template
 <<grab(\EFs{"latex-fancy-hyperref"})>>
 org-latex-reference-command \EFs{"\char92{}\char92{}cref\{\%s\}"})
\end{Verbatim}
\end{Code}

The \verb~hyperref~ setup needs to be handled separately however.
\begin{Code}
\begin{Verbatim}
\color{EFD}\char92{}providecolor\{url\}\{HTML\}\{0077bb\}
\char92{}providecolor\{link\}\{HTML\}\{882255\}
\char92{}providecolor\{cite\}\{HTML\}\{999933\}
\char92{}hypersetup\{
 pdfauthor=\{\EFc{\%a\},}
 pdftitle=\{\EFc{\%t\},}
 pdfkeywords=\{\EFc{\%k\},}
 pdfsubject=\{\EFc{\%d\},}
 pdfcreator=\{\EFc{\%c\},}
 pdflang=\{\EFc{\%L\},}
 breaklinks=true,
 colorlinks=true,
 linkcolor=link,
 urlcolor=url,
 citecolor=cite
\}
\char92{}urlstyle\{same\}
\end{Verbatim}
\end{Code}
\item A cleverer preamble
\label{sec:org385f9ea}
\begin{enumerate}
\item Use case
\label{sec:org3ad446b}

We often want particular snippets of \LaTeX{} in our documents preambles.
It's a pain to have to work out / remember them every time.

We could have every package we could possibly need in every one of
\texttt{org-latex-classes}, but that's \emph{horribly} inefficient and I don't want to think
about maintaining that.

Instead we can provide some granularity by splitting up the features we want,
and then take the experience to a whole new level by implementing a system to
automatically detect which features are desired and generating a preamble that
provides these features.
\item Conditional Content
\label{sec:org3b41845}

Let's consider content we want in particular situations.

Captions could do with a bit of tweaking such that
\begin{itemize}
\item You can easily have multiple captions
\item Links to figures take you to the \emph{top} of the figure (not the bottom)
\item Caption labels could do with being emphasised slightly more
\item Multiline captions should run ragged-right, but only when then span more than
one line
\end{itemize}

\begin{Code}
\begin{Verbatim}
\color{EFD}\textcolor[HTML]{e45649}{\char92{}usepackage}\{\EFf{subcaption}\}
\textcolor[HTML]{e45649}{\char92{}usepackage}[\EFv{hypcap=true}]\{\EFf{caption}\}
\char92{}setkomafont\{caption\}\{\textcolor[HTML]{e45649}{\char92{}sffamily}\textcolor[HTML]{986801}{\char92{}small}\}
\char92{}setkomafont\{captionlabel\}\{\textcolor[HTML]{e45649}{\char92{}upshape}\textbf{\char92{}bfseries}\}
\char92{}captionsetup\{justification=raggedright,singlelinecheck=true\}
\textcolor[HTML]{e45649}{\char92{}usepackage}\{\EFf{capt-of}\} \EFc{\% required by Org}
\end{Verbatim}
\end{Code}

The default checkboxes look rather ugly, so let's provide some prettier alternatives.

\begin{Code}
\begin{Verbatim}
\color{EFD}\textcolor[HTML]{e45649}{\char92{}newcommand}\{\textcolor[HTML]{a626a4}{\char92{}checkboxUnchecked}\}\{\textcolor[HTML]{a626a4}{\$}\textcolor[HTML]{a626a4}{\char92{}square}\textcolor[HTML]{a626a4}{\$}\}
\textcolor[HTML]{e45649}{\char92{}newcommand}\{\textcolor[HTML]{a626a4}{\char92{}checkboxTransitive}\}\{\textcolor[HTML]{a626a4}{\char92{}rlap}\EFf{\{}\textcolor[HTML]{a626a4}{\char92{}raisebox}\EFf{\{-0.1ex\}\{}\textcolor[HTML]{a626a4}{\char92{}hspace}\EFf{\{0.35ex\}}\textcolor[HTML]{a626a4}{\char92{}Large}\textcolor[HTML]{a626a4}{\textbf{\char92{}}}\textcolor[HTML]{a626a4}{textbf} \EFf{-\}\}}\textcolor[HTML]{a626a4}{\$}\textcolor[HTML]{a626a4}{\char92{}square}\textcolor[HTML]{a626a4}{\$}\}
\textcolor[HTML]{e45649}{\char92{}newcommand}\{\textcolor[HTML]{a626a4}{\char92{}checkboxChecked}\}\{\textcolor[HTML]{a626a4}{\char92{}rlap}\EFf{\{}\textcolor[HTML]{a626a4}{\char92{}raisebox}\EFf{\{0.2ex\}\{}\textcolor[HTML]{a626a4}{\char92{}hspace}\EFf{\{0.35ex\}}\textcolor[HTML]{a626a4}{\char92{}scriptsize} \textcolor[HTML]{a626a4}{\char92{}ding}\EFf{\{52\}\}\}}\textcolor[HTML]{a626a4}{\$}\textcolor[HTML]{a626a4}{\char92{}square}\textcolor[HTML]{a626a4}{\$}\}
\end{Verbatim}
\end{Code}

We set up a maths typesetting preamble \hyperref[sec:orge19749a]{later on}, but it would be nice to save it
to a variable here:

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{org-latex-maths-preamble}
 <<grab(\EFs{"latex-maths-conveniences"})>>
 \EFs{"Preamble that sets up a bunch of mathematical conveniences."})
\end{Verbatim}
\end{Code}

It's nice to have "message blocks", things like info/warning/error/success.
A \LaTeX{} macro should make them trivial to create.

\begin{Code}
\begin{Verbatim}
\color{EFD}\char92{}ExplSyntaxOn
\char92{}NewCoffin\char92{}SBXBaseline
\char92{}NewCoffin\char92{}SBXHeader
\char92{}NewCoffin\char92{}SBXContent
\char92{}NewCoffin\char92{}SBXSideRule
\char92{}newbox\char92{}SBXSplitBox
\char92{}cs_new_protected:Nn \char92{}simplebox_start:nnn \{
 \EFc{\% \#1 ding, \#3 name, \#4 label}
 \char92{}vcoffin_set:Nnn \char92{}SBXHeader \{ \char92{}linewidth - 1em \} \{
 \textcolor[HTML]{e45649}{\char92{}noindent}\char92{}textcolor\{\#2\}\{\#1\}\char126{}\char92{}textcolor\{\#2\}\{\textcolor[HTML]{e45649}{\char92{}textbf}\{\textbf{\#3}\}\}\}
 \char92{}vcoffin_set:Nnw \char92{}SBXContent \{ \char92{}linewidth - 1.5em \}
\}
\char92{}cs_new_protected:Nn \char92{}simplebox_split_content:n \{
 \EFc{\% \#1 name}
 \char92{}setbox\char92{}SBXSplitBox = \char92{}vbox:n \{ \char92{}vbox_unpack_drop:N \char92{}SBXContent \}
 \char92{}dim_set:Nn \char92{}l_tmpa_dim \{ \char92{}dim_eval:n \{ \char92{}dim_min:nn \{ \char92{}pagegoal \} \{ \char92{}textheight \} - \char92{}pagetotal - 2\char92{}baselineskip \} \}
 \char92{}setbox0 = \char92{}vsplit\char92{}SBXSplitBox to \char92{}l_tmpa_dim
 \char92{}vcoffin_set:Nnn \char92{}SBXContent \{ \char92{}CoffinWidth \char92{}SBXContent \} \{ \char92{}box0 \EFc{\%}
 \textcolor[HTML]{e45649}{\char92{}vspace}\{\EFf{-1.7}\textcolor[HTML]{a626a4}{\char92{}baselineskip}\}
 \textcolor[HTML]{e45649}{\char92{}noindent}\char92{}textcolor\{\#1\}\{\textcolor[HTML]{e45649}{\char92{}textbf}\{\textcolor[HTML]{e45649}{\textbf{\char92{}ldots}} \}\}
 \textcolor[HTML]{e45649}{\char92{}vspace}\EFk{*}\{\EFf{-0.3}\textcolor[HTML]{a626a4}{\char92{}baselineskip}\}\}
\}
\char92{}cs_new_protected:Nn \char92{}simplebox_split_refill:nnnn \{
 \EFc{\% \#1 ding, \#2 ding offset, \#3 name, \#4 label}
 \char92{}simplebox_start:nnn \{\#1\} \{\#3\} \{\#4,\char92{}space\{\}\textcolor[HTML]{e45649}{\char92{}emph}\{\textit{continued}\}\}
 \textcolor[HTML]{e45649}{\char92{}vspace}\EFk{*}\{\EFf{-0.2}\textcolor[HTML]{a626a4}{\char92{}baselineskip}\}
 \char92{}vbox_unpack_drop:N \char92{}SBXSplitBox
 \char92{}vcoffin_set_end:
\}
\char92{}cs_new_protected:Nn \char92{}simplebox_typeset:nn \{
 \EFc{\% \#1 name, \#2 ding offset}
 \char92{}vcoffin_set:Nnn \char92{}SBXBaseline \{0pt\} \{\char92{}vbox\{\}\}
 \char92{}SetHorizontalCoffin\char92{}SBXSideRule\{\char92{}color\{\#1\}\textcolor[HTML]{e45649}{\char92{}rule}\{\EFf{1pt}\}\{\textcolor[HTML]{a626a4}{\char92{}dim}\EFf{_eval:n \{} \textcolor[HTML]{a626a4}{\char92{}CoffinTotalHeight}\textcolor[HTML]{a626a4}{\char92{}SBXContent} \EFf{+} \textcolor[HTML]{a626a4}{\char92{}baselineskip} \EFf{\}}\}\}
 \char92{}JoinCoffins*\char92{}SBXContent[l,t]\char92{}SBXSideRule[l,t](\char92{}dim_eval:n \{\#2 - 1em\}, \char92{}dim_eval:n\{\char92{}baselineskip - 0.5em\})
 \char92{}JoinCoffins*\char92{}SBXContent[l,t]\char92{}SBXHeader[l,B](-1em, 0.5\char92{}baselineskip)
 \char92{}JoinCoffins*\char92{}SBXBaseline[l,T]\char92{}SBXContent[l,T]
 \textcolor[HTML]{e45649}{\char92{}vspace}\{\EFf{-0.5}\textcolor[HTML]{a626a4}{\char92{}baselineskip}\}
 \textcolor[HTML]{e45649}{\char92{}noindent}\char92{}TypesetCoffin\char92{}SBXBaseline(\char92{}dim_eval:n \{ 1em - \#2 + 1pt \}, 0pt)
 \textcolor[HTML]{e45649}{\char92{}vspace}\EFk{*}\{\textcolor[HTML]{a626a4}{\char92{}CoffinTotalHeight}\textcolor[HTML]{a626a4}{\char92{}SBXContent}\}
 \textcolor[HTML]{e45649}{\char92{}vspace}\{\EFf{-0.08em}\} \EFc{\% Why on earth is this needed for baseline alignment!?}
\}
\char92{}cs_new_protected:Nn \char92{}simplebox_typeset_breakable:nnnn \{
 \EFc{\% \#1 ding, \#2 ding offset, \#3 name, \#4 label}
 \char92{}dim_set:Nn \char92{}l_tmpa_dim \{\char92{}dim_eval:n \{ \char92{}CoffinTotalHeight\char92{}SBXContent + \char92{}baselineskip \}\}
 \char92{}dim_set:Nn \char92{}l_tmpb_dim \{ \char92{}dim_eval:n \{ \char92{}dim_min:nn \{ \char92{}pagegoal \} \{ \char92{}textheight \} - \char92{}pagetotal - \char92{}baselineskip \} \}
 \char92{}dim_compare:nNnTF \{\char92{}l_tmpa_dim\} > \{\char92{}l_tmpb_dim\} \{
 \char92{}simplebox_split_content:n \{\#3\}
 \char92{}simplebox_typeset:nn \{\#3\} \{\#2\}
 \textbf{\char92{}newpage}
 \char92{}simplebox_split_refill:nnnn \{\#1\} \{\#2\} \{\#3\} \{\#4\}
 \char92{}simplebox_typeset_breakable:nnnn \{\#1\} \{\#2\} \{\#3\} \{\#4\}
 \}\{
 \char92{}simplebox_typeset:nn \{\#3\} \{\#2\}
 \}
\}
\textcolor[HTML]{e45649}{\char92{}NewDocumentCommand}\{\textcolor[HTML]{a626a4}{\char92{}defsimplebox}\}\{\EFf{O\{}\textcolor[HTML]{a626a4}{\char92{}ding}\EFf{\{117\}\} O\{0.35em\} O\{\#1\} O\{\#2\} m m m}\}\{
 \textcolor[HTML]{84888b}{\% \#1 ding, \#2 ding offset, \#3 alt-ding, \#4 alt-ding offset,}
 \textcolor[HTML]{84888b}{\% \#5 name, \#6 colour, \#7 default label}
 \textcolor[HTML]{a626a4}{\char92{}definecolor}\EFf{\{\#5\}\{HTML\}\{\#6\}}
 \textcolor[HTML]{a626a4}{\char92{}NewDocumentEnvironment}\EFf{\{\#5\}\{ O\{\#7\} \}\{}
 \textcolor[HTML]{a626a4}{\char92{}simplebox}\EFf{_start:nnn \{\#1\} \{\#5\} \{\#\#1\}}
 \EFf{\}\{}
 \textcolor[HTML]{a626a4}{\char92{}vcoffin}\EFf{_set_end:}
 \textcolor[HTML]{a626a4}{\char92{}simplebox}\EFf{_typeset_breakable:nnnn \{\#3\} \{\#4\} \{\#5\} \{\#\#1\}}
 \EFf{\}}
\}
\char92{}ExplSyntaxOff
\end{Verbatim}
\end{Code}

Lastly, we will pass this content into some global variables we for ease of
access.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{org-latex-embed-files-preamble}
 <<grab(\EFs{"org-latex-embed-files-preamble"})>>
 \EFs{"Preamble that embeds files within the pdf."})

(\EFk{defvar} \EFv{org-latex-caption-preamble}
 <<grab(\EFs{"org-latex-caption-preamble"})>>
 \EFs{"Preamble that improves captions."})

(\EFk{defvar} \EFv{org-latex-checkbox-preamble}
 <<grab(\EFs{"org-latex-checkbox-preamble"})>>
 \EFs{"Preamble that improves checkboxes."})

(\EFk{defvar} \EFv{org-latex-box-preamble}
 <<grab(\EFs{"org-latex-box-preamble"})>>
 \EFs{"Preamble that provides a macro for custom boxes."})
\end{Verbatim}
\end{Code}

In the "universal preamble", we already embed the source \verb~.org~ file, but it would
be nice to embed all the tangled files. This is fairly easy to accomplish by
mapping each tangled file to a form which embeds the file if it exists.
Considering we're going this far, why not add a dedicated \verb~#+emded~ keyword, so we
can embed whatever we want.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{org-latex-embed-extra-files} ()
 \EFd{"Return a string that uses embedfile to embed all tangled files."}
 (mapconcat
 (\EFk{lambda} (file-desc)
 (format \EFs{"\char92{}\char92{}IfFileExists\{\%1\$s\}\{\char92{}\char92{}embedfile[desc=\%2\$s]\{\%1\$s\}\}\{\}"}
 (\EFk{thread-last} (car file-desc)
 (replace-regexp-in-string \EFs{"\char92{}\char92{}\char92{}\char92{}"} \EFs{"\char92{}\char92{}\char92{}\char92{}\char92{}\char92{}\char92{}\char92{}"})
 (replace-regexp-in-string \EFs{"\char126{}"} \EFs{"\char92{}\char92{}\char92{}\char92{}string\char126{}"}))
 (cdr file-desc)))
 (append
 (\EFk{let} (tangle-fspecs) \EFcd{;} \EFc{All files being tangled to.}
 (org-element-cache-map
 (\EFk{lambda} (src)
 (\EFk{when} (\EFk{and} (not (org-in-commented-heading-p nil src))
 (not (org-in-archived-heading-p nil src)))
 (\EFk{when-let} ((lang (org-element-property \EFb{:language} src))
 (params
 (apply
 \#'org-babel-merge-params
 (append
 (\EFk{org-with-point-at} (org-element-property \EFb{:begin} src)
 (org-babel-params-from-properties lang t))
 (mapcar
 (\EFk{lambda} (h)
 (org-babel-parse-header-arguments h t))
 (cons (org-element-property \EFb{:parameters} src)
 (org-element-property \EFb{:header} src))))))
 (tangle-value
 (\EFk{pcase} (alist-get \EFb{:tangle} params)
 ((\EFk{and} (pred stringp) (pred (string-match-p \EFs{"\char94{}(.*)\$"})) expr)
 (eval (read expr)))
 (val val)))
 (tangle-file
 (\EFk{pcase} tangle-value
 ((\EFk{or} \EFs{"no"} (guard (member (alist-get \EFb{:export-embed} params) '(\EFs{"no"} \EFs{"nil"}))))
 nil)
 (\EFs{"yes"}
 (file-name-with-extension
 (file-name-nondirectory (buffer-file-name))
 (\EFk{or} (alist-get lang org-babel-tangle-lang-exts nil nil \#'equal)
 lang)))
 (val val))))
 (\EFk{unless} (assoc tangle-file tangle-fspecs)
 (\EFk{push}
 (cons tangle-file (format \EFs{"Tangled \%s file"} lang))
 tangle-fspecs)))))
 \EFb{:granularity} 'element
 \EFb{:restrict-elements} '(src-block))
 (nreverse tangle-fspecs))
 (\EFk{let} (extra-files)
 (\EFk{save-excursion}
 (goto-char (point-min))
 (\EFk{while} (re-search-forward \EFs{"\char94{}[\char92{}t]*\#\char92{}\char92{}+embed:"} nil t)
 (\EFk{let*} ((file-desc (split-string (org-element-property \EFb{:value} (org-element-at-point)) \EFs{" :desc}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(?:}}\EFs{ription}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{? "})))
 (\EFk{push} (cons (car file-desc) (\EFk{or} (cdr file-desc) \EFs{"Extra file"})) extra-files))))
 (nreverse extra-files)))
 \EFs{"\char92{}n"}))
\end{Verbatim}
\end{Code}

Now all tangled files will be embedded, and we can embed arbitrary files like
so:
\begin{Code}
\begin{Verbatim}
\color{EFD}\textcolor[HTML]{84888b}{\#+embed: some-file :description flavour text about the file}
\end{Verbatim}
\end{Code}

This currently won't complete or anything like that, as we haven't told Org that
it's a keyword yet. It's also \LaTeX{}-specific, so maybe it should be changed to
\verb~#+latex_embed~ or something like that.
\item Content-feature-preamble association
\label{sec:org56a40e9}

Initially this idea was implemented with an alist that associated a construct
that would search the current Org file for an indication that some feature was
needed, with a \LaTeX{} snippet to be inserted in the preamble which would provide
that feature.
This is all well and good when there is a bijection between detected features
and the \LaTeX{} code needed to support those features, but in many cases this
relation is not injective.

To better model the reality of the situation, I add an extra layer to this
process where each detected feature gives a list of required "feature flags".
Simply be merging the lists of feature flags we no longer have to require
injectivity to avoid \LaTeX{} duplication. Then the extra layer forms a bijection
between there feature flags and a specification which can be used to implement
the feature.

This model also provides a number of nice secondary benefits, such as a simple
implementation of feature dependency.

\begin{figure}[htbp]
\centering
\includesvg[width=0.6\linewidth]{misc/org-latex-clever-preamble}
\caption{Association between Org features, feature flags, and \LaTeX{} snippets required.}
\end{figure}

First we will implement the feature detection component of this model. I'd like
this to be able to use as much state information as possible, so the feature
tests should be very versatile.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{org-latex-embed-files} t
 \EFd{"Embed the source .org, .tex, and any tangled files."})
(\EFk{defvar} \EFv{org-latex-use-microtype} t
 \EFd{"Use the microtype pakage."})
(\EFk{defvar} \EFv{org-latex-italic-quotes} t
 \EFd{"Make \char92{}"quote\char92{}" environments italic."})
(\EFk{defvar} \EFv{org-latex-par-sep} t
 \EFd{"Vertically seperate paragraphs, and remove indentation."})

(\EFk{org-export-update-features} 'latex
 ((image caption)
 \EFb{:condition} \EFs{"\char92{}\char92{}[\char92{}\char92{}[xkcd:"}))
\end{Verbatim}
\end{Code}

Then we provide a way to generate the preamble that provides those features. In
addition to the features named in \texttt{org-latex-conditional-features} we'll also
create \emph{meta-features}, which can be required by other features (with \verb~:requires~).
For further control I some features may only be used when certain other features
are active (with \verb~:when~), and masked by other features (with \verb~:prevents~). I will
use the convention of starting meta-features with \verb~.~, to make their nature more
readily apparent.

Another consideration in \LaTeX{} is load order, which matters in some cases.
Beyond that, it's nice to have some sort of sensible ordering. For this I'll
introduce an \verb~:order~ keyword. Using this I'll arrange snippets as follows.

\begin{itemize}
\item \verb~0~ Typography
\begin{itemize}
\item \verb~0~ Fonts themselves
\item \verb~0.1~ Typographic tweaks (\verb~microtype~)
\item \verb~0.2~ Maths setup
\item \verb~0.3~ Maths font
\item \verb~0.4~ Extra text shaping (\texttt{\textbackslash{}acr})
\item \verb~0.5-0.9~ Miscellaneous text modifications, trying to put shorter snippets first
\end{itemize}
\item \verb~1~ (\emph{default})
\item \verb~2~ Tables and figures
\item \verb~3~ Miscellaneous short content
\item \verb~4~ Fancy boxes
\item \verb~70~ setup for non-precompilable content
\item \verb~80~ non-precompileable content
\end{itemize}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{org-export-update-features} 'latex
 (maths
 \EFb{:snippet} org-latex-maths-preamble
 \EFb{:order} 0.2)
 (cleveref
 \EFb{:condition} \EFs{"cref:}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{\char92{}\char92{}cref\{}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{\char92{}\char92{}[\char92{}\char92{}[[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{\char92{}\char92{}]+\char92{}n?[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{\char92{}\char92{}]\char92{}\char92{}]\char92{}\char92{}]"}
 \EFb{:snippet} \EFs{"\char92{}\char92{}usepackage[capitalize]\{cleveref\}}
\EFs{\% Fix for cleveref in order to work with long range of pages}
\EFs{\% See https://tex.stackexchange.com/a/620066}
\EFs{\char92{}\char92{}makeatletter}
\EFs{\char92{}\char92{}newcommand*\{\char92{}\char92{}@setcpagerefrange\}[3]\{\%}
 \EFs{\char92{}\char92{}@@setcpagerefrange\{\#1\}\{\#2\}\{cref\}\{\#3\}\}}
\EFs{\char92{}\char92{}newcommand*\{\char92{}\char92{}@setCpagerefrange\}[3]\{\%}
 \EFs{\char92{}\char92{}@@setcpagerefrange\{\#1\}\{\#2\}\{Cref\}\{\#3\}\}}
\EFs{\char92{}\char92{}newcommand*\{\char92{}\char92{}@setlabelcpagerefrange\}[3]\{\%}
 \EFs{\char92{}\char92{}@@setcpagerefrange\{\#1\}\{\#2\}\{labelcref\}\{\#3\}\}}
\EFs{\char92{}\char92{}makeatother"}
 \EFb{:order} 1)
 (caption
 \EFb{:snippet} org-latex-caption-preamble
 \EFb{:order} 2.1)
 (microtype
 \EFb{:condition} org-latex-use-microtype
 \EFb{:snippet} \EFs{"\char92{}\char92{}usepackage[activate=\{true,nocompatibility\},final,tracking=true,kerning=true,spacing=true,factor=2000]\{microtype\}"}
 \EFb{:order} 0.1)
 (embed-files
 \EFb{:condition} org-latex-embed-files
 \EFb{:snippet} \EFs{"\char92{}\char92{}usepackage[include]\{embedall\}"}
 \EFb{:order} 70)
 (embed-source
 \EFb{:condition} t
 \EFb{:when} embed-files
 \EFb{:snippet} \EFs{"\char92{}\char92{}IfFileExists\{./\char92{}\char92{}jobname.org\}\{\char92{}\char92{}embedfile[desc=Primary source file]\{\char92{}\char92{}jobname.org\}\}\{\}}
\EFs{\char92{}\char92{}IfFileExists\{./\char92{}\char92{}jobname.tex\}\{\char92{}\char92{}embedfile[desc=The (generated) LaTeX source file]\{\char92{}\char92{}jobname.tex\}\}\{\}"}
 \EFb{:no-precompile} t
 \EFb{:after} embed-files
 \EFb{:order} 80)
 (embed-tangled
 \EFb{:condition} (\EFk{and} org-latex-embed-files
 \EFs{"\char94{}[\char92{}t]*\#\char92{}\char92{}+embed}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{\char94{}[\char92{}t]*\#\char92{}\char92{}+begin_src}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{\char94{}[\char92{}t]*\#\char92{}\char92{}+BEGIN_SRC"})
 \EFb{:requires} embed-files
 \EFb{:snippet} (org-latex-embed-extra-files)
 \EFb{:no-precompile} t
 \EFb{:after} (embed-source embed-files)
 \EFb{:order} 80)
 (acronym
 \EFb{:condition} \EFs{"[;\char92{}\char92{}\char92{}\char92{}]?\char92{}\char92{}b[A-Z][A-Z]+s?[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{A-Za-z]"}
 \EFb{:snippet} \EFs{"\char92{}\char92{}newcommand\{\char92{}\char92{}acr\}[1]\{\char92{}\char92{}protect\char92{}\char92{}textls*[110]\{\char92{}\char92{}scshape \#1\}\}\char92{}n\char92{}\char92{}newcommand\{\char92{}\char92{}acrs\}\{\char92{}\char92{}protect\char92{}\char92{}scalebox\{.91\}[.84]\{\char92{}\char92{}hspace\{0.15ex\}s\}\}"}
 \EFb{:order} 0.4)
 (box-drawing
 \EFb{:condition} \EFs{"[\char92{}u2500-\char92{}u259F]"}
 \EFb{:snippet} \EFs{"\char92{}\char92{}usepackage\{pmboxdraw\}"}
 \EFb{:order} 0.05)
 (italic-quotes
 \EFb{:condition} (\EFk{and} org-latex-italic-quotes \EFs{"\char94{}[\char92{}t]*\#\char92{}\char92{}+begin_quote}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{\char92{}\char92{}\char92{}\char92{}begin\{quote\}"})
 \EFb{:snippet} \EFs{"\char92{}\char92{}renewcommand\{\char92{}\char92{}quote\}\{\char92{}\char92{}list\{\}\{\char92{}\char92{}rightmargin\char92{}\char92{}leftmargin\}\char92{}\char92{}item\char92{}\char92{}relax\char92{}\char92{}em\}\char92{}n"}
 \EFb{:order} 0.5)
 (par-sep
 \EFb{:condition} org-latex-par-sep
 \EFb{:snippet} \EFs{"\char92{}\char92{}setlength\{\char92{}\char92{}parskip\}\{\char92{}\char92{}baselineskip\}\char92{}n\char92{}\char92{}setlength\{\char92{}\char92{}parindent\}\{0pt\}"}
 \EFb{:order} 0.5)
 (.pifont
 \EFb{:snippet} \EFs{"\char92{}\char92{}usepackage\{pifont\}"})
 (.xcoffins
 \EFb{:snippet} \EFs{"\char92{}\char92{}usepackage\{xcoffins\}"})
 (checkbox
 \EFb{:condition} \EFs{"\char94{}[\char92{}t]*}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(?:}}\EFs{[-+*]}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{[0-9]+[.)]}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{[A-Za-z]+[.)]}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}} \EFs{\char92{}\char92{}[[-X]\char92{}\char92{}]"}
 \EFb{:requires} .pifont
 \EFb{:snippet} (concat (\EFk{unless} (memq 'maths features)
 \EFs{"\char92{}\char92{}usepackage\{amssymb\} \% provides \char92{}\char92{}square"})
 org-latex-checkbox-preamble)
 \EFb{:after} .pifont)
 (.fancy-box
 \EFb{:requires} (.pifont .xcoffins)
 \EFb{:snippet} org-latex-box-preamble
 \EFb{:after} (.pifont .xcoffins))
 (box-warning
 \EFb{:condition} \EFs{"\char94{}[\char92{}t]*\#\char92{}\char92{}+begin_warning}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{\char92{}\char92{}\char92{}\char92{}begin\{warning\}"}
 \EFb{:requires} .fancy-box
 \EFb{:snippet} \EFs{"\char92{}\char92{}defsimplebox\{warning\}\{e66100\}\{Warning\}"}
 \EFb{:after} .fancy-box)
 (box-info
 \EFb{:condition} \EFs{"\char94{}[\char92{}t]*\#\char92{}\char92{}+begin_info}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{\char92{}\char92{}\char92{}\char92{}begin\{info\}"}
 \EFb{:requires} .fancy-box
 \EFb{:snippet} \EFs{"\char92{}\char92{}defsimplebox\{info\}\{3584e4\}\{Information\}"}
 \EFb{:after} .fancy-box)
 (box-notes
 \EFb{:condition} \EFs{"\char94{}[\char92{}t]*\#\char92{}\char92{}+begin_notes}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{\char92{}\char92{}\char92{}\char92{}begin\{notes\}"}
 \EFb{:requires} .fancy-box
 \EFb{:snippet} \EFs{"\char92{}\char92{}defsimplebox\{notes\}\{26a269\}\{Notes\}"}
 \EFb{:after} .fancy-box)
 (box-success
 \EFb{:condition} \EFs{"\char94{}[\char92{}t]*\#\char92{}\char92{}+begin_success}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{\char92{}\char92{}\char92{}\char92{}begin\{success\}"}
 \EFb{:requires} .fancy-box
 \EFb{:snippet} \EFs{"\char92{}\char92{}defsimplebox\{success\}\{26a269\}\{\char92{}\char92{}vspace\{-\char92{}\char92{}baselineskip\}\}"}
 \EFb{:after} .fancy-box)
 (box-error
 \EFb{:condition} \EFs{"\char94{}[\char92{}t]*\#\char92{}\char92{}+begin_error}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{\char92{}\char92{}\char92{}\char92{}begin\{error\}"}
 \EFb{:requires} .fancy-box
 \EFb{:snippet} \EFs{"\char92{}\char92{}defsimplebox\{error\}\{c01c28\}\{Important\}"}
 \EFb{:after} .fancy-box)
 (hanging-section-numbers
 \EFb{:condition}
 (\EFk{let} ((latex-class
 (assoc (plist-get info \EFb{:latex-class}) (plist-get info \EFb{:latex-classes}))))
 (\EFk{and} (cadr latex-class)
 (string-match-p \EFs{"\char92{}\char92{}`\char92{}\char92{}\char92{}\char92{}documentclass}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(?:}}\EFs{\char92{}\char92{}[}\textcolor[HTML]{b751b6}{.*\char92{}\char92{}}\EFs{]}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{?\{scr"} (cadr latex-class))
 (not (string-match-p \EFs{"[[,]twocolumn[],]"} (\EFk{or} (plist-get info \EFb{:latex-class-options}) \EFs{""})))))
 \EFb{:snippet}
 \EFs{"\char92{}\char92{}renewcommand\char92{}\char92{}sectionformat\{\char92{}\char92{}llap\{\char92{}\char92{}thesection\char92{}\char92{}autodot\char92{}\char92{}enskip\}\}}
\EFs{\char92{}\char92{}renewcommand\char92{}\char92{}subsectionformat\{\char92{}\char92{}llap\{\char92{}\char92{}thesubsection\char92{}\char92{}autodot\char92{}\char92{}enskip\}\}}
\EFs{\char92{}\char92{}renewcommand\char92{}\char92{}subsubsectionformat\{\char92{}\char92{}llap\{\char92{}\char92{}thesubsubsection\char92{}\char92{}autodot\char92{}\char92{}enskip\}\}"})
 (toc-hidelinks
 \EFb{:condition}
 (\EFk{or} (plist-get info \EFb{:with-toc})
 (\EFk{save-excursion}
 (goto-char (point-min))
 (re-search-forward \EFs{"\char92{}\char92{}tableofcontents"} nil t)))
 \EFb{:snippet} \EFs{"\%\% hide links styles in toc}
\EFs{\char92{}\char92{}NewCommandCopy\{\char92{}\char92{}oldtoc\}\{\char92{}\char92{}tableofcontents\}}
\EFs{\char92{}\char92{}renewcommand\{\char92{}\char92{}tableofcontents\}\{\char92{}\char92{}begingroup\char92{}\char92{}hypersetup\{hidelinks\}\char92{}\char92{}oldtoc\char92{}\char92{}endgroup\}"}))
\end{Verbatim}
\end{Code}
\item Content-feature graph
\label{sec:org0e922f5}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{with-temp-buffer}
 (\EFk{let} ((lambda-count 0)
 (regexp-count 0)
 (string-count 0)
 (nil-count 0)
 cond-names feats impl-names)
 (\EFk{dolist} (cond-feats (org-export-get-all-feature-conditions (intern backend)))
 (\EFk{dolist} (feat (cdr cond-feats))
 (\EFk{let} ((cond-name
 (\EFk{pcase} (car cond-feats)
 ((\EFk{and} (pred symbolp) f)
 (symbol-name f))
 ((\EFk{and} (pred stringp) f)
 (format \EFs{"Regexp \#\%d"} (\EFk{cl-incf} regexp-count)))
 ((\EFk{and} (pred functionp) f)
 (format \EFs{"Î» \#\%d"} (\EFk{cl-incf} lambda-count)))
 (_ \EFs{"???"}))))
 (\EFk{push} cond-name cond-names)
 (\EFk{push} feat feats)
 (insert (format \EFs{"\char92{}"\%s\char92{}" -> \char92{}"\%s\char92{}"\char92{}n"} cond-name feat)))))
 (\EFk{dolist} (feat-impl (org-export-get-all-feature-implementations (intern backend)))
 (\EFk{let} ((impl-name
 (\EFk{pcase} (plist-get (cdr feat-impl) \EFb{:snippet})
 ((pred not)
 (format \EFs{"nil \#\%d"} (\EFk{cl-incf} nil-count)))
 ((\EFk{and} (pred symbolp) imp)
 (symbol-name imp))
 ((pred stringp)
 (format \EFs{"String \#\%d"} (\EFk{cl-incf} string-count)))
 ((pred functionp)
 (format \EFs{"Î» \#\%d"} (\EFk{cl-incf} lambda-count))))))
 (\EFk{push} impl-name impl-names)
 (\EFk{push} (car feat-impl) feats)
 (insert (format \EFs{"\char92{}"\%s\char92{}" -> \char92{}"\%s\char92{}"\char92{}n"} (car feat-impl) impl-name))
 (\EFk{dolist} (req (ensure-list (plist-get (cdr feat-impl) \EFb{:requires})))
 (insert (format \EFs{"\char92{}"\%s\char92{}" -> \char92{}"\%s\char92{}" [color=\char92{}"\#a991f1\char92{}" labelfontcolor=\char92{}"\#a991f1\char92{}"]"} impl-name req)))
 (\EFk{dolist} (prv (ensure-list (plist-get (cdr feat-impl) \EFb{:prevents})))
 (insert (format \EFs{"\char92{}"\%s\char92{}" -> \char92{}"\%s\char92{}" [color=\char92{}"\#ff665c\char92{}" penwidth=\char92{}"0.9\char92{}" arrowhead=empty]"} impl-name prv)))
 (\EFk{dolist} (whn (ensure-list (plist-get (cdr feat-impl) \EFb{:when})))
 (insert (format \EFs{"\char92{}"\%s\char92{}" -> \char92{}"\%s\char92{}" [style=\char92{}"dashed\char92{}" color=\char92{}"\#4db5bd\char92{}" penwidth=\char92{}"0.9\char92{}" arrowhead=empty labelfontcolor=\char92{}"\#4db5bd\char92{}" taillabel=\char92{}"\%s\char92{}"]"} whn impl-name impl-name)))
 (\EFk{dolist} (bfr (ensure-list (plist-get (cdr feat-impl) \EFb{:before})))
 (insert (format \EFs{"\char92{}"\%s\char92{}" -> \char92{}"\%s\char92{}" [style=\char92{}"dotted\char92{}" color=\char92{}"\#fcce7b\char92{}" penwidth=\char92{}"1.4\char92{}" arrowhead=halfopen]"} impl-name bfr)))
 (\EFk{dolist} (afr (ensure-list (plist-get (cdr feat-impl) \EFb{:after})))
 (insert (format \EFs{"\char92{}"\%s\char92{}" -> \char92{}"\%s\char92{}" [style=\char92{}"dotted\char92{}" color=\char92{}"\#7bc275\char92{}" penwidth=\char92{}"1.4\char92{}" arrowhead=halfopen]"} afr impl-name)))))
 (goto-char (point-min))
 (insert (concat \EFs{"subgraph cluster_0 \{\char92{}n peripheries=0\char92{}n \char92{}""}
 (string-join (nreverse cond-names) \EFs{"\char92{}" [color=\char92{}"\#e69055\char92{}"]\char92{}n \char92{}""})
 \EFs{"\char92{}" [color=\char92{}"\#e69055\char92{}"]\char92{}n\}\char92{}n"})
 (concat \EFs{"subgraph cluster_1 \{\char92{}n peripheries=0\char92{}n \char92{}""}
 (string-join (mapcar \#'symbol-name (nreverse (delete-dups feats))) \EFs{"\char92{}"\char92{}n \char92{}""})
 \EFs{"\char92{}"\char92{}n\}\char92{}n"})
 (concat \EFs{"subgraph cluster_2 \{\char92{}n peripheries=0\char92{}n \char92{}""}
 (string-join (nreverse impl-names) \EFs{"\char92{}" [color=\char92{}"\#4db5bd\char92{}"]\char92{}n \char92{}""})
 \EFs{"\char92{}" [color=\char92{}"\#4db5bd\char92{}"]\char92{}n\}\char92{}n"}))
)
 (buffer-string))
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}digraph \{
 graph [bgcolor="transparent", ranksep="2.5"];
 node [shape="underline" penwidth="2" style="rounded,filled" fillcolor="\#efefef" color="\#c9c9c9" fontcolor="\#000000" fontname="Alegreya Sans"];
 edge [color="\#9ca0a4" penwidth="1.2" fontname="Alegreya Sans"]
 rankdir="LR"
 <<generate-cfg("beamer")>>
\}
\end{Verbatim}
\end{Code}

\begin{center}
\includesvg[width=.9\linewidth]{misc/ox-latex-cfg}
\end{center}
\item Adding xcolor as an unconditional package
\label{sec:org21ee364}

\verb~xcolor~ is just convenient to have.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} org-latex-packages-alist
 '((\EFs{""} \EFs{"xcolor"} t)))
\end{Verbatim}
\end{Code}
\end{enumerate}
\item Font collections
\label{sec:orgb8521f5}

Using the lovely conditional preamble, I'll define a number of font collections
that can be used for \LaTeX{} exports. Who knows, maybe I'll use it with other
export formats too at some point.

To start with I'll create a default state variable and register \verb~fontset~ as part
of \verb~#+options~.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{org-latex-default-fontset} 'alegreya
 \EFd{"Fontset from `}\textcolor[HTML]{b751b6}{\textit{org-latex-fontsets}}\EFd{' to use by default.}
\EFd{As cm (computer modern) is TeX's default, that causes nothing}
\EFd{to be added to the document.}

\EFd{If \char92{}"nil\char92{}" no custom fonts will ever be used."})

(eval '(cl-pushnew '(\EFb{:latex-font-set} nil \EFs{"fontset"} org-latex-default-fontset)
 (org-export-backend-options (org-export-get-backend 'latex))))
\end{Verbatim}
\end{Code}

Then a function is needed to generate a \LaTeX{} snippet which applies the fontset. It
would be nice if this could be done for individual styles and use different
styles as the main document font. If the individual typefaces for a fontset are
defined individually as
\Verb[commandchars=\\\{\},highlightcolor=white!95!black!80!blue,breaklines=true,breaksymbol=\color{white!60!black}\tiny\ensuremath{\hookrightarrow}]{\color{EFD}\EFb{:serif}}, \Verb[commandchars=\\\{\},highlightcolor=white!95!black!80!blue,breaklines=true,breaksymbol=\color{white!60!black}\tiny\ensuremath{\hookrightarrow}]{\color{EFD}\EFb{:sans}}, \Verb[commandchars=\\\{\},highlightcolor=white!95!black!80!blue,breaklines=true,breaksymbol=\color{white!60!black}\tiny\ensuremath{\hookrightarrow}]{\color{EFD}\EFb{:mono}}, and \Verb[commandchars=\\\{\},highlightcolor=white!95!black!80!blue,breaklines=true,breaksymbol=\color{white!60!black}\tiny\ensuremath{\hookrightarrow}]{\color{EFD}\EFb{:maths}}.
I can use those to generate \LaTeX{} for subsets of the full fontset. Then, if I
don't let any fontset names have \verb~-~ in them, I can use \verb~-sans~ and \verb~-mono~ as
suffixes that specify the document font to use.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{org-latex-fontset-entry} ()
 \EFd{"Get the fontset spec of the current file.}
\EFd{Has format \char92{}"name\char92{}" or \char92{}"name-style\char92{}" where '}\textcolor[HTML]{b751b6}{\textit{name}}\EFd{' is one of}
\EFd{the cars in `}\textcolor[HTML]{b751b6}{\textit{org-latex-fontsets}}\EFd{'."}
 (\EFk{let} ((fontset-spec
 (symbol-name
 (\EFk{or} (car (delq nil
 (mapcar
 (\EFk{lambda} (opt-line)
 (plist-get (org-export--parse-option-keyword opt-line 'latex)
 \EFb{:latex-font-set}))
 (cdar (org-collect-keywords '(\EFs{"OPTIONS"}))))))
 org-latex-default-fontset))))
 (cons (intern (car (split-string fontset-spec \EFs{"-"})))
 (\EFk{when} (cadr (split-string fontset-spec \EFs{"-"}))
 (intern (concat \EFs{":"} (cadr (split-string fontset-spec \EFs{"-"}))))))))

(\EFk{defun} \EFf{org-latex-fontset} (\EFt{\&rest} desired-styles)
 \EFd{"Generate a LaTeX preamble snippet which applies the current fontset for DESIRED-STYLES."}
 (\EFk{let*} ((fontset-spec (org-latex-fontset-entry))
 (fontset (alist-get (car fontset-spec) org-latex-fontsets)))
 (\EFk{if} fontset
 (string-trim
 (concat
 (mapconcat
 (\EFk{lambda} (style)
 (\EFk{when} (plist-get fontset style)
 (concat (plist-get fontset style) \EFs{"\char92{}n"})))
 desired-styles
 \EFs{""})
 (\EFk{when} (memq (cdr fontset-spec) desired-styles)
 (\EFk{pcase} (cdr fontset-spec)
 (\EFb{:serif} \EFs{"\char92{}\char92{}renewcommand\{\char92{}\char92{}familydefault\}\{\char92{}\char92{}rmdefault\}\char92{}n"})
 (\EFb{:sans} \EFs{"\char92{}\char92{}renewcommand\{\char92{}\char92{}familydefault\}\{\char92{}\char92{}sfdefault\}\char92{}n"})
 (\EFb{:mono} \EFs{"\char92{}\char92{}renewcommand\{\char92{}\char92{}familydefault\}\{\char92{}\char92{}ttdefault\}\char92{}n"})))))
 (\EFwr{error} \EFs{"Font-set \%s is not provided in org-latex-fontsets"} (car fontset-spec)))))
\end{Verbatim}
\end{Code}

Now that all the functionality has been implemented, we should hook it into our
preamble generation.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{org-export-update-features} 'latex
 (custom-font
 \EFb{:condition} org-latex-default-fontset
 \EFb{:snippet} (org-latex-fontset \EFb{:serif} \EFb{:sans} \EFb{:mono})
 \EFb{:order} 0)
 (custom-maths-font
 \EFb{:condition} t
 \EFb{:when} (custom-font maths)
 \EFb{:snippet} (org-latex-fontset \EFb{:maths})
 \EFb{:after} (custom-font maths)
 \EFb{:order} 0))
\end{Verbatim}
\end{Code}

Finally, we just need to add some fonts.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{org-latex-fontsets}
 '((cm nil) \EFcd{;} \EFc{computer modern}
 (\#\# nil) \EFcd{;} \EFc{no font set}
 (alegreya
 \EFb{:serif} \EFs{"\char92{}\char92{}usepackage[osf]\{Alegreya\}"}
 \EFb{:sans} \EFs{"\char92{}\char92{}usepackage\{AlegreyaSans\}"}
 \EFb{:mono} \EFs{"\char92{}\char92{}usepackage[scale=0.88]\{sourcecodepro\}"}
 \EFb{:maths} \EFs{"\char92{}\char92{}let\char92{}\char92{}Bbbk\char92{}\char92{}relax\char92{}n\char92{}\char92{}usepackage[varbb]\{newpxmath\}"})
 (biolinum
 \EFb{:serif} \EFs{"\char92{}\char92{}usepackage[osf]\{libertineRoman\}"}
 \EFb{:sans} \EFs{"\char92{}\char92{}usepackage[sfdefault,osf]\{biolinum\}"}
 \EFb{:mono} \EFs{"\char92{}\char92{}usepackage[scale=0.88]\{sourcecodepro\}"}
 \EFb{:maths} \EFs{"\char92{}\char92{}usepackage[libertine,varvw]\{newtxmath\}"})
 (fira
 \EFb{:sans} \EFs{"\char92{}\char92{}usepackage[sfdefault,scale=0.85]\{FiraSans\}"}
 \EFb{:mono} \EFs{"\char92{}\char92{}usepackage[scale=0.80]\{FiraMono\}"}
 \EFb{:maths} \EFs{"\char92{}\char92{}usepackage\{newtxsf\} \% change to firamath in future?"})
 (kp
 \EFb{:serif} \EFs{"\char92{}\char92{}usepackage\{kpfonts\}"})
 (newpx
 \EFb{:serif} \EFs{"\char92{}\char92{}usepackage\{newpxtext\}"}
 \EFb{:sans} \EFs{"\char92{}\char92{}usepackage\{gillius\}"}
 \EFb{:mono} \EFs{"\char92{}\char92{}usepackage[scale=0.9]\{sourcecodepro\}"}
 \EFb{:maths} \EFs{"\char92{}\char92{}let\char92{}\char92{}Bbbk\char92{}\char92{}relax\char92{}n\char92{}\char92{}usepackage[varbb]\{newpxmath\}"})
 (noto
 \EFb{:serif} \EFs{"\char92{}\char92{}usepackage[osf]\{noto-serif\}"}
 \EFb{:sans} \EFs{"\char92{}\char92{}usepackage[osf]\{noto-sans\}"}
 \EFb{:mono} \EFs{"\char92{}\char92{}usepackage[scale=0.96]\{noto-mono\}"}
 \EFb{:maths} \EFs{"\char92{}\char92{}usepackage\{notomath\}"})
 (plex
 \EFb{:serif} \EFs{"\char92{}\char92{}usepackage\{plex-serif\}"}
 \EFb{:sans} \EFs{"\char92{}\char92{}usepackage\{plex-sans\}"}
 \EFb{:mono} \EFs{"\char92{}\char92{}usepackage[scale=0.95]\{plex-mono\}"}
 \EFb{:maths} \EFs{"\char92{}\char92{}usepackage\{newtxmath\}"}) \EFcd{;} \EFc{may be plex-based in future}
 (source
 \EFb{:serif} \EFs{"\char92{}\char92{}usepackage[osf,semibold]\{sourceserifpro\}"}
 \EFb{:sans} \EFs{"\char92{}\char92{}usepackage[osf,semibold]\{sourcesanspro\}"}
 \EFb{:mono} \EFs{"\char92{}\char92{}usepackage[scale=0.92]\{sourcecodepro\}"}
 \EFb{:maths} \EFs{"\char92{}\char92{}usepackage\{newtxmath\}"}) \EFcd{;} \EFc{may be sourceserifpro-based in future}
 (times
 \EFb{:serif} \EFs{"\char92{}\char92{}usepackage\{newtxtext\}"}
 \EFb{:maths} \EFs{"\char92{}\char92{}usepackage\{newtxmath\}"}))
 \EFd{"Alist of fontset specifications.}
\EFd{Each car is the name of the fontset (which cannot include \char92{}"-\char92{}").}

\EFd{Each cdr is a plist with (optional) keys :serif, :sans, :mono, and :maths.}
\EFd{A key's value is a LaTeX snippet which loads such a font."})
\end{Verbatim}
\end{Code}

When we're using Alegreya we can apply a lovely little tweak to \verb~tabular~ which
(locally) changes the figures used to lining fixed-width.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{org-export-update-features} 'latex
 (alegreya-typeface
 \EFb{:condition} (string= (car (org-latex-fontset-entry)) \EFs{"alegreya"})
 \EFb{:snippet} nil)
 (alegreya-tabular-figures
 \EFb{:condition} t
 \EFb{:when} (alegreya-typeface table)
 \EFb{:snippet} \EFs{"\char92{}}
\EFs{\char92{}\char92{}makeatletter}
\EFs{\% tabular lining figures in tables}
\EFs{\char92{}\char92{}renewcommand\{\char92{}\char92{}tabular\}\{\char92{}\char92{}AlegreyaTLF\char92{}\char92{}let\char92{}\char92{}@halignto\char92{}\char92{}@empty\char92{}\char92{}@tabular\}}
\EFs{\char92{}\char92{}makeatother"}
 \EFb{:after} custom-font
 \EFb{:order} 0.5))
\end{Verbatim}
\end{Code}

Due to Alegreya's metrics, the \verb~\LaTeX~ symbol doesn't quite look right. We
can correct for this by redefining it with subtlety shifted kerning.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{org-export-update-features} 'latex
 (alegreya-latex-symbol
 \EFb{:condition} \EFs{"LaTeX"}
 \EFb{:when} alegreya-typeface
 \EFb{:snippet} \EFs{"\char92{}}
\EFs{\char92{}\char92{}makeatletter}
\EFs{\% Kerning around the A needs adjusting}
\EFs{\char92{}\char92{}DeclareRobustCommand\{\char92{}\char92{}LaTeX\}\{L\char92{}\char92{}kern-.24em\%}
 \EFs{\{\char92{}\char92{}sbox\char92{}\char92{}z@ T\%}
 \EFs{\char92{}\char92{}vbox to\char92{}\char92{}ht\char92{}\char92{}z@\{\char92{}\char92{}hbox\{\char92{}\char92{}check@mathfonts}
 \EFs{\char92{}\char92{}fontsize\char92{}\char92{}sf@size\char92{}\char92{}z@}
 \EFs{\char92{}\char92{}math@fontsfalse\char92{}\char92{}selectfont}
 \EFs{A\}\%}
 \EFs{\char92{}\char92{}vss\}\%}
 \EFs{\}\%}
 \EFs{\char92{}\char92{}kern-.10em\%}
 \EFs{\char92{}\char92{}TeX\}}
\EFs{\char92{}\char92{}makeatother"}
 \EFb{:after} alegreya-typeface
 \EFb{:order} 0.5))
\end{Verbatim}
\end{Code}
\item Maths notation conveniences
\label{sec:orge19749a}
Maths has a way of popping up relentlessly. I think this says something both
about me and the subject itself. While the \LaTeX{} set of commands is quite
reasonable, we can make a few common bits of notation a tad more convenient.
\begin{enumerate}
\item Packages
\label{sec:org9224009}

First, there are a few useful packages we want to use.

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{\%\%} \EFc{Maths-related packages}
\EFcd{\%} \EFc{More maths environments, commands, and symbols.}
\textcolor[HTML]{e45649}{\char92{}usepackage}\{\EFf{amsmath, amssymb}\}
\EFcd{\%} \EFc{Slanted fractions with} \textcolor[HTML]{84888b}{\char92{}sfrac}\EFc{\{a\}\{b\}, in text and maths.}
\textcolor[HTML]{e45649}{\char92{}usepackage}\{\EFf{xfrac}\}
\EFcd{\%} \EFc{Visually cancel expressions with} \textcolor[HTML]{84888b}{\char92{}cancel}\EFc{\{value\} and} \textcolor[HTML]{84888b}{\char92{}cancelto}\EFc{\{expression\}\{value\}}
\textcolor[HTML]{e45649}{\char92{}usepackage}[\EFv{makeroom}]\{\EFf{cancel}\}
\EFcd{\%} \EFc{Improvements on amsmath and utilities for mathematical typesetting}
\textcolor[HTML]{e45649}{\char92{}usepackage}\{\EFf{mathtools}\}
\end{Verbatim}
\end{Code}
\item Custom delimiters
\label{sec:org85c7dbf}

Next up we want to make the various types of rounding-related and absolute value
delimitors accessible as commands.

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{\%} \EFc{Deliminators}
\char92{}DeclarePairedDelimiter\{\char92{}abs\}\{\char92{}lvert\}\{\char92{}rvert\}
\char92{}DeclarePairedDelimiter\{\char92{}norm\}\{\char92{}lVert\}\{\char92{}rVert\}

\char92{}DeclarePairedDelimiter\{\char92{}ceil\}\{\char92{}lceil\}\{\char92{}rceil\}
\char92{}DeclarePairedDelimiter\{\char92{}floor\}\{\char92{}lfloor\}\{\char92{}rfloor\}
\char92{}DeclarePairedDelimiter\{\char92{}round\}\{\char92{}lfloor\}\{\char92{}rceil\}
\end{Verbatim}
\end{Code}
\item Number sets
\label{sec:orgadc6e91}

Then we have the various common number sets, it would be nice to have a
convenient way of typing them and optionally giving them powers. It's fairly
easy to support both \verb~\XX~ and \verb~\XX[n]~.

\begin{Code}
\begin{Verbatim}
\color{EFD}\textcolor[HTML]{e45649}{\char92{}newcommand}\{\textcolor[HTML]{a626a4}{\char92{}RR}\}[\EFv{1}][]\{\textcolor[HTML]{a626a4}{\char92{}ensuremath}\EFf{\{}\textcolor[HTML]{a626a4}{\char92{}ifstrempty}\textcolor[HTML]{a626a4}{\{\#1\}\{}\textcolor[HTML]{a626a4}{\char92{}mathbb}\textcolor[HTML]{a626a4}{\{R\}\}\{}\textcolor[HTML]{a626a4}{\char92{}mathbb}\textcolor[HTML]{a626a4}{\{R\}}\textcolor[HTML]{a626a4}{\char94{}\{\#1\}}\textcolor[HTML]{a626a4}{\}}\EFf{\}}\} \EFc{\% Real numbers}
\textcolor[HTML]{e45649}{\char92{}newcommand}\{\textcolor[HTML]{a626a4}{\char92{}NN}\}[\EFv{1}][]\{\textcolor[HTML]{a626a4}{\char92{}ensuremath}\EFf{\{}\textcolor[HTML]{a626a4}{\char92{}ifstrempty}\textcolor[HTML]{a626a4}{\{\#1\}\{}\textcolor[HTML]{a626a4}{\char92{}mathbb}\textcolor[HTML]{a626a4}{\{N\}\}\{}\textcolor[HTML]{a626a4}{\char92{}mathbb}\textcolor[HTML]{a626a4}{\{N\}}\textcolor[HTML]{a626a4}{\char94{}\{\#1\}}\textcolor[HTML]{a626a4}{\}}\EFf{\}}\} \EFc{\% Natural numbers}
\textcolor[HTML]{e45649}{\char92{}newcommand}\{\textcolor[HTML]{a626a4}{\char92{}ZZ}\}[\EFv{1}][]\{\textcolor[HTML]{a626a4}{\char92{}ensuremath}\EFf{\{}\textcolor[HTML]{a626a4}{\char92{}ifstrempty}\textcolor[HTML]{a626a4}{\{\#1\}\{}\textcolor[HTML]{a626a4}{\char92{}mathbb}\textcolor[HTML]{a626a4}{\{Z\}\}\{}\textcolor[HTML]{a626a4}{\char92{}mathbb}\textcolor[HTML]{a626a4}{\{Z\}}\textcolor[HTML]{a626a4}{\char94{}\{\#1\}}\textcolor[HTML]{a626a4}{\}}\EFf{\}}\} \EFc{\% Integer numbers}
\textcolor[HTML]{e45649}{\char92{}newcommand}\{\textcolor[HTML]{a626a4}{\char92{}QQ}\}[\EFv{1}][]\{\textcolor[HTML]{a626a4}{\char92{}ensuremath}\EFf{\{}\textcolor[HTML]{a626a4}{\char92{}ifstrempty}\textcolor[HTML]{a626a4}{\{\#1\}\{}\textcolor[HTML]{a626a4}{\char92{}mathbb}\textcolor[HTML]{a626a4}{\{Q\}\}\{}\textcolor[HTML]{a626a4}{\char92{}mathbb}\textcolor[HTML]{a626a4}{\{Q\}}\textcolor[HTML]{a626a4}{\char94{}\{\#1\}}\textcolor[HTML]{a626a4}{\}}\EFf{\}}\} \EFc{\% Rational numbers}
\textcolor[HTML]{e45649}{\char92{}newcommand}\{\textcolor[HTML]{a626a4}{\char92{}CC}\}[\EFv{1}][]\{\textcolor[HTML]{a626a4}{\char92{}ensuremath}\EFf{\{}\textcolor[HTML]{a626a4}{\char92{}ifstrempty}\textcolor[HTML]{a626a4}{\{\#1\}\{}\textcolor[HTML]{a626a4}{\char92{}mathbb}\textcolor[HTML]{a626a4}{\{C\}\}\{}\textcolor[HTML]{a626a4}{\char92{}mathbb}\textcolor[HTML]{a626a4}{\{C\}}\textcolor[HTML]{a626a4}{\char94{}\{\#1\}}\textcolor[HTML]{a626a4}{\}}\EFf{\}}\} \EFc{\% Complex numbers}
\end{Verbatim}
\end{Code}
\item Derivatives
\label{sec:orgd2da942}

Derivatives are actually a bit of a pain to typeset, it would be nice to have a
\verb~\dv~ command that supports:
\begin{itemize}
\item \verb~\dv{x}~ for the derivative with respect to \verb~x~
\item \verb~\dv{f}{x}~ for the derivative of \verb~f~ with respect to \verb~x~
\item \verb~\dv[2]{f}{x}~ for the second order derivative of \verb~f~ with respect to \verb~x~
\end{itemize}

Similarly, it would be nice to have a partial derivate counterpart \verb~\pdv~ which
behaves in a similar way, but with the possibility of providing multiple
comma-delimited variables --- e.g.\ \verb~\pdv{f}{x,y,z}~.

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{\%} \EFc{Easy derivatives}
\textcolor[HTML]{e45649}{\char92{}ProvideDocumentCommand}\textcolor[HTML]{a626a4}{\char92{}dv}\{\EFf{o m g}\}\{\textcolor[HTML]{84888b}{\%}
 \textcolor[HTML]{a626a4}{\char92{}IfNoValueTF}\EFf{\{\#3\}\{}\textcolor[HTML]{84888b}{\%}
 \textcolor[HTML]{a626a4}{\char92{}dv}\EFf{[\#1]\{\}\{\#2\}\}\{}\textcolor[HTML]{84888b}{\%}
 \textcolor[HTML]{a626a4}{\char92{}IfNoValueTF}\EFf{\{\#1\}\{}\textcolor[HTML]{84888b}{\%}
 \textcolor[HTML]{a626a4}{\char92{}frac}\EFf{\{}\textcolor[HTML]{a626a4}{\char92{}dd} \EFf{\#2\}\{}\textcolor[HTML]{a626a4}{\char92{}dd} \EFf{\#3\}}\textcolor[HTML]{84888b}{\%}
 \EFf{\}\{}\textcolor[HTML]{a626a4}{\char92{}frac}\EFf{\{}\textcolor[HTML]{a626a4}{\char92{}dd}\EFf{[\#1] \#2\}\{}\textcolor[HTML]{a626a4}{\char92{}dd} \EFf{\{\#3\}\char94{}\{\#1\}\}\}\}}\}
\EFcd{\%} \EFc{Easy partial derivatives}
\char92{}ExplSyntaxOn
\textcolor[HTML]{e45649}{\char92{}ProvideDocumentCommand}\textcolor[HTML]{a626a4}{\char92{}pdv}\{\EFf{o m g}\}\{\textcolor[HTML]{84888b}{\%}
 \textcolor[HTML]{a626a4}{\char92{}IfNoValueTF}\EFf{\{\#3\}\{}\textcolor[HTML]{a626a4}{\char92{}pdv}\EFf{[\#1]\{\}\{\#2\}\}}\textcolor[HTML]{84888b}{\%}
 \EFf{\{}\textcolor[HTML]{a626a4}{\char92{}ifnum}\textcolor[HTML]{a626a4}{\char92{}clist}\EFf{_count:n\{\#3\}<2}
 \textcolor[HTML]{a626a4}{\char92{}IfValueTF}\EFf{\{\#1\}\{}\textcolor[HTML]{a626a4}{\char92{}frac}\EFf{\{}\textcolor[HTML]{a626a4}{\char92{}partial}\EFf{\char94{}\{\#1\} \#2\}\{}\textcolor[HTML]{a626a4}{\char92{}partial} \EFf{\{\#3\}\char94{}\{\#1\}\}\}}\textcolor[HTML]{84888b}{\%}
 \EFf{\{}\textcolor[HTML]{a626a4}{\char92{}frac}\EFf{\{}\textcolor[HTML]{a626a4}{\char92{}partial} \EFf{\#2\}\{}\textcolor[HTML]{a626a4}{\char92{}partial} \EFf{\#3\}\}}
 \textcolor[HTML]{a626a4}{\char92{}else}
 \textcolor[HTML]{a626a4}{\char92{}frac}\EFf{\{}\textcolor[HTML]{a626a4}{\char92{}IfValueTF}\EFf{\{\#1\}\{}\textcolor[HTML]{a626a4}{\char92{}partial}\EFf{\char94{}\{\#1\}\}\{}\textcolor[HTML]{a626a4}{\char92{}partial}\EFf{\char94{}\{}\textcolor[HTML]{a626a4}{\char92{}clist}\EFf{_count:n\{\#3\}\}\}\#2\}}\textcolor[HTML]{84888b}{\%}
 \EFf{\{}\textcolor[HTML]{a626a4}{\char92{}clist}\EFf{_map_inline:nn\{\#3\}\{}\textcolor[HTML]{a626a4}{\char92{}partial} \EFf{\#\#1 \char92{},\}}\textcolor[HTML]{a626a4}{\char92{}!}\EFf{\}}
 \textcolor[HTML]{a626a4}{\char92{}fi}\EFf{\}}\}
\char92{}ExplSyntaxOff
\end{Verbatim}
\end{Code}
\item Common operators
\label{sec:orga002d6a}

The default set of operators could benefit from a bit of expansion.

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{\%} \EFc{Laplacian}
\char92{}DeclareMathOperator\{\char92{}Lap\}\{\char92{}mathcal\{L\}\}

\EFcd{\%} \EFc{Statistics}
\char92{}DeclareMathOperator\{\char92{}Var\}\{Var\} \EFc{\% varience}
\char92{}DeclareMathOperator\{\char92{}Cov\}\{Cov\} \EFc{\% covarience}
\textcolor[HTML]{e45649}{\char92{}newcommand}\{\textcolor[HTML]{a626a4}{\char92{}EE}\}\{\textcolor[HTML]{a626a4}{\char92{}ensuremath}\EFf{\{}\textcolor[HTML]{a626a4}{\char92{}mathbb}\textcolor[HTML]{a626a4}{\{E\}}\EFf{\}}\} \EFc{\% expected value}
\char92{}DeclareMathOperator\{\char92{}E\}\{E\} \EFc{\% expected value}
\end{Verbatim}
\end{Code}
\item Slanted inequalities
\label{sec:org14014b2}

As a matter of personal taste, I prefer the slanted less/greater than or equal
to operators, and would like to use them by default.

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{\%} \EFc{I prefer the slanted} \textcolor[HTML]{84888b}{\char92{}leq}\EFc{/}\textcolor[HTML]{84888b}{\char92{}geq}
\char92{}let\char92{}barleq\char92{}leq \EFc{\% Save them in case they're every wanted}
\char92{}let\char92{}bargeq\char92{}geq
\textcolor[HTML]{e45649}{\char92{}renewcommand}\{\textcolor[HTML]{a626a4}{\char92{}leq}\}\{\textcolor[HTML]{a626a4}{\char92{}leqslant}\}
\textcolor[HTML]{e45649}{\char92{}renewcommand}\{\textcolor[HTML]{a626a4}{\char92{}geq}\}\{\textcolor[HTML]{a626a4}{\char92{}geqslant}\}
\end{Verbatim}
\end{Code}
\item Alignment of matrix columns
\label{sec:orga5670ba}

By default, everything in a matrix is centred, which I actually find often
undesirable. It would be much nicer to take the alignment as an optional
argument of the environment, and default to right-alignment.

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{\%} \EFc{Redefine the matrix environment to allow for alignment}
\EFcd{\%} \EFc{via an optional argument, and use r as the default.}
\textbf{\char92{}makeatletter}
\textcolor[HTML]{e45649}{\char92{}renewcommand}\EFk{*}\textcolor[HTML]{a626a4}{\char92{}env@matrix}[\EFv{1}][\EFv{r}]\{\textcolor[HTML]{a626a4}{\char92{}hskip} \EFf{-}\textcolor[HTML]{a626a4}{\char92{}arraycolsep}\textcolor[HTML]{84888b}{\%}
 \textcolor[HTML]{a626a4}{\char92{}let}\textcolor[HTML]{a626a4}{\char92{}@ifnextchar}\textcolor[HTML]{a626a4}{\char92{}new@ifnextchar}
 \textcolor[HTML]{a626a4}{\char92{}array}\EFf{\{*}\textcolor[HTML]{a626a4}{\char92{}c@MaxMatrixCols} \EFf{\#1\}}\}
\textbf{\char92{}makeatother}
\end{Verbatim}
\end{Code}
\item Slanted derivative "d"
\label{sec:org684b021}

Determining an appropriate styling for a derivative "d" (e.g. "dx") is
surprisingly hard, as the "d" is neither:
\begin{itemize}
\item An operator (which are typeset as upright roman)
\item A variable (which are typeset as italic roman)
\end{itemize}

The ISO 80000-2 standard (2009) specifies that it should be upright, however (a)
it is still not an operator, (b) not used in any maths book I've seen, and (c)
doesn't look very good. I'm not entirely comfortable with the variable styling
either though, so perhaps something else is in order?

After trying a few different options, I rather like the idea of using a \emph{slanted
roman "d"}. This stylistically works for me, while being just distinct enough
from other faces. As long as we are creating a PDF, we can apply a transform
that slants a "d".

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{\%} \EFc{Slanted roman "d" for derivatives}
\char92{}ifcsname pdfoutput\char92{}endcsname
 \char92{}ifnum\char92{}pdfoutput>0 \EFc{\% PDF}
 \textcolor[HTML]{e45649}{\char92{}newsavebox}\textcolor[HTML]{a626a4}{\char92{}diffdbox}\{\}
 \textcolor[HTML]{e45649}{\char92{}newcommand}\{\textcolor[HTML]{a626a4}{\char92{}slantedromand}\}\{\EFf{\{}\textcolor[HTML]{a626a4}{\char92{}mathpalette}\textcolor[HTML]{a626a4}{\char92{}makesl}\EFf{\{d\}\}}\}
 \textcolor[HTML]{e45649}{\char92{}newcommand}\{\textcolor[HTML]{a626a4}{\char92{}makesl}\}[\EFv{2}]\{\textcolor[HTML]{84888b}{\%}
 \textcolor[HTML]{a626a4}{\char92{}begingroup}
 \textcolor[HTML]{a626a4}{\char92{}sbox}\EFf{\{}\textcolor[HTML]{a626a4}{\char92{}diffdbox}\EFf{\}\{}\textcolor[HTML]{a626a4}{\$}\textcolor[HTML]{a626a4}{\char92{}mathsurround}\textcolor[HTML]{a626a4}{=0pt\#1}\textcolor[HTML]{a626a4}{\char92{}mathrm}\textcolor[HTML]{a626a4}{\{}\textcolor[HTML]{a626a4}{\#2}\textcolor[HTML]{a626a4}{\}\$}\EFf{\}}\textcolor[HTML]{84888b}{\%}
 \textcolor[HTML]{a626a4}{\char92{}pdfsave}\textcolor[HTML]{84888b}{\%}
 \textcolor[HTML]{a626a4}{\char92{}pdfsetmatrix}\EFf{\{1 0 0.2 1\}}\textcolor[HTML]{84888b}{\%}
 \textcolor[HTML]{a626a4}{\char92{}rlap}\EFf{\{}\textcolor[HTML]{a626a4}{\char92{}usebox}\EFf{\{}\textcolor[HTML]{a626a4}{\char92{}diffdbox}\EFf{\}\}}\textcolor[HTML]{84888b}{\%}
 \textcolor[HTML]{a626a4}{\char92{}pdfrestore}\textcolor[HTML]{84888b}{\%}
 \textcolor[HTML]{a626a4}{\char92{}hskip}\textcolor[HTML]{a626a4}{\char92{}wd}\textcolor[HTML]{a626a4}{\char92{}diffdbox}\textcolor[HTML]{84888b}{\%}
 \textcolor[HTML]{a626a4}{\char92{}endgroup}\}
 \char92{}else \EFc{\% DVI}
 \textcolor[HTML]{e45649}{\char92{}newcommand}\{\textcolor[HTML]{a626a4}{\char92{}slantedromand}\}\{\EFf{d}\} \EFc{\% fallback}
 \char92{}fi
\char92{}else \EFc{\% Also DVI}
 \textcolor[HTML]{e45649}{\char92{}newcommand}\{\textcolor[HTML]{a626a4}{\char92{}slantedromand}\}\{\EFf{d}\} \EFc{\% fallback}
\char92{}fi
\end{Verbatim}
\end{Code}

Now there's the matter of \emph{placing} the "d", or rather adjusting the space around
it. After much fiddling, I've ended up with the following.

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{\%} \EFc{Derivative d\char94{}n, nicely spaced}
\textbf{\char92{}makeatletter}
\textcolor[HTML]{e45649}{\char92{}newcommand}\{\textcolor[HTML]{a626a4}{\char92{}dd}\}[\EFv{1}][]\{\textcolor[HTML]{a626a4}{\char92{}mathop}\EFf{\{\}}\textcolor[HTML]{a626a4}{\char92{}!}\textcolor[HTML]{84888b}{\%}
 \textcolor[HTML]{a626a4}{\char92{}expandafter}\textcolor[HTML]{a626a4}{\char92{}ifx}\textcolor[HTML]{a626a4}{\char92{}expandafter}\textcolor[HTML]{a626a4}{\textbf{\&}}\textcolor[HTML]{a626a4}{\char92{}detokenize}\EFf{\{\#1\}}\textcolor[HTML]{a626a4}{\textbf{\&}}\textcolor[HTML]{84888b}{\%} \textcolor[HTML]{84888b}{\char92{}ifstrempty} \textcolor[HTML]{84888b}{from etoolbox}
 \textcolor[HTML]{a626a4}{\char92{}slantedromand}\textcolor[HTML]{a626a4}{\char92{}@ifnextchar}\EFf{\char94{}\{}\textcolor[HTML]{a626a4}{\char92{}hspace}\EFf{\{0.2ex\}\}\{}\textcolor[HTML]{a626a4}{\char92{}hspace}\EFf{\{0.1ex\}\}}
 \textcolor[HTML]{a626a4}{\char92{}else}
 \textcolor[HTML]{a626a4}{\char92{}slantedromand}\textcolor[HTML]{a626a4}{\char92{}hspace}\EFf{\{0.2ex\}\char94{}\{\#1\}}
 \textcolor[HTML]{a626a4}{\char92{}fi}\}
\textbf{\char92{}makeatother}
\end{Verbatim}
\end{Code}

While \verb~\dd~ isn't much effort to type, it would be much cleaner to be able to do
. The problem with defining \verb~\d~ is that it is already used
for the under-dot accent. However, since this is a text-mode (only) accent, and
defined with instead of
we can redefine the command to mean \verb~\dd~ in
math-mode.

\begin{Code}
\begin{Verbatim}
\color{EFD}\textcolor[HTML]{e45649}{\char92{}NewCommandCopy}\{\textcolor[HTML]{a626a4}{\char92{}daccent}\}\{\textcolor[HTML]{a626a4}{\char92{}d}\}
\textcolor[HTML]{e45649}{\char92{}renewcommand}\{\textcolor[HTML]{a626a4}{\char92{}d}\}\{\textcolor[HTML]{a626a4}{\char92{}ifmmode}\textcolor[HTML]{a626a4}{\char92{}dd}\textcolor[HTML]{a626a4}{\char92{}else}\textcolor[HTML]{a626a4}{\char92{}daccent}\textcolor[HTML]{a626a4}{\char92{}fi}\}
\end{Verbatim}
\end{Code}
\end{enumerate}
\item Cover page
\label{sec:orgdc886ce}

To make a nice cover page, a simple method that comes to mind is just redefining
\verb~\maketitle~. To get precise control over the positioning we'll use the \verb~tikz~
package, and then add in the Tikz libraries \verb~calc~ and \verb~shapes.geometric~ to make
some nice decorations for the background.

I'll start off by setting up the required additions to the preamble.
This will accomplish the following:
\begin{itemize}
\item Load the required packages
\item Redefine \verb~\maketitle~
\item Draw an Org icon with Tikz to use in the cover page (it's a little easter egg)
\item Start a new page after the table of contents by redefining \verb~\tableofcontents~
\end{itemize}

\begin{Code}
\begin{Verbatim}
\color{EFD}\textcolor[HTML]{e45649}{\char92{}usepackage}\{\EFf{tikz}\}
\char92{}usetikzlibrary\{shapes.geometric\}
\char92{}usetikzlibrary\{calc\}

\textcolor[HTML]{e45649}{\char92{}newsavebox}\textcolor[HTML]{a626a4}{\char92{}orgicon}
\textcolor[HTML]{e45649}{\char92{}begin}\{\EFf{lrbox}\}\{\char92{}orgicon\}
 \textcolor[HTML]{e45649}{\char92{}begin}\{\EFf{tikzpicture}\}[y=0.80pt, x=0.80pt, inner sep=0pt, outer sep=0pt]
 \char92{}path[fill=black!6] (16.15,24.00) .. controls (15.58,24.00) and (13.99,20.69) .. (12.77,18.06)arc(215.55:180.20:2.19) .. controls (12.33,19.91) and (11.27,19.09) .. (11.43,18.05) .. controls (11.36,18.09) and (10.17,17.83) .. (10.17,17.82) .. controls (9.94,18.75) and (9.37,19.44) .. (9.02,18.39) .. controls (8.32,16.72) and (8.14,15.40) .. (9.13,13.80) .. controls (8.22,9.74) and (2.18,7.75) .. (2.81,4.47) .. controls (2.99,4.47) and (4.45,0.99) .. (9.15,2.41) .. controls (14.71,3.99) and (17.77,0.30) .. (18.13,0.04) .. controls (18.65,-0.49) and (16.78,4.61) .. (12.83,6.90) .. controls (10.49,8.18) and (11.96,10.38) .. (12.12,11.15) .. controls (12.12,11.15) and (14.00,9.84) .. (15.36,11.85) .. controls (16.58,11.53) and (17.40,12.07) .. (18.46,11.69) .. controls (19.10,11.41) and (21.79,11.58) .. (20.79,13.08) .. controls (20.79,13.08) and (21.71,13.90) .. (21.80,13.99) .. controls (21.97,14.75) and (21.59,14.91) .. (21.47,15.12) .. controls (21.44,15.60) and (21.04,15.79) .. (20.55,15.44) .. controls (19.45,15.64) and (18.36,15.55) .. (17.83,15.59) .. controls (16.65,15.76) and (15.67,16.38) .. (15.67,16.38) .. controls (15.40,17.19) and (14.82,17.01) .. (14.09,17.32) .. controls (14.70,18.69) and (14.76,19.32) .. (15.50,21.32) .. controls (15.76,22.37) and (16.54,24.00) .. (16.15,24.00) -- cycle(7.83,16.74) .. controls (6.83,15.71) and (5.72,15.70) .. (4.05,15.42) .. controls (2.75,15.19) and (0.39,12.97) .. (0.02,10.68) .. controls (-0.02,10.07) and (-0.06,8.50) .. (0.45,7.18) .. controls (0.94,6.05) and (1.27,5.45) .. (2.29,4.85) .. controls (1.41,8.02) and (7.59,10.18) .. (8.55,13.80) -- (8.55,13.80) .. controls (7.73,15.00) and (7.80,15.64) .. (7.83,16.74) -- cycle;
 \textcolor[HTML]{e45649}{\char92{}end}\{\EFf{tikzpicture}\}
\textcolor[HTML]{e45649}{\char92{}end}\{\EFf{lrbox}\}

\textbf{\char92{}makeatletter}
\char92{}g@addto@macro\textcolor[HTML]{e45649}{\char92{}tableofcontents}\{\textbf{\char92{}clearpage}\}
\textcolor[HTML]{e45649}{\char92{}renewcommand}\textcolor[HTML]{a626a4}{\char92{}maketitle}\{
 \textcolor[HTML]{a626a4}{\char92{}thispagestyle}\EFf{\{empty\}}
 \textcolor[HTML]{a626a4}{\char92{}hyphenpenalty}\EFf{=10000} \textcolor[HTML]{84888b}{\% hyphens look bad in titles}
 \textcolor[HTML]{a626a4}{\char92{}renewcommand}\EFf{\{}\textcolor[HTML]{a626a4}{\char92{}baselinestretch}\EFf{\}\{1.1\}}
 \textcolor[HTML]{a626a4}{\char92{}NewCommandCopy}\EFf{\{}\textcolor[HTML]{a626a4}{\char92{}oldtoday}\EFf{\}\{}\textcolor[HTML]{a626a4}{\char92{}today}\EFf{\}}
 \textcolor[HTML]{a626a4}{\char92{}renewcommand}\EFf{\{}\textcolor[HTML]{a626a4}{\char92{}today}\EFf{\}\{}\textcolor[HTML]{a626a4}{\char92{}LARGE}\textcolor[HTML]{a626a4}{\char92{}number}\textcolor[HTML]{a626a4}{\char92{}year}\textcolor[HTML]{a626a4}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{a626a4}{\char92{}large}\textcolor[HTML]{84888b}{\%}
 \textcolor[HTML]{a626a4}{\char92{}ifcase} \textcolor[HTML]{a626a4}{\char92{}month} \textcolor[HTML]{a626a4}{\char92{}or} \textcolor[HTML]{a626a4}{Jan}\textcolor[HTML]{a626a4}{\char92{}or} \textcolor[HTML]{a626a4}{Feb}\textcolor[HTML]{a626a4}{\char92{}or} \textcolor[HTML]{a626a4}{Mar}\textcolor[HTML]{a626a4}{\char92{}or} \textcolor[HTML]{a626a4}{Apr}\textcolor[HTML]{a626a4}{\char92{}or} \textcolor[HTML]{a626a4}{May} \textcolor[HTML]{a626a4}{\char92{}or} \textcolor[HTML]{a626a4}{Jun}\textcolor[HTML]{a626a4}{\char92{}or} \textcolor[HTML]{a626a4}{Jul}\textcolor[HTML]{a626a4}{\char92{}or} \textcolor[HTML]{a626a4}{Aug}\textcolor[HTML]{a626a4}{\char92{}or} \textcolor[HTML]{a626a4}{Sep}\textcolor[HTML]{a626a4}{\char92{}or} \textcolor[HTML]{a626a4}{Oct}\textcolor[HTML]{a626a4}{\char92{}or} \textcolor[HTML]{a626a4}{Nov}\textcolor[HTML]{a626a4}{\char92{}or} \textcolor[HTML]{a626a4}{Dec}\textcolor[HTML]{a626a4}{\char92{}fi}
 \textcolor[HTML]{a626a4}{\char126{}}\textcolor[HTML]{a626a4}{\char92{}number}\textcolor[HTML]{a626a4}{\char92{}day}\EFf{\}}
 \textcolor[HTML]{a626a4}{\char92{}begin}\EFf{\{tikzpicture\}[remember picture,overlay]}
 \textcolor[HTML]{84888b}{\%\%} \textcolor[HTML]{84888b}{Background Polygons \%\%}
 \textcolor[HTML]{a626a4}{\char92{}foreach} \textcolor[HTML]{a626a4}{\char92{}i} \EFf{in \{2.5,...,22\}} \textcolor[HTML]{84888b}{\% bottom left}
 \EFf{\{}\textcolor[HTML]{a626a4}{\char92{}node}\EFf{[rounded corners,black!3.5,draw,regular polygon,regular polygon sides=6, minimum size=}\textcolor[HTML]{a626a4}{\char92{}i} \EFf{cm,ultra thick] at (}\textcolor[HTML]{a626a4}{\$(current page.west)+(2.5,-4.2)\$}\EFf{) \{\} ;\}}
 \textcolor[HTML]{a626a4}{\char92{}foreach} \textcolor[HTML]{a626a4}{\char92{}i} \EFf{in \{0.5,...,22\}} \textcolor[HTML]{84888b}{\% top left}
 \EFf{\{}\textcolor[HTML]{a626a4}{\char92{}node}\EFf{[rounded corners,black!5,draw,regular polygon,regular polygon sides=6, minimum size=}\textcolor[HTML]{a626a4}{\char92{}i} \EFf{cm,ultra thick] at (}\textcolor[HTML]{a626a4}{\$(current page.north west)+(2.5,2)\$}\EFf{) \{\} ;\}}
 \textcolor[HTML]{a626a4}{\char92{}node}\EFf{[rounded corners,fill=black!4,regular polygon,regular polygon sides=6, minimum size=5.5 cm,ultra thick] at (}\textcolor[HTML]{a626a4}{\$(current page.north west)+(2.5,2)\$}\EFf{) \{\};}
 \textcolor[HTML]{a626a4}{\char92{}foreach} \textcolor[HTML]{a626a4}{\char92{}i} \EFf{in \{0.5,...,24\}} \textcolor[HTML]{84888b}{\% top right}
 \EFf{\{}\textcolor[HTML]{a626a4}{\char92{}node}\EFf{[rounded corners,black!2,draw,regular polygon,regular polygon sides=6, minimum size=}\textcolor[HTML]{a626a4}{\char92{}i} \EFf{cm,ultra thick] at (}\textcolor[HTML]{a626a4}{\$(current page.north east)+(0,-8.5)\$}\EFf{) \{\} ;\}}
 \textcolor[HTML]{a626a4}{\char92{}node}\EFf{[fill=black!3,rounded corners,regular polygon,regular polygon sides=6, minimum size=2.5 cm,ultra thick] at (}\textcolor[HTML]{a626a4}{\$(current page.north east)+(0,-8.5)\$}\EFf{) \{\};}
 \textcolor[HTML]{a626a4}{\char92{}foreach} \textcolor[HTML]{a626a4}{\char92{}i} \EFf{in \{21,...,3\}} \textcolor[HTML]{84888b}{\% bottom right}
 \EFf{\{}\textcolor[HTML]{a626a4}{\char92{}node}\EFf{[black!3,rounded corners,draw,regular polygon,regular polygon sides=6, minimum size=}\textcolor[HTML]{a626a4}{\char92{}i} \EFf{cm,ultra thick] at (}\textcolor[HTML]{a626a4}{\$(current page.south east)+(-1.5,0.75)\$}\EFf{) \{\} ;\}}
 \textcolor[HTML]{a626a4}{\char92{}node}\EFf{[fill=black!3,rounded corners,regular polygon,regular polygon sides=6, minimum size=2 cm,ultra thick] at (}\textcolor[HTML]{a626a4}{\$(current page.south east)+(-1.5,0.75)\$}\EFf{) \{\};}
 \textcolor[HTML]{a626a4}{\char92{}node}\EFf{[align=center, scale=1.4] at (}\textcolor[HTML]{a626a4}{\$(current page.south east)+(-1.5,0.75)\$}\EFf{) \{}\textcolor[HTML]{a626a4}{\char92{}usebox}\textcolor[HTML]{a626a4}{\char92{}orgicon}\EFf{\};}
 \textcolor[HTML]{84888b}{\%\%} \textcolor[HTML]{84888b}{Text \%\%}
 \textcolor[HTML]{a626a4}{\char92{}node}\EFf{[left, align=right, black, text width=0.8}\textcolor[HTML]{a626a4}{\char92{}paperwidth}\EFf{, minimum height=3cm, rounded corners,font=}\textcolor[HTML]{a626a4}{\char92{}Huge}\textcolor[HTML]{a626a4}{\textbf{\char92{}bfseries}}\EFf{] at (}\textcolor[HTML]{a626a4}{\$(current page.north east)+(-2,-8.5)\$}\EFf{)}
 \EFf{\{}\textcolor[HTML]{a626a4}{\char92{}@title}\EFf{\};}
 \textcolor[HTML]{a626a4}{\char92{}node}\EFf{[left, align=right, black, text width=0.8}\textcolor[HTML]{a626a4}{\char92{}paperwidth}\EFf{, minimum height=2cm, rounded corners, font=}\textcolor[HTML]{a626a4}{\char92{}Large}\EFf{] at (}\textcolor[HTML]{a626a4}{\$(current page.north east)+(-2,-11.8)\$}\EFf{)}
 \EFf{\{}\textcolor[HTML]{a626a4}{\char92{}scshape} \textcolor[HTML]{a626a4}{\textbf{\char92{}@author}}\EFf{\};}
 \textcolor[HTML]{a626a4}{\char92{}renewcommand}\EFf{\{}\textcolor[HTML]{a626a4}{\char92{}baselinestretch}\EFf{\}\{0.75\}}
 \textcolor[HTML]{a626a4}{\char92{}node}\EFf{[align=center,rounded corners,fill=black!3,text=black,regular polygon,regular polygon sides=6, minimum size=2.5 cm,inner sep=0, font=}\textcolor[HTML]{a626a4}{\char92{}Large}\textcolor[HTML]{a626a4}{\textbf{\char92{}bfseries}} \EFf{] at (}\textcolor[HTML]{a626a4}{\$(current page.west)+(2.5,-4.2)\$}\EFf{)}
 \EFf{\{}\textcolor[HTML]{a626a4}{\char92{}@date}\EFf{\};}
 \textcolor[HTML]{a626a4}{\char92{}end}\EFf{\{tikzpicture\}}
 \textcolor[HTML]{a626a4}{\char92{}let}\textcolor[HTML]{a626a4}{\char92{}today}\textcolor[HTML]{a626a4}{\char92{}oldtoday}
 \textcolor[HTML]{a626a4}{\textbf{\char92{}clearpage}}\}
\textbf{\char92{}makeatother}
\end{Verbatim}
\end{Code}

Now we've got a nice cover page to work with, we just need to use it every now
and then. Adding this to \verb~#+options~ feels most appropriate.
Let's have the \verb~coverpage~ option accept \verb~auto~ as a value and then decide whether
or not a cover page should be used based on the word count --- I'll have this be
the global default. Then we just want to insert a \LaTeX{} snippet tweak the
subtitle format to use the cover page.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{org-latex-cover-page} 'auto
 \EFd{"When t, use a cover page by default.}
\EFd{When auto, use a cover page when the document's wordcount exceeds}
\EFd{`}\textcolor[HTML]{b751b6}{\textit{org-latex-cover-page-wordcount-threshold}}\EFd{'.}

\EFd{Set with \#+option: coverpage:\{yes,auto,no\} in org buffers."})
(\EFk{defvar} \EFv{org-latex-cover-page-wordcount-threshold} 5000
 \EFd{"Document word count at which a cover page will be used automatically.}
\EFd{This condition is applied when cover page option is set to auto."})
(\EFk{defvar} \EFv{org-latex-subtitle-coverpage-format} \EFs{"\char92{}\char92{}\char92{}\char92{}\char92{}\char92{}bigskip\char92{}n\char92{}\char92{}LARGE\char92{}\char92{}mdseries\char92{}\char92{}itshape\char92{}\char92{}color\{black!80\} \%s\char92{}\char92{}par"}
 \EFd{"Variant of `}\textcolor[HTML]{b751b6}{\textit{org-latex-subtitle-format}}\EFd{' to use with the cover page."})
(\EFk{defvar} \EFv{org-latex-cover-page-maketitle}
 <<grab(\EFs{"latex-cover-page"})>>
 \EFs{"LaTeX preamble snippet that sets \char92{}\char92{}maketitle to produce a cover page."})

(eval '(cl-pushnew '(\EFb{:latex-cover-page} nil \EFs{"coverpage"} org-latex-cover-page)
 (org-export-backend-options (org-export-get-backend 'latex))))

(\EFk{defun} \EFf{org-latex-cover-page-p} ()
 \EFd{"Whether a cover page should be used when exporting this Org file."}
 (\EFk{pcase} (\EFk{or} (car
 (delq nil
 (mapcar
 (\EFk{lambda} (opt-line)
 (plist-get (org-export--parse-option-keyword opt-line 'latex) \EFb{:latex-cover-page}))
 (cdar (org-collect-keywords '(\EFs{"OPTIONS"}))))))
 org-latex-cover-page)
 ((\EFk{or} 't 'yes) t)
 ('auto (\EFk{when} (> (count-words (point-min) (point-max)) org-latex-cover-page-wordcount-threshold) t))
 (_ nil)))

(\EFk{defadvice!} org-latex-set-coverpage-subtitle-format-a (contents info)
 \EFd{"Set the subtitle format when a cover page is being used."}
 \EFb{:before} \#'org-latex-template
 (\EFk{when} (org-latex-cover-page-p)
 (\EFk{setf} info (plist-put info \EFb{:latex-subtitle-format} org-latex-subtitle-coverpage-format))))

(\EFk{org-export-update-features} 'latex
 (cover-page
 \EFb{:condition} (org-latex-cover-page-p)
 \EFb{:snippet} org-latex-cover-page-maketitle
 \EFb{:order} 9))
\end{Verbatim}
\end{Code}
\item Condensed lists
\label{sec:org097cd00}

\LaTeX{} is generally pretty good by default, but it's \emph{really} generous with how
much space it puts between list items by default. I'm generally not a fan.

Thankfully this is easy to correct with a small snippet:
\begin{Code}
\begin{Verbatim}
\color{EFD}\textcolor[HTML]{e45649}{\char92{}newcommand}\{\textcolor[HTML]{a626a4}{\char92{}setuplistspacing}\}\{\textcolor[HTML]{e45649}{\char92{}setlength}\EFf{\{}\textcolor[HTML]{6a1868}{\char92{}itemsep}\EFf{\}\{}\textcolor[HTML]{6a1868}{-0.5ex}\EFf{\}}\textcolor[HTML]{e45649}{\char92{}setlength}\EFf{\{}\textcolor[HTML]{6a1868}{\char92{}parskip}\EFf{\}\{}\textcolor[HTML]{6a1868}{1.5ex}\EFf{\}}\textcolor[HTML]{e45649}{\char92{}setlength}\EFf{\{}\textcolor[HTML]{6a1868}{\char92{}parsep}\EFf{\}\{}\textcolor[HTML]{6a1868}{0pt}\EFf{\}}\}
\char92{}let\char92{}olditem\char92{}itemize\textcolor[HTML]{e45649}{\char92{}renewcommand}\{\textcolor[HTML]{a626a4}{\char92{}itemize}\}\{\textcolor[HTML]{a626a4}{\char92{}olditem}\textcolor[HTML]{a626a4}{\char92{}setuplistspacing}\}
\char92{}let\char92{}oldenum\char92{}enumerate\textcolor[HTML]{e45649}{\char92{}renewcommand}\{\textcolor[HTML]{a626a4}{\char92{}enumerate}\}\{\textcolor[HTML]{a626a4}{\char92{}oldenum}\textcolor[HTML]{a626a4}{\char92{}setuplistspacing}\}
\char92{}let\char92{}olddesc\char92{}description\textcolor[HTML]{e45649}{\char92{}renewcommand}\{\textcolor[HTML]{a626a4}{\char92{}description}\}\{\textcolor[HTML]{a626a4}{\char92{}olddesc}\textcolor[HTML]{a626a4}{\char92{}setuplistspacing}\}
\end{Verbatim}
\end{Code}

Then we can just hook this in with our clever preamble.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{org-latex-condense-lists} t
 \EFd{"Reduce the space between list items."})
(\EFk{defvar} \EFv{org-latex-condensed-lists}
 <<grab(\EFs{"latex-condense-lists"})>>
 \EFs{"LaTeX preamble snippet that reduces the space between list items."})

(\EFk{org-export-update-features} 'latex
 (condensed-lists
 \EFb{:condition} (\EFk{and} org-latex-condense-lists \EFs{"\char94{}[\char92{}t]*[-+]}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{\char94{}[\char92{}t]*[1Aa][.)] "})
 \EFb{:snippet} org-latex-condensed-lists
 \EFb{:order} 0.7))
\end{Verbatim}
\end{Code}
\item Upright parentheses in italic text
\label{sec:org3364899}

TODO, see \url{https://tex.stackexchange.com/a/13057/167605}
\item Pretty code blocks
\label{sec:org6ce8ec4}

We could just use minted for syntax highlighting --- however, we can do better!
The \verb~engrave-faces~ package lets us use Emacs' font-lock for syntax highlighting,
exporting that as \LaTeX{} commands.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} engrave-faces \EFb{:recipe} (\EFb{:local-repo} \EFs{"lisp/engrave-faces"}))
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} engrave-faces-latex
 \EFb{:after} ox-latex)
\end{Verbatim}
\end{Code}

Using this as in \LaTeX{} exports is now as easy as

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} org-latex-listings 'engraved
 org-latex-engraved-theme 'doom-one-light)
\end{Verbatim}
\end{Code}

One little annoyance with this is the interaction between microtype and \verb~Verbatim~
environments. Protrusion is not desirable here. Thankfully, we can patch the
\verb~Verbatim~ environment to turn off protrusion locally.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{org-export-update-features} 'latex
 (no-protrusion-in-code
 \EFb{:condition} t
 \EFb{:when} (microtype engraved-code)
 \EFb{:snippet} \EFs{"\char92{}\char92{}ifcsname Code\char92{}\char92{}endcsname\char92{}n \char92{}\char92{}let\char92{}\char92{}oldcode\char92{}\char92{}Code\char92{}\char92{}renewcommand\{\char92{}\char92{}Code\}\{\char92{}\char92{}microtypesetup\{protrusion=false\}\char92{}\char92{}oldcode\}\char92{}n\char92{}\char92{}fi"}
 \EFb{:after} (engraved-code microtype)))
\end{Verbatim}
\end{Code}

At some point it would be nice to make the box colours easily customisable. At
the moment it's fairly easy to change the syntax highlighting colours with
\Verb[commandchars=\\\{\},highlightcolor=white!95!black!80!blue,breaklines=true,breaksymbol=\color{white!60!black}\tiny\ensuremath{\hookrightarrow}]{\color{EFD}(\EFk{setq} engrave-faces-preset-styles (engrave-faces-generate-preset))},
but perhaps a toggle which specifies whether to use the default values, the
current theme, or any named theme could be a good idea. It should also possible
to set the box background dynamically to match. The named theme could work by
looking for a style definition with a certain name in a cache dir, and then
switching to that theme and producing (and saving) the style definition if it
doesn't exist.

Now let's have the example block be styled similarly.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defadvice!} org-latex-example-block-engraved (orig-fn example-block contents info)
 \EFd{"Like `}\textcolor[HTML]{b751b6}{\textit{org-latex-example-block}}\EFd{', but supporting an engraved backend"}
 \EFb{:around} \#'org-latex-example-block
 (\EFk{let} ((output-block (funcall orig-fn example-block contents info)))
 (\EFk{if} (eq 'engraved (plist-get info \EFb{:latex-listings}))
 (format \EFs{"\char92{}\char92{}begin\{Code\}[alt]\char92{}n\%s\char92{}n\char92{}\char92{}end\{Code\}"} output-block)
 output-block)))
\end{Verbatim}
\end{Code}

In addition to the vastly superior visual output, this should also be much
faster to compile for code-heavy documents (like this config).

Performing a little benchmark with this document, I find that this is indeed the
case.

\begin{center}
\begin{tabular}{lllr}
\toprule
\LaTeX{} syntax highlighting backend & Compile time & Overhead & Overhead ratio\\
\midrule
verbatim & 12 s & 0 & 0.0\\
lstlistings & 15 s & 3 s & 0.2\\
Engrave & 34 s & 22 s & 1.8\\
Pygments (Minted) & 184 s & 172 s & 14.3\\
\bottomrule
\end{tabular}
\end{center}

Treating the verbatim (no syntax highlighting) result as a baseline; this
rudimentary test suggest that \verb~engrave-faces~ is around eight times faster than
\verb~pygments~, and takes three times as long as no syntax highlighting (verbatim).
\item Julia code blocks
\label{sec:org59f272a}

Julia code has fantastic support for unicode! The downside is that \verb~pdflatex~ is
\emph{still} a pain to use with unicode symbols. The solution --- \verb~lualatex~. Now we just
need to make it automatic

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defadvice!} org-latex-pick-compiler (_contents info)
 \EFb{:before} \#'org-latex-template
 \EFb{:before} \#'org-beamer-template
 (\EFk{when} (\EFk{and} (memq 'code (plist-get info \EFb{:features}))
 (memq 'julia-code (plist-get info \EFb{:features}))
 (\EFk{save-excursion}
 (goto-char (point-min))
 (re-search-forward \EFs{"[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{\char92{}x00-\char92{}x7F\char92{}u200b]"} nil t)))
 (\EFk{setf} info (plist-put
 (\EFk{if} (member \#'+org-latex-replace-non-ascii-chars (plist-get info \EFb{:filter-final-output}))
 (plist-put info \EFb{:filter-final-output}
 (delq \#'+org-latex-replace-non-ascii-chars (plist-get info \EFb{:filter-final-output})))
 info)
 \EFb{:latex-compiler} \EFs{"lualatex"}))))
\end{Verbatim}
\end{Code}

Then a font with unicode support must be used. JuliaMono is the obvious choice,
and we can use it with the \verb~fontspec~ package. In future it may be nice to set
this just as a fallback font (when it isn't a pain to do so).

\begin{Code}
\begin{Verbatim}
\color{EFD}\char92{}ifcsname directlua\char92{}endcsname
 \textcolor[HTML]{e45649}{\char92{}usepackage}\{\EFf{fontspec}\}
 \char92{}newfontfamily\char92{}JuliaMono\{JuliaMono-Regular.ttf\}[Path=/usr/share/fonts/truetype/, Extension=.ttf]
 \char92{}newfontface\char92{}JuliaMonoRegular\{JuliaMono-Regular\}
 \char92{}setmonofont\{JuliaMonoRegular\}[Contextuals=Alternate, Scale=MatchLowercase]
\char92{}fi
\end{Verbatim}
\end{Code}

Now all that remains is to hook this into the preamble generation.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{org-latex-julia-mono-fontspec}
 <<grab(\EFs{"julia-mono-fontspec"})>>
 \EFs{"LaTeX preamble snippet that sets LuaLaTeX's fontspec to use Julia Mono."})

(\EFk{org-export-update-features} 'latex
 (julia-code
 \EFb{:condition} \EFs{"\char94{}[\char92{}t]*\#\char92{}\char92{}+begin_src julia}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{\char94{}[\char92{}t]*\#\char92{}\char92{}+BEGIN_SRC julia}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{src_julia"}
 \EFb{:when} code
 \EFb{:snippet} org-latex-julia-mono-fontspec
 \EFb{:after} custom-font
 \EFb{:order} 0)
 (microtype-lualatex
 \EFb{:condition} t
 \EFb{:when} (microtype julia-code)
 \EFb{:prevents} microtype
 \EFb{:snippet} \EFs{"\char92{}\char92{}usepackage[activate=\{true,nocompatibility\},final,tracking=true,factor=2000]\{microtype\}\char92{}n"}
 \EFb{:order} 0.1)
 (custom-font-no-mono
 \EFb{:condition} t
 \EFb{:when} julia-code
 \EFb{:prevents} custom-font
 \EFb{:snippet} (org-latex-fontset \EFb{:serif} \EFb{:sans})
 \EFb{:order} 0))
\end{Verbatim}
\end{Code}
\item Emojis
\label{sec:org91f27a8}

It would be nice to actually include emojis where used.
Thanks to \verb~emojify~, we have a folder of emoji images just sitting and waiting to
be used ð���.

First up, we want to detect when emojis are actually present. Manually
constructing a regex for this would be a huge pain with the way the codepoints
are scattered around, but thanks to \texttt{char-script-table} we don't have to!

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{org-latex-emoji--rx}
 (\EFk{let} (emojis)
 (map-char-table
 (\EFk{lambda} (char set)
 (\EFk{when} (eq set 'emoji)
 (\EFk{push} (copy-tree char) emojis)))
 char-script-table)
 (rx-to-string `(any ,@emojis)))
 \EFd{"A regexp to find all emoji-script characters."})
\end{Verbatim}
\end{Code}

Once we've found an Emoji, we would like to include it in \LaTeX{}. We'll set up
the infrastructure for this with the help of two packages
\begin{itemize}
\item \verb~accsupp~, to provide the copy-paste text overlay
\item \verb~transparent~, to provide invisible text to enable text copying at the image
\end{itemize}

With these packages we can insert an emoji image at the point and then place
some invisible text on-top of it that copies as the emoji codepoint.

Unfortunately though, \verb~accsupp~ doesn't seem to accept five digit hexadecimal
codepoints at this point in time, instead we need to convert to UTF-16 surrogate
pairs, so we'll give our \verb~\DeclareEmoji~ command two arguments: one for the
non-surrogate form required by \verb~\DeclareUnicodeCharacter~, and another for the
surrogate form required by \verb~\BeginAccSupp~.

\begin{Code}
\begin{Verbatim}
\color{EFD}\textcolor[HTML]{e45649}{\char92{}usepackage}\{\EFf{accsupp}\}
\EFcd{\%} \EFc{The transparent package is also needed, but will be loaded later.}
\textcolor[HTML]{e45649}{\char92{}newsavebox}\textcolor[HTML]{a626a4}{\char92{}emojibox}

\textcolor[HTML]{e45649}{\char92{}NewDocumentCommand}\textcolor[HTML]{a626a4}{\char92{}DeclareEmoji}\{\EFf{m m}\}\{\textcolor[HTML]{84888b}{\% UTF-8 codepoint, UTF-16 codepoint}
 \textcolor[HTML]{a626a4}{\char92{}DeclareUnicodeCharacter}\EFf{\{\#1\}\{}\textcolor[HTML]{84888b}{\%}
 \textcolor[HTML]{a626a4}{\char92{}sbox}\textcolor[HTML]{a626a4}{\char92{}emojibox}\EFf{\{}\textcolor[HTML]{a626a4}{\char92{}raisebox}\EFf{\{OFFSET\}\{}\textcolor[HTML]{84888b}{\%}
 \textcolor[HTML]{a626a4}{\char92{}includegraphics}\EFf{[height=HEIGHT]\{EMOJI-FOLDER/\#1\}\}\}}\textcolor[HTML]{84888b}{\%}
 \textcolor[HTML]{a626a4}{\char92{}usebox}\textcolor[HTML]{a626a4}{\char92{}emojibox}
 \textcolor[HTML]{a626a4}{\char92{}llap}\EFf{\{}\textcolor[HTML]{84888b}{\%}
 \textcolor[HTML]{a626a4}{\char92{}resizebox}\EFf{\{}\textcolor[HTML]{a626a4}{\char92{}wd}\textcolor[HTML]{a626a4}{\char92{}emojibox}\EFf{\}\{}\textcolor[HTML]{a626a4}{\char92{}height}\EFf{\}\{}\textcolor[HTML]{84888b}{\%}
 \textcolor[HTML]{a626a4}{\char92{}BeginAccSupp}\EFf{\{method=hex,unicode,ActualText=\#2\}}\textcolor[HTML]{84888b}{\%}
 \textcolor[HTML]{a626a4}{\char92{}texttransparent}\EFf{\{0\}\{X\}}\textcolor[HTML]{84888b}{\%}
 \textcolor[HTML]{a626a4}{\char92{}EndAccSupp}\EFf{\{\}\}\}\}}\}
\end{Verbatim}
\end{Code}

Once we know that there are emojis present we can add a bit of preamble to the
buffer to make insertion easier.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defconst} \EFv{org-latex-emoji-base-dir}
 (expand-file-name \EFs{"emojis/"} doom-cache-dir)
 \EFd{"Directory where emojis should be saved and look for."})

(\EFk{defvar} \EFv{org-latex-emoji-sets}
 '((\EFs{"twemoji"} \EFb{:url} \EFs{"https://github.com/jdecked/twemoji/archive/refs/tags/v15.1.0.zip"}
 \EFb{:folder} \EFs{"twemoji-15.1.0/assets/svg"} \EFb{:height} \EFs{"1.8ex"} \EFb{:offset} \EFs{"-0.3ex"})
 (\EFs{"twemoji-bw"} \EFb{:url} \EFs{"https://github.com/youdly/twemoji-color-font/archive/refs/heads/v11-release.zip"}
 \EFb{:folder} \EFs{"twemoji-color-font-11-release/assets/builds/svg-bw"} \EFb{:height} \EFs{"1.8ex"} \EFb{:offset} \EFs{"-0.3ex"})
 (\EFs{"openmoji"} \EFb{:url} \EFs{"https://github.com/hfg-gmuend/openmoji/releases/latest/download/openmoji-svg-color.zip"}
 \EFb{:height} \EFs{"2.2ex"} \EFb{:offset} \EFs{"-0.45ex"})
 (\EFs{"openmoji-bw"} \EFb{:url} \EFs{"https://github.com/hfg-gmuend/openmoji/releases/latest/download/openmoji-svg-black.zip"}
 \EFb{:height} \EFs{"2.2ex"} \EFb{:offset} \EFs{"-0.45ex"})
 (\EFs{"emojione"} \EFb{:url} \EFs{"https://github.com/joypixels/emojione/archive/refs/tags/v2.2.7.zip"}
 \EFb{:folder} \EFs{"emojione-2.2.7/assets/svg"}) \EFcd{;} \EFc{Warning, poor coverage}
 (\EFs{"noto"} \EFb{:url} \EFs{"https://github.com/googlefonts/noto-emoji/archive/refs/tags/v2.038.zip"}
 \EFb{:folder} \EFs{"noto-emoji-2.038/svg"} \EFb{:file-regexp} \EFs{"\char94{}emoji_u}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[0-9a-f_]+}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{"}
 \EFb{:height} \EFs{"2.0ex"} \EFb{:offset} \EFs{"-0.3ex"}))
 \EFd{"An alist of plistst of emoji sets.}
\EFd{Specified with the minimal form:}
 \EFd{(\char92{}"SET-NAME\char92{}" :url \char92{}"URL\char92{}")}
\EFd{The following optional parameters are supported:}
 \EFd{:folder (defaults to \char92{}"\char92{}")}
 \EFd{The folder within the archive where the emojis exist.}
 \EFd{:file-regexp (defaults to nil)}
 \EFd{Pattern with the emoji code point as the first capture group.}
 \EFd{:height (defaults to \char92{}"1.8ex\char92{}")}
 \EFd{Height of the emojis to be used.}
 \EFd{:offset (defaults to \char92{}"-0.3ex\char92{}")}
 \EFd{Baseline offset of the emojis."})

(\EFk{defconst} \EFv{org-latex-emoji-keyword}
 \EFs{"LATEX_EMOJI_SET"}
 \EFd{"Keyword used to set the emoji set from `}\textcolor[HTML]{b751b6}{\textit{org-latex-emoji-sets}}\EFd{'."})

(\EFk{defvar} \EFv{org-latex-emoji-preamble} <<grab(\EFs{"latex-emoji-preamble"})>>
 \EFs{"LaTeX preamble snippet that will allow for emojis to be declared.}
\EFs{Contains the string \char92{}"EMOJI-FOLDER\char92{}" which should be replaced with}
\EFs{the path to the emoji folder."})

(\EFk{defun} \EFf{org-latex-emoji-utf16} (char)
 \EFd{"Return the pair of UTF-16 surrogates that represent CHAR."}
 (list
 (+ \#xD7C0 (ash char -10))
 (+ \#xDC00 (logand char \#x03FF))))

(\EFk{defun} \EFf{org-latex-emoji-declaration} (char)
 \EFd{"Construct the LaTeX command declaring CHAR as an emoji."}
 (format \EFs{"\char92{}\char92{}DeclareEmoji\{\%X\}\{\%s\} \%\% \%s"}
 char
 (\EFk{if} (< char \#xFFFF)
 (format \EFs{"\%X"} char)
 (apply \#'format \EFs{"\%X\%X"} (org-latex-emoji-utf16 char)))
 (capitalize (get-char-code-property char 'name))))

(\EFk{defun} \EFf{org-latex-emoji-fill-preamble} (emoji-folder \EFt{\&optional} height offset svg-p)
 \EFd{"Fill in `}\textcolor[HTML]{b751b6}{\textit{org-latex-emoji-preamble}}\EFd{' with EMOJI-FOLDER, HEIGHT, and OFFSET.}
\EFd{If SVG-P is set \char92{}"includegraphics\char92{}" will be replaced with \char92{}"includesvg\char92{}"."}
 (\EFk{let*} (case-fold-search
 (filled-preamble
 (replace-regexp-in-string
 \EFs{"HEIGHT"}
 (\EFk{or} height \EFs{"1.8ex"})
 (replace-regexp-in-string
 \EFs{"OFFSET"}
 (\EFk{or} offset \EFs{"-0.3ex"})
 (replace-regexp-in-string
 \EFs{"EMOJI-FOLDER"}
 (directory-file-name
 (\EFk{if} (getenv \EFs{"HOME"})
 (replace-regexp-in-string
 (regexp-quote (getenv \EFs{"HOME"}))
 \EFs{"\char92{}\char92{}string\char126{}"}
 emoji-folder t t)
 emoji-folder))
 org-latex-emoji-preamble t t)
 t t)
 t t)))
 (\EFk{if} svg-p
 (replace-regexp-in-string
 \EFs{"includegraphics"} \EFs{"includesvg"}
 filled-preamble t t)
 filled-preamble)))

(\EFk{defun} \EFf{org-latex-emoji-setup} (\EFt{\&optional} info)
 \EFd{"Construct a preamble snippet to set up emojis based on INFO."}
 (\EFk{let*} ((emoji-set
 (\EFk{or} (org-element-map
 (plist-get info \EFb{:parse-tree})
 'keyword
 (\EFk{lambda} (keyword)
 (\EFk{and} (string= (org-element-property \EFb{:key} keyword)
 org-latex-emoji-keyword)
 (org-element-property \EFb{:value} keyword)))
 info t)
 (caar org-latex-emoji-sets)))
 (emoji-spec (cdr (assoc emoji-set org-latex-emoji-sets)))
 (emoji-folder
 (expand-file-name emoji-set org-latex-emoji-base-dir))
 (emoji-svg-only
 (\EFk{and} (file-exists-p emoji-folder)
 (not (cl-some
 (\EFk{lambda} (path)
 (not (string= (file-name-extension path) \EFs{"svg"})))
 (directory-files emoji-folder nil \EFs{"\char92{}\char92{}....\$"}))))))
 (\EFk{cond}
 ((not emoji-spec)
 (\EFwr{error} \EFs{"Emoji set `}\textcolor[HTML]{b751b6}{\%s}\EFs{' is unknown. Try one of: \%s"} emoji-set
 (string-join (mapcar \#'car org-latex-emoji-sets) \EFs{", "})))
 ((not (file-exists-p emoji-folder))
 (\EFk{if} (\EFk{and} (not noninteractive)
 (yes-or-no-p (format \EFs{"Emoji set `}\textcolor[HTML]{b751b6}{\%s}\EFs{' is not installed, would you like to install it?"} emoji-set)))
 (org-latex-emoji-install
 emoji-set
 (\EFk{or} (executable-find \EFs{"cairosvg"}) (executable-find \EFs{"inkscape"})))
 (\EFwr{error} \EFs{"Emoji set `}\textcolor[HTML]{b751b6}{\%s}\EFs{' is not installed"} emoji-set))))
 (org-latex-emoji-fill-preamble
 emoji-folder (plist-get emoji-spec \EFb{:height})
 (plist-get emoji-spec \EFb{:offset}) emoji-svg-only)))

(\EFk{org-export-update-features} 'latex
 (emoji-setup \EFcd{;} \EFc{The precompilable bit}
 \EFb{:condition} (\EFk{save-excursion}
 (goto-char (point-min))
 (re-search-forward org-latex-emoji--rx nil t))
 \EFb{:requires} (image pkg-transparent)
 \EFb{:snippet} org-latex-emoji-setup
 \EFb{:order} 3)
 (pkg-transparent \EFcd{;} \EFc{Part of emoji setup, but non-precompilable.}
 \EFb{:snippet} \EFs{"\char92{}\char92{}usepackage\{transparent\}"}
 \EFb{:order} 84)
 (emoji-declarations
 \EFb{:condition} t
 \EFb{:when} emoji-setup
 \EFb{:snippet}
 (mapconcat
 \#'org-latex-emoji-declaration
 (\EFk{let} (unicode-cars)
 (\EFk{save-excursion}
 (goto-char (point-min))
 (\EFk{while} (re-search-forward org-latex-emoji--rx nil t)
 (\EFk{push} (aref (match-string 0) 0) unicode-cars)))
 (cl-delete-duplicates unicode-cars))
 \EFs{"\char92{}n"})
 \EFb{:order} 85))
\end{Verbatim}
\end{Code}

Unfortunately this isn't a global solution, as LuaLaTeX doesn't have
\verb~\DeclareUnicodeCharacter~. However, we can fix this with a hack for the one case
when we know it will be used.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{org-export-update-features} 'latex
 (emoji-lualatex-hack
 \EFb{:condition} t
 \EFb{:when} (emoji julia-code) \EFcd{;} \EFc{LuaLaTeX is used with julia-code.}
 \EFb{:snippet}
 \EFs{"\char92{}\char92{}usepackage\{newunicodechar\}}
\EFs{\char92{}\char92{}newcommand\{\char92{}\char92{}DeclareUnicodeCharacter\}[2]\{\%}
 \EFs{\char92{}\char92{}begingroup\char92{}\char92{}lccode`|=\char92{}\char92{}string\char92{}"\#1\char92{}\char92{}relax}
 \EFs{\char92{}\char92{}lowercase\{\char92{}\char92{}endgroup\char92{}\char92{}newunicodechar\{|\}\}\{\#2\}\}"}
 \EFb{:before} emoji))
\end{Verbatim}
\end{Code}

This works fairly nicely, there's just one little QOL upgrade that we can
perform. \verb~emojify~ downloads the \texttt{72x72} versions of Twemoji, however SVG versions
are also produced. We could use \texttt{inkscape} to convert those to PDFs, which would
likely be best for including.

This works fairly nicely, but it would be good to use \verb~.pdf~ forms whenever
possible. We can use \verb~texdef~ to check the file extension priority list.

\begin{Code}
\begin{Verbatim}
\color{EFD}texdef -t pdflatex -p graphicx Gin@extensions
\end{Verbatim}
\end{Code}

\phantomsection
\label{orgb2e289e}
\begin{verbatim}
\Gin@extensions:
macro:->.pdf,.png,.jpg,.mps,.jpeg,.jbig2,.jb2,.PDF,.PNG,.JPG,.JPEG,.JBIG2,.JB2,.eps
\end{verbatim}

Fantastic! We can see that \verb~.pdf~ actually comes first in the priority list.
Now we just need to fetch and convert the emoji images.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{org-latex-emoji-install} (set \EFt{\&optional} convert)
 \EFd{"Dowload, convert, and install emojis for use with LaTeX."}
 (\EFk{interactive}
 (list (completing-read \EFs{"Emoji set to install: "}
 (mapcar
 (\EFk{lambda} (set-spec)
 (\EFk{if} (file-exists-p (expand-file-name (car set-spec) org-latex-emoji-base-dir))
 (propertize (car set-spec) 'face 'font-lock-doc-face)
 (car set-spec)))
 org-latex-emoji-sets)
 nil t)
 (\EFk{if} (\EFk{or} (executable-find \EFs{"cairosvg"}) (executable-find \EFs{"inkscape"}))
 (yes-or-no-p \EFs{"Would you like to create .pdf forms of the Emojis (strongly recommended)?"})
 (message \EFs{"Install `}\textcolor[HTML]{b751b6}{cairosvg}\EFs{' (recommended) or `}\textcolor[HTML]{b751b6}{inkscape}\EFs{' to convert to PDF forms"})
 nil)))
 (\EFk{let} ((emoji-folder (expand-file-name set org-latex-emoji-base-dir)))
 (\EFk{when} (\EFk{or} (not (file-exists-p emoji-folder))
 (\EFk{and} (not noninteractive)
 (yes-or-no-p \EFs{"Emoji folder already present, would you like to re-download?"})
 (\EFk{progn} (delete-directory emoji-folder t) t)))
 (\EFk{let*} ((spec (cdr (assoc set org-latex-emoji-sets)))
 (dir (org-latex-emoji-install--download set (plist-get spec \EFb{:url})))
 (svg-dir (expand-file-name (\EFk{or} (plist-get spec \EFb{:folder}) \EFs{""}) dir)))
 (org-latex-emoji-install--install
 set svg-dir (plist-get spec \EFb{:file-regexp}))))
 (\EFk{when} convert
 (org-latex-emoji-install--convert (file-name-as-directory emoji-folder))))
 (message \EFs{"Emojis set `}\textcolor[HTML]{b751b6}{\%s}\EFs{' installed."} set))

(\EFk{defun} \EFf{org-latex-emoji-install--download} (name url)
 \EFd{"Download the emoji archive URL for the set NAME."}
 (\EFk{let*} ((dest-folder (make-temp-file (format \EFs{"\%s-"} name) t)))
 (message \EFs{"Downloading \%s..."} name)
 (\EFk{let} ((default-directory dest-folder))
 (call-process \EFs{"curl"} nil nil nil \EFs{"-sL"} url \EFs{"--output"} \EFs{"emojis.zip"})
 (message \EFs{"Unzipping"})
 (call-process \EFs{"unzip"} nil nil nil \EFs{"emojis.zip"})
 dest-folder)))

(\EFk{defun} \EFf{org-latex-emoji-install--install} (name dir \EFt{\&optional} filename-regexp)
 \EFd{"Install the emoji files in DIR to the NAME set folder.}
\EFd{If a FILENAME-REGEXP, only files matching this regexp will be moved,}
\EFd{and they will be renamed to the first capture group of the regexp."}
 (message \EFs{"Installing \%s emojis into emoji directory"} name)
 (\EFk{let} ((images (append (directory-files dir t \EFs{".*.svg"})
 (directory-files dir t \EFs{".*.pdf"})))
 (emoji-dir (file-name-as-directory
 (expand-file-name name org-latex-emoji-base-dir))))
 (\EFk{unless} (file-exists-p emoji-dir)
 (make-directory emoji-dir t))
 (mapc
 (\EFk{lambda} (image)
 (\EFk{if} filename-regexp
 (\EFk{when} (string-match filename-regexp (file-name-nondirectory image))
 (rename-file image
 (expand-file-name
 (file-name-with-extension
 (upcase (match-string 1 (file-name-nondirectory image)))
 (file-name-extension image))
 emoji-dir)
 t))
 (rename-file image
 (expand-file-name
 (file-name-with-extension
 (upcase (file-name-nondirectory image))
 (file-name-extension image))
 emoji-dir)
 t)))
 images)
 (message \EFs{"\%d emojis installed"} (length images))))

(\EFk{defun} \EFf{org-latex-emoji-install--convert} (dir)
 \EFd{"Convert all .svg files in DIR to .pdf forms.}
\EFd{Uses cairosvg if possible, falling back to inkscape."}
 (\EFk{let} ((default-directory dir))
 (\EFk{if} (executable-find \EFs{"cairosvg"}) \EFcd{;} \EFc{cairo's PDFs are \char126{}10\% smaller}
 (\EFk{let*} ((images (directory-files dir nil \EFs{".*.svg"}))
 (num-images (length images))
 (index 0)
 (max-threads (1- (string-to-number (shell-command-to-string \EFs{"nproc"}))))
 (threads 0))
 (\EFk{while} (< index num-images)
 (\EFk{setf} threads (1+ threads))
 (\EFk{let} (message-log-max)
 (message \EFs{"Converting emoji \%d/\%d (\%s)"} (1+ index) num-images (nth index images)))
 (make-process \EFb{:name} \EFs{"cairosvg"}
 \EFb{:command} (list \EFs{"cairosvg"} (nth index images) \EFs{"-o"} (concat (file-name-sans-extension (nth index images)) \EFs{".pdf"}))
 \EFb{:sentinel} (\EFk{lambda} (proc msg)
 (\EFk{when} (memq (process-status proc) '(exit signal))
 (\EFk{setf} threads (1- threads)))))
 (\EFk{setq} index (1+ index))
 (\EFk{while} (> threads max-threads)
 (sleep-for 0.01)))
 (\EFk{while} (> threads 0)
 (sleep-for 0.01)))
 (message \EFs{"Cairosvg not found. Proceeding with inkscape as a fallback."})
 (shell-command \EFs{"inkscape --batch-process --export-type='}\textcolor[HTML]{b751b6}{pdf}\EFs{' *.svg"}))
 (message \EFs{"Finished conversion!"})))
\end{Verbatim}
\end{Code}
\item Remove non-ascii chars
\label{sec:orga372d15}

When using \texttt{pdflatex}, almost non-ascii characters are generally problematic, and
don't appear in the pdf. It's preferable to see that there was \emph{some} character
which wasn't displayed as opposed to nothing.

We check every non-ascii character to make sure it's not a character encoded by
the \verb~inputenc~ packages when loaded with the \verb~utf8~ option. We'll also allow
box-drawing characters since they can be mostly supported with \verb~pmboxdraw~.
Finally, we see if we have our own \LaTeX{} conversion we can apply and if there is
none we replace the non-ascii char with \verb~Â¿~.

No to make sure we only remove characters that can't be displayed, we check
\verb~/usr/share/texmf/tex/latex/base/utf8enc.dfu~.

We just need to make sure this is appended to the list of filter functions,
since we want to let emoji processing occur first.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{+org-pdflatex-inputenc-encoded-chars}
 \EFs{"[[:ascii:]\char92{}u00A0-\char92{}u01F0\char92{}u0218-\char92{}u021BÈ²È³È·Ë�Ë�Ë�Ë�Ë�Ë�Ë�\char92{}u0400-\char92{}u04FFá¸�á¸�áº�\char92{}u200B\char92{}u200C\char92{}u2010-\char92{}u201Eâ� â�¡â�¢â�¦â�°â�±â�¹â�ºâ�»â�½â��â��â��â�¡â�¤â�¦â�©â�«â�¬â�±â��â��â��â��â� â�¢â�¦â�§â�®â��â��â��â��â�©â�ªâ�¢â�£â�¦â�¯â�ªâ�¨â�©á¸ á¸¡\char92{}uFB00-\char92{}uFB06\char92{}u2500-\char92{}u259F]"})

(\EFk{defun} \EFf{+org-latex-replace-non-ascii-chars} (text backend info)
 \EFd{"Replace non-ascii chars with \char92{}\char92{}char\char92{}"XYZ forms."}
 (\EFk{when} (\EFk{and} (org-export-derived-backend-p backend 'latex)
 (string= (plist-get info \EFb{:latex-compiler}) \EFs{"pdflatex"}))
 (\EFk{let} (case-replace)
 (replace-regexp-in-string \EFs{"[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{[:ascii:]]"}
 (\EFk{lambda} (nonascii)
 (\EFk{if} (\EFk{or} (string-match-p +org-pdflatex-inputenc-encoded-chars nonascii)
 (string-match-p org-latex-emoji--rx nonascii))
 nonascii
 (\EFk{or} (cdr (assoc nonascii +org-latex-non-ascii-char-substitutions))
 \EFs{"Â¿"})))
 text))))

(add-to-list 'org-export-filter-plain-text-functions \#'+org-latex-replace-non-ascii-chars t)
\end{Verbatim}
\end{Code}

Now, there are some symbols that aren't included in \verb~inputenc~, but we should be
able to handle anyway. For them we define a table of \LaTeX{} translations

\begin{table}[htbp]
\label{tab:org91f0694}
\centering
\begin{tabular}{ll}
\toprule
Character & \LaTeX{}\\
\midrule
\(\alpha\) & \(\alpha\)\\
\(\beta\) & \(\beta\)\\
\(\gamma\) & \(\gamma\)\\
\(\delta\) & \(\delta\)\\
\(\epsilon\) & \(\epsilon\)\\
\(\varepsilon\) & \(\varepsilon\)\\
\(\zeta\) & \(\zeta\)\\
\(\eta\) & \(\eta\)\\
\(\theta\) & \(\theta\)\\
\(\vartheta\) & \(\vartheta\)\\
\(\iota\) & \(\iota\)\\
\(\kappa\) & \(\kappa\)\\
\(\lambda\) & \(\lambda\)\\
Î¼ & \(\mu\)\\
\(\nu\) & \(\nu\)\\
\(\xi\) & \(\xi\)\\
\(\pi\) & \(\pi\)\\
\(\varpi\) & \(\varpi\)\\
\(\rho\) & \(\rho\)\\
\(\varrho\) & \(\varrho\)\\
\(\sigma\) & \(\sigma\)\\
\(\varsigma\) & \(\varsigma\)\\
\(\tau\) & \(\tau\)\\
\(\upsilon\) & \(\upsilon\)\\
\(\phi\) & \(\phi\)\\
\(\varphi\) & \(\varphi\)\\
\(\psi\) & \(\psi\)\\
Ï� & \(\omega\)\\
\(\GAMMA\) & \(\Gamma\)\\
\(\DELTA\) & \(\Delta\)\\
\(\THETA\) & \(\Theta\)\\
\(\LAMBDA\) & \(\Lambda\)\\
\(\XI\) & \(\Xi\)\\
\(\PI\) & \(\Pi\)\\
\(\SIGMA\) & \(\Sigma\)\\
\(\UPSILON\) & \(\Upsilon\)\\
\(\PHI\) & \(\Phi\)\\
\(\PSI\) & \(\Psi\)\\
Î© & \(\Omega\)\\
\(\aleph\) & \(\aleph\)\\
\(\beth\) & \(\beth\)\\
\(\daleth\) & \(\daleth\)\\
\(\gimel\) & \(\gimel\)\\
\bottomrule
\end{tabular}
\end{table}

\begin{Code}
\begin{Verbatim}
\color{EFD}(replace-regexp-in-string
 \EFs{" '(("} \EFs{"\char92{}n '(("}
 (replace-regexp-in-string
 \EFs{") ("} \EFs{")\char92{}n ("}
 (prin1-to-string
 `(\EFk{defvar} \EFv{+org-latex-non-ascii-char-substitutions}
 ',(mapcar
 (\EFk{lambda} (entry)
 (cons (car entry) (replace-regexp-in-string \EFs{"\char92{}\char92{}\char92{}\char92{}"} \EFs{"\char92{}\char92{}\char92{}\char92{}\char92{}\char92{}\char92{}\char92{}"} (cadr entry))))
 latex-non-ascii-char-substitutions)))))
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}<<gen-latex-non-ascii-char-substitutions()>>
\end{Verbatim}
\end{Code}
\item Normal spaces after abbreviations
\label{sec:org92bbc1e}

In \LaTeX{} inter-word and sentence spaces are typically of different widths. This
can be an issue when using abbreviations i.e.\ e.g. etc.\ et al..
This can be corrected by forcing a normal space with .
When exporting Org documents, we can add a filter to check for common
abbreviations and make the space normal.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{+org-latex-abbreviations}
 '(\EFcd{;;} \EFc{Latin}
 \EFs{"cf."} \EFs{"e.g."} \EFs{"etc."} \EFs{"et al."} \EFs{"i.e."} \EFs{"v."} \EFs{"vs."} \EFs{"viz."} \EFs{"n.b."}
 \EFcd{;;} \EFc{Corperate}
 \EFs{"inc."} \EFs{"govt."} \EFs{"ltd."} \EFs{"pty."} \EFs{"dept."}
 \EFcd{;;} \EFc{Temporal}
 \EFs{"est."} \EFs{"c."}
 \EFcd{;;} \EFc{Honorifics}
 \EFs{"Prof."} \EFs{"Dr."} \EFs{"Mr."} \EFs{"Mrs."} \EFs{"Ms."} \EFs{"Miss."} \EFs{"Sr."} \EFs{"Jr."}
 \EFcd{;;} \EFc{Components of a work}
 \EFs{"ed."} \EFs{"vol."} \EFs{"sec."} \EFs{"chap."} \EFs{"pt."} \EFs{"pp."} \EFs{"op."} \EFs{"no."}
 \EFcd{;;} \EFc{Common usage}
 \EFs{"approx."} \EFs{"misc."} \EFs{"min."} \EFs{"max."})
 \EFd{"A list of abbreviations that should be spaced correctly when exporting to LaTeX."})

(\EFk{defun} \EFf{+org-latex-correct-latin-abbreviation-spaces} (text backend _info)
 \EFd{"Normalise spaces after Latin abbreviations."}
 (\EFk{when} (org-export-derived-backend-p backend 'latex)
 (replace-regexp-in-string (\EFk{rx} (group (\EFk{or} line-start space)
 (regexp (regexp-opt-group +org-latex-abbreviations)))
 (\EFk{or} line-end space))
 \EFs{"\char92{}\char92{}1\char92{}\char92{}\char92{}\char92{} "}
 text)))

(add-to-list 'org-export-filter-paragraph-functions \#'+org-latex-correct-latin-abbreviation-spaces t)
\end{Verbatim}
\end{Code}
\item Extra special strings
\label{sec:orgadb23b8}

\LaTeX{} already recognises \verb~---~ and \verb~--~ as em/en-dashes, \verb~\-~ as a shy hyphen, and the
conversion of \verb~...~ to \verb~\ldots{}~ is hardcoded into \texttt{org-latex-plain-text} (unlike
\texttt{org-html-plain-text}).

I'd quite like to also recognise \verb~->~ and \verb~<-~, so let's set come up with some advice.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defvar} \EFv{org-latex-extra-special-string-regexps}
 '((\EFs{"<->"} . \EFs{"\char92{}\char92{}\char92{}\char92{}(\char92{}\char92{}\char92{}\char92{}leftrightarrow\{\}\char92{}\char92{}\char92{}\char92{})"})
 (\EFs{"->"} . \EFs{"\char92{}\char92{}\char92{}\char92{}textrightarrow\{\}"})
 (\EFs{"<-"} . \EFs{"\char92{}\char92{}\char92{}\char92{}textleftarrow\{\}"})))

(\EFk{defun} \EFf{org-latex-convert-extra-special-strings} (string)
 \EFd{"Convert special characters in STRING to LaTeX."}
 (\EFk{dolist} (a org-latex-extra-special-string-regexps string)
 (\EFk{let} ((re (car a))
 (rpl (cdr a)))
 (\EFk{setq} string (replace-regexp-in-string re rpl string t)))))

(\EFk{defadvice!} org-latex-plain-text-extra-special-a (orig-fn text info)
 \EFd{"Make `}\textcolor[HTML]{b751b6}{\textit{org-latex-plain-text}}\EFd{' handle some extra special strings."}
 \EFb{:around} \#'org-latex-plain-text
 (\EFk{let} ((output (funcall orig-fn text info)))
 (\EFk{when} (plist-get info \EFb{:with-special-strings})
 (\EFk{setq} output (org-latex-convert-extra-special-strings output)))
 output))
\end{Verbatim}
\end{Code}
\item Chameleon --- aka. match theme
\label{sec:org004fb52}

Once I had the idea of having the look of the \LaTeX{} document produced match the
current Emacs theme, I was enraptured. The result is the pseudo-class \texttt{chameleon},
which I have implemented in the package \verb~ox-chameleon~.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} ox-chameleon \EFb{:recipe} (\EFb{:local-repo} \EFs{"lisp/ox-chameleon"}))
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} ox-chameleon
 \EFb{:after} ox)
\end{Verbatim}
\end{Code}
\item Make verbatim different to code
\label{sec:orgc455e5a}

Since have just gone to so much effort above let's make the most of it by making
\verb~verbatim~ use \texttt{verb} instead of \texttt{protectedtexttt} (default).

This gives the same advantages as mentioned in the \hyperref[sec:orgc455e5a]{HTML export section}.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} org-latex-text-markup-alist
 '((bold . \EFs{"\char92{}\char92{}textbf\{\%s\}"})
 (code . protectedtexttt)
 (italic . \EFs{"\char92{}\char92{}emph\{\%s\}"})
 (strike-through . \EFs{"\char92{}\char92{}sout\{\%s\}"})
 (underline . \EFs{"\char92{}\char92{}uline\{\%s\}"})
 (verbatim . verb)))
\end{Verbatim}
\end{Code}
\item Check for required packages
\label{sec:orgdc104a3}

For how I've setup Org's \LaTeX{} export, the following packages are needed:
\begin{table}[htbp]
\label{tab:org1c02a73}
\centering
\begin{tabular}{ll}
\toprule
Package & Description\\
\midrule
adjustbox & Adjust general \LaTeX{} material in like includegraphics\\
accsupp & Copy-paste text overlay for emoji images\\
amsmath & A near-essential maths package\\
booktabs & Nice horizontal lines in tables\\
cancel & Cancel terms in equations\\
capt-of & Captions outside floats\\
caption & Finer control over captions\\
cleveref & Easy cross-referencing\\
embedall & Embed files in the document\\
etoolbox & Document hooks\\
float & Floating environments\\
fontenc & Font encodings\\
fvextra & Enhanced verbatim environments\\
graphicx & An extended graphics package\\
hanging & Used by oc-csl\\
hyperref & Links\\
inputenc & Input file encodings\\
longtable & Multi-page tables\\
mathalpha & Set extended math alphabet fonts\\
mathtools & Typesetting tools for maths\\
microtype & Microtypography\\
pdfx & Create pdf/a- and pdf/x- compatible documents\\
pifont & A collection of symbols\\
pmboxdraw & Good-looking box drawing characters\\
preview & Needed for AUCTeX and ob-latex\\
scrbase & KOMA classes and more\\
scrextend & KOMA utilities\\
siunitx & Proper unit support\\
soul & Strikethrough and underline, flexibly\\
subcaption & Form subfigures and subcaptions\\
svg & Insert SVG images\\
tcolorbox & Nice boxes for code\\
textcomp & Font encodings\\
tikz & Generally handy, as a dependancy and for graphics\\
transparent & Invisible text for emoji copying\\
xcoffins & Manipulate coffins (boxes) for typesetting\\
xcolor & Colours\\
xparse & Extended command/env definition forms\\
\bottomrule
\end{tabular}
\end{table}

Then for the various fontsets:
\phantomsection
\label{org72965b9}
\begin{itemize}
\item Alegreya
\item arev
\item arevmath
\item biolinum
\item FiraMono
\item FiraSans
\item fourier
\item gillius
\item kpfonts
\item libertine
\item newpxmath
\item newpxtext
\item newtxmath
\item newtxtext
\item newtxsf
\item noto
\item notomath
\item plex-mono
\item plex-sans
\item plex-serif
\item sourcecodepro
\item sourcesanspro
\item sourceserifpro
\end{itemize}

We can write a function which will check for each of these packages with
\verb~kpsewhich~, and then if any of them are missing we'll inject some advice into the
generated config that gets a list of missing packages and warns us every time we
export to a PDF.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} org-required-latex-packages
 (append org-latex-required-packages-list
 org-latex-font-packages-list))

(\EFk{defun} \EFf{check-for-latex-packages} (packages)
 (delq nil (mapcar (\EFk{lambda} (package)
 (\EFk{unless}
 (= 0 (call-process \EFs{"kpsewhich"} nil nil nil (concat package \EFs{".sty"})))
 package))
 packages)))

(\EFk{if-let} (((executable-find \EFs{"kpsewhich"}))
 (missing-pkgs (check-for-latex-packages org-required-latex-packages)))
 (concat
 (pp-to-string `(\EFk{setq} org-required-latex-packages ',org-required-latex-packages))
 (message \EFs{";; Detected missing LaTeX packages: \%s\char92{}n"} (mapconcat \#'identity missing-pkgs \EFs{", "}))
 (pp-to-string
 '(\EFk{defun} \EFf{check-for-latex-packages} (packages)
 (delq nil (mapcar (\EFk{lambda} (package)
 (\EFk{unless}
 (= 0 (call-process \EFs{"kpsewhich"} nil nil nil (concat package \EFs{".sty"})))
 package))
 packages))))
 (pp-to-string
 '(\EFk{defun} \EFf{+org-warn-about-missing-latex-packages} (\EFt{\&rest} _)
 (message \EFs{"Checking for missing LaTeX packages..."})
 (sleep-for 0.4)
 (\EFk{if-let} (missing-pkgs (check-for-latex-packages org-required-latex-packages))
 (message \EFs{"\%s You are missing the following LaTeX packages: \%s."}
 (propertize \EFs{"Warning!"} 'face '(bold warning))
 (mapconcat (\EFk{lambda} (pkg) (propertize pkg 'face 'font-lock-variable-name-face))
 missing-pkgs
 \EFs{", "}))
 (message \EFs{"\%s You have all the required LaTeX packages. Run \%s to make this message go away."}
 (propertize \EFs{"Success!"} 'face '(bold success))
 (propertize \EFs{"doom sync"} 'face 'font-lock-keyword-face))
 (advice-remove 'org-latex-export-to-pdf \#'+org-warn-about-missing-latex-packages))
 (sleep-for 1)))
 (pp-to-string
 '(advice-add 'org-latex-export-to-pdf \EFb{:before} \#'+org-warn-about-missing-latex-packages)))
 \EFs{";; No missing LaTeX packags detected"})
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}<<org-missing-latex-packages()>>
\end{Verbatim}
\end{Code}
\end{enumerate}
\subsection{Beamer Export}
\label{sec:org974228c}

It's nice to use a different theme
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} org-beamer-theme \EFs{"[progressbar=foot]metropolis"})
\end{Verbatim}
\end{Code}

When using metropolis though, we want to make a few tweaks:
\begin{Code}
\begin{Verbatim}
\color{EFD}\textcolor[HTML]{e45649}{\char92{}NewCommandCopy}\{\textcolor[HTML]{a626a4}{\char92{}moldusetheme}\}\{\textcolor[HTML]{a626a4}{\char92{}usetheme}\}
\textcolor[HTML]{e45649}{\char92{}renewcommand}\EFk{*}\{\textcolor[HTML]{a626a4}{\char92{}usetheme}\}[\EFv{2}][]\{\textcolor[HTML]{a626a4}{\char92{}moldusetheme}\EFf{[\#1]\{\#2\}}
 \textcolor[HTML]{a626a4}{\char92{}setbeamertemplate}\EFf{\{items\}\{}\textcolor[HTML]{a626a4}{\$}\textcolor[HTML]{a626a4}{\char92{}bullet}\textcolor[HTML]{a626a4}{\$}\EFf{\}}
 \textcolor[HTML]{a626a4}{\char92{}setbeamerfont}\EFf{\{block title\}\{size=}\textcolor[HTML]{a626a4}{\char92{}normalsize}\EFf{, series=}\textcolor[HTML]{a626a4}{\textbf{\char92{}bfseries}}\textcolor[HTML]{a626a4}{\char92{}parbox}\EFf{\{0pt\}\{}\textcolor[HTML]{a626a4}{\char92{}rule}\EFf{\{0pt\}\{4ex\}\}\}}\}

\textbf{\char92{}makeatletter}
\textcolor[HTML]{e45649}{\char92{}newcommand}\{\textcolor[HTML]{a626a4}{\char92{}setmetropolislinewidth}\}\{
 \textcolor[HTML]{e45649}{\char92{}setlength}\EFf{\{}\textcolor[HTML]{6a1868}{\char92{}metropolis@progressinheadfoot@linewidth}\EFf{\}\{}\textcolor[HTML]{6a1868}{1.2px}\EFf{\}}\}
\textbf{\char92{}makeatother}

\textcolor[HTML]{e45649}{\char92{}usepackage}\{\EFf{etoolbox}\}
\char92{}AtEndPreamble\{\char92{}setmetropolislinewidth\}
\end{Verbatim}
\end{Code}

Now let's just apply this along with some extra beamer tweaks.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{org-beamer-p} (info)
 (eq 'beamer (\EFk{and} (plist-get info \EFb{:back-end})
 (org-export-backend-name (plist-get info \EFb{:back-end})))))

(\EFk{org-export-update-features} 'beamer
 (beamer-setup
 \EFb{:condition} t
 \EFb{:requires} .missing-koma
 \EFb{:prevents} (italic-quotes condensed-lists cover-page)))

(\EFk{org-export-update-features} 'latex
 (.missing-koma
 \EFb{:snippet} \EFs{"\char92{}\char92{}usepackage\{scrextend\}"}
 \EFb{:order} 2))

(\EFk{defvar} \EFv{org-beamer-metropolis-tweaks}
 <<grab(\EFs{"beamer-metropolis-tweaks"})>>
 \EFs{"LaTeX preamble snippet that tweaks the Beamer metropolis theme styling."})

(\EFk{org-export-update-features} 'beamer
 (beamer-metropolis
 \EFb{:condition} (string-match-p \EFs{"metropolis\$"} (plist-get info \EFb{:beamer-theme}))
 \EFb{:snippet} org-beamer-metropolis-tweaks
 \EFb{:order} 3))
\end{Verbatim}
\end{Code}

And I think that it's natural to divide a presentation into sections, e.g.\
Introduction, Overview\ldots{} so let's set bump up the headline level that becomes a
frame from \texttt{1} to \texttt{2}.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} org-beamer-frame-level 2)
\end{Verbatim}
\end{Code}
\subsection{Reveal export}
\label{sec:orgc0bf808}

By default reveal is rather nice, there are just a few tweaks that I consider a
good idea.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} org-re-reveal-theme \EFs{"white"}
 org-re-reveal-transition \EFs{"slide"}
 org-re-reveal-plugins '(markdown notes math search zoom))
\end{Verbatim}
\end{Code}
\subsection{ASCII export}
\label{sec:orga24a06d}

To start with, why settle for ASCII when UTF-8 exists?
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} org-ascii-charset 'utf-8)
\end{Verbatim}
\end{Code}

The ASCII export is generally fairly nice. I think the main aspect that could
benefit from improvement is the appearance of \LaTeX{} fragments. There's a nice
utility we can use to create unicode representation, which are much nicer.
It's called \texttt{latex2text}, and it's part of the \verb~pylatexenc~ package, and it's \href{https://repology.org/project/python:pylatexenc/versions}{not
really packaged}. So, we'll resort to installing it with \verb~pip~.

\begin{Code}
\begin{Verbatim}
\color{EFD}sudo python3 -m pip install pylatexenc
\end{Verbatim}
\end{Code}

With an accompanying \verb~doctor~ check.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{unless} (executable-find \EFs{"latex2text"})
 (warn! \EFs{"Couldn't find latex2text executable (from pylatexenc), will be unable to render LaTeX fragments in orgâ��text exports."}))
\end{Verbatim}
\end{Code}

With that installed, we can override the \Verb[commandchars=\\\{\},highlightcolor=white!95!black!80!blue,breaklines=true,breaksymbol=\color{white!60!black}\tiny\ensuremath{\hookrightarrow}]{\color{EFD}(org-ascii-latex-fragment)} and
\Verb[commandchars=\\\{\},highlightcolor=white!95!black!80!blue,breaklines=true,breaksymbol=\color{white!60!black}\tiny\ensuremath{\hookrightarrow}]{\color{EFD}(org-ascii-latex-environment)} functions, which are conveniently very
slim --- just extracting the content, and indenting. We'll only do something
different when \verb~utf-8~ is set.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{when} (executable-find \EFs{"latex2text"})
 (\EFk{after!} ox-ascii
 (\EFk{defvar} \EFv{org-ascii-convert-latex} t
 \EFd{"Use latex2text to convert LaTeX elements to unicode."})

 (\EFk{defadvice!} org-ascii-latex-environment-unicode-a (latex-environment _contents info)
 \EFd{"Transcode a LATEX-ENVIRONMENT element from Org to ASCII, converting to unicode.}
\EFd{CONTENTS is nil. INFO is a plist holding contextual}
\EFd{information."}
 \EFb{:override} \#'org-ascii-latex-environment
 (\EFk{when} (plist-get info \EFb{:with-latex})
 (org-ascii--justify-element
 (org-remove-indentation
 (\EFk{let*} ((latex (org-element-property \EFb{:value} latex-environment))
 (unicode (\EFk{and} (eq (plist-get info \EFb{:ascii-charset}) 'utf-8)
 org-ascii-convert-latex
 (doom-call-process \EFs{"latex2text"} \EFs{"-q"} \EFs{"--code"} latex))))
 (\EFk{if} (= (car unicode) 0) \EFcd{;} \EFc{utf-8 set, and sucessfully ran latex2text}
 (cdr unicode) latex)))
 latex-environment info)))

 (\EFk{defadvice!} org-ascii-latex-fragment-unicode-a (latex-fragment _contents info)
 \EFd{"Transcode a LATEX-FRAGMENT object from Org to ASCII, converting to unicode.}
\EFd{CONTENTS is nil. INFO is a plist holding contextual}
\EFd{information."}
 \EFb{:override} \#'org-ascii-latex-fragment
 (\EFk{when} (plist-get info \EFb{:with-latex})
 (\EFk{let*} ((latex (org-element-property \EFb{:value} latex-fragment))
 (unicode (\EFk{and} (eq (plist-get info \EFb{:ascii-charset}) 'utf-8)
 org-ascii-convert-latex
 (doom-call-process \EFs{"latex2text"} \EFs{"-q"} \EFs{"--code"} latex))))
 (\EFk{if} (\EFk{and} unicode (= (car unicode) 0)) \EFcd{;} \EFc{utf-8 set, and sucessfully ran latex2text}
 (cdr unicode) latex))))))
\end{Verbatim}
\end{Code}
\subsection{Markdown Export}
\label{sec:org92a3056}

\begin{enumerate}
\item GFM
\label{sec:org7d735e9}

Because of the \emph{\href{https://github.com/commonmark/commonmark-spec/wiki/markdown-flavors}{lovely variety in markdown implementations}} there isn't actually
such a thing a standard table spec \ldots{} or standard anything really. Because
\texttt{org-md} is a goody-two-shoes, it just uses HTML for all these non-standardised
elements (a lot of them). So \texttt{ox-gfm} is handy for exporting markdown with all the
features that GitHub has.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} ox-gfm \EFb{:pin} \EFs{"4f774f13d34b3db9ea4ddb0b1edc070b1526ccbb"})
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} ox-gfm
 \EFb{:after} ox)
\end{Verbatim}
\end{Code}
\item Character substitutions
\label{sec:org2db28f1}

When I want to paste exported markdown somewhere (for example when using \hyperref[sec:orgfdf18e3]{Emacs
Everywhere}), it can be preferable to have unicode characters for \verb~---~ etc.\ instead
of \verb~—~.

To accomplish this, we just need to locally rebind the alist which provides
these substitution.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defadvice!} org-md-plain-text-unicode-a (orig-fn text info)
 \EFd{"Locally rebind `}\textcolor[HTML]{b751b6}{\textit{org-html-special-string-regexps}}\EFd{'"}
 \EFb{:around} \#'org-md-plain-text
 (\EFk{let} ((org-html-special-string-regexps
 '((\EFs{"\char92{}\char92{}\char92{}\char92{}-"} . \EFs{"-"})
 (\EFs{"---}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{-]}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{\$}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{"} . \EFs{"â��\char92{}\char92{}1"})
 (\EFs{"--}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[}\textcolor[HTML]{4078f2}{\textbf{\char94{}}}\EFs{-]}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{|}}\EFs{\$}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{"} . \EFs{"â��\char92{}\char92{}1"})
 (\EFs{"\char92{}\char92{}.\char92{}\char92{}.\char92{}\char92{}."} . \EFs{"â�¦"})
 (\EFs{"<->"} . \EFs{"â�·"})
 (\EFs{"->"} . \EFs{"â��"})
 (\EFs{"<-"} . \EFs{"â��"}))))
 (funcall orig-fn text (plist-put info \EFb{:with-smart-quotes} nil))))
\end{Verbatim}
\end{Code}

In the future, I may want to check \verb~info~ to only have this active when \verb~ox-gfm~ is
being used.

Another worthwhile consideration is \LaTeX{} formatting. It seems most Markdown
parsers are fixated on \TeX{}-style syntax (\verb~$~ and \verb~$$~). As unfortunate as this is,
it's probably best to accommodate them, for the sake of decent rendering.

\verb~ox-md~ doesn't provide any transcoders for this, so we'll have to whip up our own
and push them onto the \verb~md~ transcoders alist.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} ox-md
 (\EFk{defun} \EFf{org-md-latex-fragment} (latex-fragment _contents info)
 \EFd{"Transcode a LATEX-FRAGMENT object from Org to Markdown."}
 (\EFk{let} ((frag (org-element-property \EFb{:value} latex-fragment)))
 (\EFk{cond}
 ((string-match-p \EFs{"\char94{}\char92{}\char92{}\char92{}\char92{}("} frag)
 (concat \EFs{"\$"} (substring frag 2 -2) \EFs{"\$"}))
 ((string-match-p \EFs{"\char94{}\char92{}\char92{}\char92{}\char92{}\char92{}\char92{}["} frag)
 (concat \EFs{"\$\$"} (substring frag 2 -2) \EFs{"\$\$"}))
 (t (message \EFs{"unrecognised fragment: \%s"} frag)
 frag))))

 (\EFk{defun} \EFf{org-md-latex-environment} (latex-environment contents info)
 \EFd{"Transcode a LATEX-ENVIRONMENT object from Org to Markdown."}
 (concat \EFs{"\$\$\char92{}n"}
 (org-html-latex-environment latex-environment contents info)
 \EFs{"\$\$\char92{}n"}))

 (\EFk{defun} \EFf{org-utf8-entity} (entity _contents _info)
 \EFd{"Transcode an ENTITY object from Org to utf-8.}
\EFd{CONTENTS are the definition itself. INFO is a plist holding}
\EFd{contextual information."}
 (org-element-property \EFb{:utf-8} entity))

 \EFcd{;;} \EFc{We can't let this be immediately parsed and evaluated,}
 \EFcd{;;} \EFc{because eager macro-expansion tries to call as-of-yet}
 \EFcd{;;} \EFc{undefined functions.}
 \EFcd{;;} \EFc{NOTE in the near future this shouldn't be required}
 (eval
 '(dolist (extra-transcoder
 '((latex-fragment . org-md-latex-fragment)
 (latex-environment . org-md-latex-environment)
 (entity . org-utf8-entity)))
 (\EFk{unless} (member extra-transcoder (org-export-backend-transcoders
 (org-export-get-backend 'md)))
 (\EFk{push} extra-transcoder (org-export-backend-transcoders
 (org-export-get-backend 'md)))))))
\end{Verbatim}
\end{Code}
\end{enumerate}
\subsection{Babel}
\label{sec:org9e01996}

Doom lazy-loads babel languages, with is lovely.
It also pulls in \href{https://github.com/astahlman/ob-async}{ob-async}, which is nice, but it would be even better if it was
used by default.

There are two caveats to \verb~ob-async~:
\begin{enumerate}
\item It does not support \verb~:session~
\begin{itemize}
\item So, we don't want \verb~:async~ used when \verb~:session~ is set
\end{itemize}
\item It adds a fixed delay to execution
\begin{itemize}
\item This is undesirable in a number of cases, for example it's generally
unwanted with \verb~emacs-lisp~ code
\item As such, I also introduce a async language blacklist to control when it's
automatically enabled
\end{itemize}
\end{enumerate}

Due to the nuance in the desired behaviour, instead of just adding \verb~:async~ to
\texttt{org-babel-default-header-args}, I advice \texttt{org-babel-get-src-block-info} to add
\verb~:async~ intelligently. As an escape hatch, it also recognises \verb~:sync~ as an
indication that \verb~:async~ should not be added.

I did originally have this enabled for everything except for \verb~emacs-lisp~ and
\verb~LaTeX~ (there were weird issues), but this added a \textasciitilde{}3s "startup" cost to every
src block evaluation, which was a bit of a pain. Since \verb~:async~ can be added
easily with \verb~#+properties~, I've turned this behaviour from a blacklist to a
whitelist.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{add-transient-hook!} \#'org-babel-execute-src-block
 (\EFk{require} '\EFo{ob-async}))

(\EFk{defvar} \EFv{org-babel-auto-async-languages} '()
 \EFd{"Babel languages which should be executed asyncronously by default."})

(\EFk{defadvice!} org-babel-get-src-block-info-eager-async-a (orig-fn \EFt{\&optional} light datum)
 \EFd{"Eagarly add an :async parameter to the src information, unless it seems problematic.}
\EFd{This only acts o languages in `}\textcolor[HTML]{b751b6}{\textit{org-babel-auto-async-languages}}\EFd{'.}
\EFd{Not added when either:}
\EFd{+ session is not \char92{}"none\char92{}"}
\EFd{+ :sync is set"}
 \EFb{:around} \#'org-babel-get-src-block-info
 (\EFk{let} ((result (funcall orig-fn light datum)))
 (\EFk{when} (\EFk{and} (string= \EFs{"none"} (cdr (assoc \EFb{:session} (caddr result))))
 (member (car result) org-babel-auto-async-languages)
 (not (assoc \EFb{:async} (caddr result))) \EFcd{;} \EFc{don't duplicate}
 (not (assoc \EFb{:sync} (caddr result))))
 (\EFk{push} '(\EFb{:async}) (caddr result)))
 result))
\end{Verbatim}
\end{Code}
\subsection{ESS}
\label{sec:org7779b60}

We don't want \texttt{R} evaluation to hang the editor, hence
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} ess-eval-visibly 'nowait)
\end{Verbatim}
\end{Code}

Syntax highlighting is nice, so let's turn all of that on
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} ess-R-font-lock-keywords
 '((ess-R-fl-keyword:keywords . t)
 (ess-R-fl-keyword:constants . t)
 (ess-R-fl-keyword:modifiers . t)
 (ess-R-fl-keyword:fun-defs . t)
 (ess-R-fl-keyword:assign-ops . t)
 (ess-R-fl-keyword:\%op\% . t)
 (ess-fl-keyword:fun-calls . t)
 (ess-fl-keyword:numbers . t)
 (ess-fl-keyword:operators . t)
 (ess-fl-keyword:delimiters . t)
 (ess-fl-keyword:= . t)
 (ess-R-fl-keyword:F\&T . t)))
\end{Verbatim}
\end{Code}

Lastly, in the event that I use \verb~JAGS~, it would be nice to be able to use \verb~jags~ as
the language identifier, not \verb~ess-jags~.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} org
 (add-to-list '+org-babel-mode-alist '(jags . ess-jags)))
\end{Verbatim}
\end{Code}
\section{\LaTeX{}}
\label{sec:org0e8a115}

\subsection{To-be-implemented ideas}
\label{sec:orgfcd5b0c}

\begin{itemize}
\item Paste image from clipboard
\begin{itemize}
\item Determine first folder in \texttt{graphicspath} if applicable
\item Ask for file name
\item Use \texttt{xclip} to save file to graphics folder, or current directory (whichever applies)
\end{itemize}
\begin{Code}
\begin{Verbatim}
\color{EFD}command -v xclip >/dev/null 2>\&1 || \{ \EFb{echo} >\&1 \EFs{"no xclip"}; \EFk{exit} 1; \}

\EFk{if}
 xclip -selection clipboard -target image/png -o >/dev/null 2>\&1
\EFk{then}
 xclip -selection clipboard -target image/png -o >\$\EFv{1} 2>/dev/null
 \EFb{echo} \$\EFv{1}
\EFk{else}
 \EFb{echo} \EFs{"no image"}
\EFk{fi}
\end{Verbatim}
\end{Code}
\begin{itemize}
\item Insert figure, with filled in details as a result (activate \verb~yasnippet~ with
filename as variable maybe?)
\end{itemize}
\end{itemize}
\subsection{Compilation}
\label{sec:org969fea4}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} TeX-save-query nil
 TeX-show-compilation t
 TeX-command-extra-options \EFs{"-shell-escape"})
(\EFk{after!} latex
 (add-to-list 'TeX-command-list '(\EFs{"XeLaTeX"} \EFs{"\%`xelatex\%(mode)\%' \%t"} TeX-run-TeX nil t)))
\end{Verbatim}
\end{Code}

For viewing the PDF, I rather like the pdf-tools viewer. While auctex is trying
to be nice in recognising that I have some PDF viewing apps installed, I'd
rather not have it default to using them, so let's re-order the preferences.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} +latex-viewers '(pdf-tools evince zathura okular skim sumatrapdf))
\end{Verbatim}
\end{Code}
\subsection{Snippet helpers}
\label{sec:org5052583}
\begin{enumerate}
\item Template
\label{sec:org8a1c0b8}

For use in the new-file template, let's set out a nice preamble we may want to use.
\begin{Code}
\begin{Verbatim}
\color{EFD}\textbf{\char92{}}\textcolor[HTML]{e45649}{\textbf{\char92{}}}\EFk{usepackage}[\EFv{pdfa,unicode=true,hidelinks}]\{\EFf{hyperref}\}

\textbf{\char92{}}\textcolor[HTML]{e45649}{\textbf{\char92{}}}\EFk{usepackage}[\EFv{dvipsnames,svgnames,table,hyperref}]\{\EFf{xcolor}\}
\textbf{\char92{}}\textcolor[HTML]{e45649}{\textbf{\char92{}}}\EFk{renewcommand}\{\textcolor[HTML]{a626a4}{\textbf{\char92{}\char92{}}}\EFf{UrlFont}\}\{\textcolor[HTML]{a626a4}{\textbf{\char92{}}}\textcolor[HTML]{a626a4}{\textbf{\char92{}}}\textcolor[HTML]{a626a4}{ttfamily}\textcolor[HTML]{a626a4}{\textbf{\char92{}}}\textcolor[HTML]{a626a4}{\textbf{\char92{}}}\textcolor[HTML]{a626a4}{small}\}

\textbf{\char92{}}\textcolor[HTML]{e45649}{\textbf{\char92{}}}\EFk{usepackage}[\EFv{a-2b}]\{\EFf{pdfx}\} \EFc{\% why not be archival}

\textbf{\char92{}}\textcolor[HTML]{e45649}{\textbf{\char92{}}}\EFk{usepackage}[\EFv{T1}]\{\EFf{fontenc}\}
\textbf{\char92{}}\textcolor[HTML]{e45649}{\textbf{\char92{}}}\EFk{usepackage}[\EFv{osf}]\{\EFf{newpxtext}\} \EFc{\% Palatino}
\textbf{\char92{}}\textcolor[HTML]{e45649}{\textbf{\char92{}}}\EFk{usepackage}\{\EFf{gillius}\}
\textbf{\char92{}}\textcolor[HTML]{e45649}{\textbf{\char92{}}}\EFk{usepackage}[\EFv{scale=0.9}]\{\EFf{sourcecodepro}\}

\textbf{\char92{}}\textcolor[HTML]{e45649}{\textbf{\char92{}}}\EFk{usepackage}\{\EFf{mathtools}\}
\textbf{\char92{}}\textcolor[HTML]{e45649}{\textbf{\char92{}}}\EFk{usepackage}\{\EFf{amssymb}\}
\textbf{\char92{}\char92{}}let\textbf{\char92{}\char92{}}Bbbk\textbf{\char92{}\char92{}}relax
\textbf{\char92{}}\textcolor[HTML]{e45649}{\textbf{\char92{}}}\EFk{usepackage}[\EFv{varbb}]\{\EFf{newpxmath}\}

\textbf{\char92{}}\textcolor[HTML]{e45649}{\textbf{\char92{}}}\EFk{usepackage}[\EFv{activate=\{true,nocompatibility\},final,tracking=true,kerning=true,spacing=true,factor=2000}]\{\EFf{microtype}\}
\EFcd{\%} \EFc{microtype makes text look nicer}

\textbf{\char92{}}\textcolor[HTML]{e45649}{\textbf{\char92{}}}\EFk{usepackage}\{\EFf{graphicx}\} \EFc{\% include graphics}

\textbf{\char92{}}\textcolor[HTML]{e45649}{\textbf{\char92{}}}\EFk{usepackage}\{\EFf{booktabs}\} \EFc{\% nice table rules}
\end{Verbatim}
\end{Code}
Then let's bind the content to a function, and define some nice helpers.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} tec/yas-latex-template-preamble \EFs{"}
\EFs{<<latex-nice-preamble>>}
\EFs{"})

(\EFk{defun} \EFf{tec/yas-latex-get-class-choice} ()
 \EFd{"Prompt user for LaTeX class choice"}
 (\EFk{setq} tec/yas-latex-class-choice (completing-read \EFs{"Select document class: "} '(\EFs{"article"} \EFs{"scrartcl"} \EFs{"bmc"}))))

(\EFk{defun} \EFf{tec/yas-latex-preamble-if} ()
 \EFd{"Based on class choice prompt for insertion of default preamble"}
 (\EFk{if} (equal tec/yas-latex-class-choice \EFs{"bmc"}) 'nil
 (eq (read-char-choice \EFs{"Include default preamble? [Type y/n]"} '(?y ?n)) ?y)))
\end{Verbatim}
\end{Code}
\item Deliminators
\label{sec:org8369deb}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} tex
 (\EFk{defvar} \EFv{tec/tex-last-delim-char} nil
 \EFd{"Last open delim expanded in a tex document"})
 (\EFk{defvar} \EFv{tec/tex-delim-dot-second} t
 \EFd{"When the `}\textcolor[HTML]{b751b6}{\textit{tec/tex-last-delim-char}}\EFd{' is . a second character (this) is prompted for"})
 (\EFk{defun} \EFf{tec/get-open-delim-char} ()
 \EFd{"Exclusivly read next char to tec/tex-last-delim-char"}
 (\EFk{setq} tec/tex-delim-dot-second nil)
 (\EFk{setq} tec/tex-last-delim-char (read-char-exclusive \EFs{"Opening deliminator, recognises: 9 ([\{ < | ."}))
 (\EFk{when} (eql ?. tec/tex-last-delim-char)
 (\EFk{setq} tec/tex-delim-dot-second (read-char-exclusive \EFs{"Other deliminator, recognises: 0 9 () [] \{ \} < > |"}))))
 (\EFk{defun} \EFf{tec/tex-open-delim-from-char} (\EFt{\&optional} open-char)
 \EFd{"Find the associated opening delim as string"}
 (\EFk{unless} open-char (\EFk{setq} open-char (\EFk{if} (eql ?. tec/tex-last-delim-char)
 tec/tex-delim-dot-second
 tec/tex-last-delim-char)))
 (\EFk{pcase} open-char
 (?\char92{}(\EFs{"("})
 (?9 \EFs{"("})
 (?\char92{}[\EFs{"["})
 (?\char92{}\{ \EFs{"\char92{}\char92{}\{"})
 (?< \EFs{"<"})
 (?| (\EFk{if} tec/tex-delim-dot-second \EFs{"."} \EFs{"|"}))
 (_ \EFs{"."})))
 (\EFk{defun} \EFf{tec/tex-close-delim-from-char} (\EFt{\&optional} open-char)
 \EFd{"Find the associated closing delim as string"}
 (\EFk{if} tec/tex-delim-dot-second
 (\EFk{pcase} tec/tex-delim-dot-second
 (?\char92{}) \EFs{")"})
 (?0 \EFs{")"})
 (?\char92{}] \EFs{"]"})
 (?\char92{}\} \EFs{"\char92{}\char92{}\}"})
 (?\char92{}> \EFs{">"})
 (?| \EFs{"|"})
 (_ \EFs{"."}))
 (\EFk{pcase} (\EFk{or} open-char tec/tex-last-delim-char)
 (?\char92{}(\EFs{")"})
 (?9 \EFs{")"})
 (?\char92{}[\EFs{"]"})
 (?\char92{}\{ \EFs{"\char92{}\char92{}\}"})
 (?< \EFs{">"})
 (?\char92{}) \EFs{")"})
 (?0 \EFs{")"})
 (?\char92{}] \EFs{"]"})
 (?\char92{}\} \EFs{"\char92{}\char92{}\}"})
 (?\char92{}> \EFs{">"})
 (?| \EFs{"|"})
 (_ \EFs{"."}))))
 (\EFk{defun} \EFf{tec/tex-next-char-smart-close-delim} (\EFt{\&optional} open-char)
 (\EFk{and} (\EFk{bound-and-true-p} smartparens-mode)
 (eql (char-after) (\EFk{pcase} (\EFk{or} open-char tec/tex-last-delim-char)
 (?\char92{}(?\char92{}))
 (?\char92{}[?\char92{}])
 (?\{ ?\})
 (?< ?>)))))
 (\EFk{defun} \EFf{tec/tex-delim-yas-expand} (\EFt{\&optional} open-char)
 (yas-expand-snippet (yas-lookup-snippet \EFs{"_deliminators"} 'latex-mode) (point) (+ (point) (\EFk{if} (tec/tex-next-char-smart-close-delim open-char) 2 1)))))
\end{Verbatim}
\end{Code}
\end{enumerate}
\subsection{Editor visuals}
\label{sec:orgce662de}

Let's enhance \texttt{TeX-fold-math} a bit
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} latex
 (setcar (assoc \EFs{"â��"} LaTeX-fold-math-spec-list) \EFs{"â��"})) \EFcd{;;} \EFc{make \char92{}star bigger}

(\EFk{setq} TeX-fold-math-spec-list
 `(\EFcd{;;} \EFc{missing/better symbols}
 (\EFs{"â�¤"} (\EFs{"le"}))
 (\EFs{"â�¥"} (\EFs{"ge"}))
 (\EFs{"â� "} (\EFs{"ne"}))
 \EFcd{;;} \EFc{convenience shorts -- these don't work nicely ATM}
 \EFcd{;;} \EFc{("â�¹" ("left"))}
 \EFcd{;;} \EFc{("â�º" ("right"))}
 \EFcd{;;} \EFc{private macros}
 (\EFs{"â��"} (\EFs{"RR"}))
 (\EFs{"â��"} (\EFs{"NN"}))
 (\EFs{"â�¤"} (\EFs{"ZZ"}))
 (\EFs{"â��"} (\EFs{"QQ"}))
 (\EFs{"â��"} (\EFs{"CC"}))
 (\EFs{"â��"} (\EFs{"PP"}))
 (\EFs{"â��"} (\EFs{"HH"}))
 (\EFs{"ð��¼"} (\EFs{"EE"}))
 (\EFs{"ð���"} (\EFs{"dd"}))
 \EFcd{;;} \EFc{known commands}
 (\EFs{""} (\EFs{"phantom"}))
 (,(\EFk{lambda} (num den) (\EFk{if} (\EFk{and} (TeX-string-single-token-p num) (TeX-string-single-token-p den))
 (concat num \EFs{"ï¼�"} den)
 (concat \EFs{"â�ª"} num \EFs{"ï¼�"} den \EFs{"â�«"}))) \EFwr{(}\textcolor[HTML]{986801}{"frac"}\EFwr{))}
 (,(\EFk{lambda} (arg) (concat \EFs{"â��"} (TeX-fold-parenthesize-as-necessary arg))) (\EFs{"sqrt"}))
 (,(\EFk{lambda} (arg) (concat \EFs{"â­¡"} (TeX-fold-parenthesize-as-necessary arg))) (\EFs{"vec"}))
 (\EFs{"â��}\textcolor[HTML]{b751b6}{\{1\}}\EFs{â��"} (\EFs{"text"}))
 \EFcd{;;} \EFc{private commands}
 (\EFs{"|\{1\}|"} (\EFs{"abs"}))
 (\EFs{"â��\{1\}â��"} (\EFs{"norm"}))
 (\EFs{"â��\{1\}â��"} (\EFs{"floor"}))
 (\EFs{"â��\{1\}â��"} (\EFs{"ceil"}))
 (\EFs{"â��\{1\}â��"} (\EFs{"round"}))
 (\EFs{"ð���\{1\}/ð���\{2\}"} (\EFs{"dv"}))
 (\EFs{"â��\{1\}/â��\{2\}"} (\EFs{"pdv"}))
 \EFcd{;;} \EFc{fancification}
 (\EFs{"\{1\}"} (\EFs{"mathrm"}))
 (,(\EFk{lambda} (word) (string-offset-roman-chars 119743 word)) (\EFs{"mathbf"}))
 (,(\EFk{lambda} (word) (string-offset-roman-chars 119951 word)) (\EFs{"mathcal"}))
 (,(\EFk{lambda} (word) (string-offset-roman-chars 120003 word)) (\EFs{"mathfrak"}))
 (,(\EFk{lambda} (word) (string-offset-roman-chars 120055 word)) (\EFs{"mathbb"}))
 (,(\EFk{lambda} (word) (string-offset-roman-chars 120159 word)) (\EFs{"mathsf"}))
 (,(\EFk{lambda} (word) (string-offset-roman-chars 120367 word)) (\EFs{"mathtt"}))
)
 TeX-fold-macro-spec-list
 '(
 \EFcd{;;} \EFc{as the defaults}
 (\EFs{"[f]"} (\EFs{"footnote"} \EFs{"marginpar"}))
 (\EFs{"[c]"} (\EFs{"cite"}))
 (\EFs{"[l]"} (\EFs{"label"}))
 (\EFs{"[r]"} (\EFs{"ref"} \EFs{"pageref"} \EFs{"eqref"}))
 (\EFs{"[i]"} (\EFs{"index"} \EFs{"glossary"}))
 (\EFs{"..."} (\EFs{"dots"}))
 (\EFs{"\{1\}"} (\EFs{"emph"} \EFs{"textit"} \EFs{"textsl"} \EFs{"textmd"} \EFs{"textrm"} \EFs{"textsf"} \EFs{"texttt"}
 \EFs{"textbf"} \EFs{"textsc"} \EFs{"textup"}))
 \EFcd{;;} \EFc{tweaked defaults}
 (\EFs{"Â©"} (\EFs{"copyright"}))
 (\EFs{"Â®"} (\EFs{"textregistered"}))
 (\EFs{"â�¢"} (\EFs{"texttrademark"}))
 (\EFs{"[1]:||â�º"} (\EFs{"item"}))
 (\EFs{"â�¡â�¡â��\{1\}"} (\EFs{"part"} \EFs{"part*"}))
 (\EFs{"â�¡â��\{1\}"} (\EFs{"chapter"} \EFs{"chapter*"}))
 (\EFs{"Â§â��\{1\}"} (\EFs{"section"} \EFs{"section*"}))
 (\EFs{"Â§Â§â��\{1\}"} (\EFs{"subsection"} \EFs{"subsection*"}))
 (\EFs{"Â§Â§Â§â��\{1\}"} (\EFs{"subsubsection"} \EFs{"subsubsection*"}))
 (\EFs{"Â¶â��\{1\}"} (\EFs{"paragraph"} \EFs{"paragraph*"}))
 (\EFs{"Â¶Â¶â��\{1\}"} (\EFs{"subparagraph"} \EFs{"subparagraph*"}))
 \EFcd{;;} \EFc{extra}
 (\EFs{"â¬�â��\{1\}"} (\EFs{"begin"}))
 (\EFs{"â¬�â��\{1\}"} (\EFs{"end"}))
))

(\EFk{defun} \EFf{string-offset-roman-chars} (offset word)
 \EFd{"Shift the codepoint of each character in WORD by OFFSET with an extra -6 shift if the letter is lowercase"}
 (apply 'string
 (mapcar (\EFk{lambda} (c)
 (string-offset-apply-roman-char-exceptions
 (+ (\EFk{if} (>= c 97) (- c 6) c) offset)))
 word)))

(\EFk{defvar} \EFv{string-offset-roman-char-exceptions}
 '(\EFcd{;;} \EFc{lowercase serif}
 (119892 . 8462) \EFcd{;} \EFc{â��}
 \EFcd{;;} \EFc{lowercase caligraphic}
 (119994 . 8495) \EFcd{;} \EFc{â�¯}
 (119996 . 8458) \EFcd{;} \EFc{â��}
 (120004 . 8500) \EFcd{;} \EFc{â�´}
 \EFcd{;;} \EFc{caligraphic}
 (119965 . 8492) \EFcd{;} \EFc{â�¬}
 (119968 . 8496) \EFcd{;} \EFc{â�°}
 (119969 . 8497) \EFcd{;} \EFc{â�±}
 (119971 . 8459) \EFcd{;} \EFc{â��}
 (119972 . 8464) \EFcd{;} \EFc{â��}
 (119975 . 8466) \EFcd{;} \EFc{â��}
 (119976 . 8499) \EFcd{;} \EFc{â�³}
 (119981 . 8475) \EFcd{;} \EFc{â��}
 \EFcd{;;} \EFc{fraktur}
 (120070 . 8493) \EFcd{;} \EFc{â�­}
 (120075 . 8460) \EFcd{;} \EFc{â��}
 (120076 . 8465) \EFcd{;} \EFc{â��}
 (120085 . 8476) \EFcd{;} \EFc{â��}
 (120092 . 8488) \EFcd{;} \EFc{â�¨}
 \EFcd{;;} \EFc{blackboard}
 (120122 . 8450) \EFcd{;} \EFc{â��}
 (120127 . 8461) \EFcd{;} \EFc{â��}
 (120133 . 8469) \EFcd{;} \EFc{â��}
 (120135 . 8473) \EFcd{;} \EFc{â��}
 (120136 . 8474) \EFcd{;} \EFc{â��}
 (120137 . 8477) \EFcd{;} \EFc{â��}
 (120145 . 8484) \EFcd{;} \EFc{â�¤}
)
 \EFd{"An alist of deceptive codepoints, and then where the glyph actually resides."})

(\EFk{defun} \EFf{string-offset-apply-roman-char-exceptions} (char)
 \EFd{"Sometimes the codepoint doesn't contain the char you expect.}
\EFd{Such special cases should be remapped to another value, as given in `}\textcolor[HTML]{b751b6}{\textit{string-offset-roman-char-exceptions}}\EFd{'."}
 (\EFk{if} (assoc char string-offset-roman-char-exceptions)
 (cdr (assoc char string-offset-roman-char-exceptions))
 char))

(\EFk{defun} \EFf{TeX-fold-parenthesize-as-necessary} (tokens \EFt{\&optional} suppress-left suppress-right)
 \EFd{"Add â�ª â�« parenthesis as if multiple LaTeX tokens appear to be present"}
 (\EFk{if} (TeX-string-single-token-p tokens) tokens
 (concat (\EFk{if} suppress-left \EFs{""} \EFs{"â�ª"})
 tokens
 (\EFk{if} suppress-right \EFs{""} \EFs{"â�«"}))))

(\EFk{defun} \EFf{TeX-string-single-token-p} (teststring)
 \EFd{"Return t if TESTSTRING appears to be a single token, nil otherwise"}
 (\EFk{if} (string-match-p \EFs{"\char94{}\char92{}\char92{}\char92{}\char92{}?\char92{}\char92{}w+\$"} teststring) t nil))
\end{Verbatim}
\end{Code}

Some local keybindings to make life a bit easier
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} tex
 (map!
 \EFb{:map} LaTeX-mode-map
 \EFb{:ei} [C-return] \#'LaTeX-insert-item)
 (\EFk{setq} TeX-electric-math '(\EFs{"}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{"} . \EFs{""})))
\end{Verbatim}
\end{Code}

Maths deliminators can be de-emphasised a bit
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{;;} \EFc{Making \char92{}(\char92{}) less visible}
(\EFk{defface} \EFv{unimportant-latex-face}
 '((t \EFb{:inherit} font-lock-comment-face \EFb{:weight} extra-light))
 \EFd{"Face used to make \char92{}\char92{}(\char92{}\char92{}), \char92{}\char92{}[}\textcolor[HTML]{b751b6}{\textit{\char92{}\char92{}}}\EFd{] less visible."}
 \EFb{:group} 'LaTeX-math)

(font-lock-add-keywords
 'latex-mode
 `((\EFs{"\char92{}\char92{}\char92{}\char92{}[]()[]"} 0 'unimportant-latex-face prepend))
 'end)

\EFcd{;;} \EFc{(font-lock-add-keywords}
\EFcd{;;} \EFc{'latex-mode}
\EFcd{;;} \EFc{'(("\char92{}\char92{}\char92{}\char92{}[[:word:]]+" 0 'font-lock-keyword-face prepend))}
\EFcd{;;} \EFc{'end)}
\end{Verbatim}
\end{Code}

And enable shell escape for the preview
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{setq} preview-LaTeX-command '(\EFs{"\%`\%l \char92{}"\char92{}\char92{}nonstopmode\char92{}\char92{}nofiles\char92{}}
\EFs{\char92{}\char92{}PassOptionsToPackage\{"} (\EFs{","} . preview-required-option-list) \EFs{"\}\{preview\}\char92{}}
\EFs{\char92{}\char92{}AtBeginDocument\{\char92{}\char92{}ifx\char92{}\char92{}ifPreview\char92{}\char92{}undefined"}
preview-default-preamble \EFs{"\char92{}\char92{}fi\}\char92{}"\%' \char92{}"\char92{}\char92{}detokenize\{\char92{}" \%t \char92{}"\}\char92{}""}))
\end{Verbatim}
\end{Code}
\subsection{Math input}
\label{sec:org8eb0f28}
\begin{enumerate}
\item CDLaTeX
\label{sec:orgf073605}

The symbols and modifies are very nice by default, but could do with a bit of
fleshing out. Let's change the prefix to a key which is similarly rarely used,
but more convenient, like \verb~;~.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} cdlatex
 (\EFk{setq} cdlatex-env-alist
 '((\EFs{"bmatrix"} \EFs{"\char92{}\char92{}begin\{bmatrix\}\char92{}n?\char92{}n\char92{}\char92{}end\{bmatrix\}"} nil)
 (\EFs{"equation*"} \EFs{"\char92{}\char92{}begin\{equation*\}\char92{}n?\char92{}n\char92{}\char92{}end\{equation*\}"} nil)))
 (\EFk{setq} \EFcd{;;} \EFc{cdlatex-math-symbol-prefix ?\char92{}; ;; doesn't work at the moment :(}
 cdlatex-math-symbol-alist
 '(\EFcd{;;} \EFc{adding missing functions to 3rd level symbols}
 (?_ (\EFs{"\char92{}\char92{}downarrow"} \EFs{""} \EFs{"\char92{}\char92{}inf"}))
 (?2 (\EFs{"\char94{}2"} \EFs{"\char92{}\char92{}sqrt\{?\}"} \EFs{""}))
 (?3 (\EFs{"\char94{}3"} \EFs{"\char92{}\char92{}sqrt[3]\{?\}"} \EFs{""}))
 (?\char94{} (\EFs{"\char92{}\char92{}uparrow"} \EFs{""} \EFs{"\char92{}\char92{}sup"}))
 (?k (\EFs{"\char92{}\char92{}kappa"} \EFs{""} \EFs{"\char92{}\char92{}ker"}))
 (?m (\EFs{"\char92{}\char92{}mu"} \EFs{""} \EFs{"\char92{}\char92{}lim"}))
 (?c (\EFs{""} \EFs{"\char92{}\char92{}circ"} \EFs{"\char92{}\char92{}cos"}))
 (?d (\EFs{"\char92{}\char92{}delta"} \EFs{"\char92{}\char92{}partial"} \EFs{"\char92{}\char92{}dim"}))
 (?D (\EFs{"\char92{}\char92{}Delta"} \EFs{"\char92{}\char92{}nabla"} \EFs{"\char92{}\char92{}deg"}))
 \EFcd{;;} \EFc{no idea why \char92{}Phi isnt on '}\textcolor[HTML]{b751b6}{F}\EFc{' in first place, \char92{}phi is on '}\textcolor[HTML]{b751b6}{f}\EFc{'.}
 (?F (\EFs{"\char92{}\char92{}Phi"}))
 \EFcd{;;} \EFc{now just convenience}
 (?. (\EFs{"\char92{}\char92{}cdot"} \EFs{"\char92{}\char92{}dots"}))
 (?: (\EFs{"\char92{}\char92{}vdots"} \EFs{"\char92{}\char92{}ddots"}))
 (?* (\EFs{"\char92{}\char92{}times"} \EFs{"\char92{}\char92{}star"} \EFs{"\char92{}\char92{}ast"})))
 cdlatex-math-modify-alist
 '(\EFcd{;;} \EFc{my own stuff}
 (?B \EFs{"\char92{}\char92{}mathbb"} nil t nil nil)
 (?a \EFs{"\char92{}\char92{}abs"} nil t nil nil))))
\end{Verbatim}
\end{Code}
\item LAAS
\label{sec:org9526037}

This makes use of \verb~aas~ (\emph{Auto Activating Snippets}) for CDLaTeX-like symbol input.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} laas \EFb{:recipe} (\EFb{:local-repo} \EFs{"lisp/LaTeX-auto-activating-snippets"}))
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} laas
 \EFb{:hook} (LaTeX-mode . laas-mode)
 \EFb{:config}
 (\EFk{defun} \EFf{laas-tex-fold-maybe} ()
 (\EFk{unless} (equal \EFs{"/"} aas-transient-snippet-key)
 (+latex-fold-last-macro-a)))
 (add-hook 'aas-post-snippet-expand-hook \#'laas-tex-fold-maybe))
\end{Verbatim}
\end{Code}
\end{enumerate}
\subsection{SyncTeX}
\label{sec:org572c5b3}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} tex
 (add-to-list 'TeX-view-program-list '(\EFs{"Evince"} \EFs{"evince \%o"}))
 (add-to-list 'TeX-view-program-selection '(output-pdf \EFs{"Evince"})))
\end{Verbatim}
\end{Code}
\subsection{Fixes}
\label{sec:org0d2aa9c}

In case of Emacs28:

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{when} (>= emacs-major-version 28)
 (add-hook 'latex-mode-hook \#'TeX-latex-mode))
\end{Verbatim}
\end{Code}

With Emacs 29.4

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{when} (\EFk{and} (= emacs-major-version 29) (= emacs-minor-version 4))
 (\EFk{after!} auctex \EFcd{;} \EFc{See <https://github.com/minad/vertico/discussions/475>}
 (fmakunbound 'ConTeXt-mode)))
\end{Verbatim}
\end{Code}
\section{Python}
\label{sec:orgbf8deb7}

Since I'm using \verb~mypyls~, as suggested in \href{file:///home/runner/.config/emacs/modules/lang/python/README.org}{:lang python LSP support} I'll tweak the
priority of \verb~mypyls~

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} lsp-python-ms
 (set-lsp-priority! 'mspyls 1))
\end{Verbatim}
\end{Code}
\section{PDF}
\label{sec:org56c2b70}
\subsection{MuPDF}
\label{sec:org12acad5}

\verb~pdf-tools~ is nice, but a \verb~mupdf~-based solution is nicer.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} paper \EFb{:recipe} (\EFb{:host} github \EFb{:repo} \EFs{"ymarco/paper-mode"}
 \EFb{:files} (\EFs{"*.el"} \EFs{".so"})
 \EFb{:pre-build} (\EFs{"make"})))
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}\EFcd{;;} \EFc{(use-package paper}
\EFcd{;;} \EFc{;; :mode ("\char92{}\char92{}.pdf\char92{}\char92{}'" . paper-mode)}
\EFcd{;;} \EFc{;; :mode ("\char92{}\char92{}.epub\char92{}\char92{}'" . paper-mode)}
\EFcd{;;} \EFc{:config}
\EFcd{;;} \EFc{(require 'evil-collection-paper)}
\EFcd{;;} \EFc{(evil-collection-paper-setup))}
\end{Verbatim}
\end{Code}
\subsection{Terminal viewing}
\label{sec:org0606610}

Sometimes I'm in a terminal and I still want to see the content. Additionally,
sometimes I'd like to act on the textual content and so would like a plaintext version.
Thanks to we have a convenient way of performing this conversion.
I've integrated this into a little package, \verb~pdftotext.el~.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} pdftotext \EFb{:recipe} (\EFb{:local-repo} \EFs{"lisp/pdftotext"}))
\end{Verbatim}
\end{Code}

The output can be slightly nicer without spelling errors, and with prettier page
feeds (\verb~^L~ by default).

This is very nice, now we just need to associate it with \verb~.pdf~ files, and make
sure \verb~pdf-tools~ doesn't take priority.

Lastly, whenever Emacs is non-graphical (i.e. a TUI), we want to use this by default.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} pdftotext
 \EFb{:init}
 (\EFk{unless} (display-graphic-p)
 (add-to-list 'auto-mode-alist '(\EFs{"\char92{}\char92{}.[pP][dD][fF]\char92{}\char92{}'"} . pdftotext-mode))
 (add-to-list 'magic-mode-alist '(\EFs{"\%PDF"} . pdftotext-mode)))
 \EFb{:config}
 (\EFk{unless} (display-graphic-p) (\EFk{after!} pdf-tools (pdftotext-install)))
 \EFcd{;;} \EFc{For prettyness}
 (add-hook 'pdftotext-mode-hook \#'spell-fu-mode-disable)
 (add-hook 'pdftotext-mode-hook (\EFk{lambda} () (page-break-lines-mode 1)))
 \EFcd{;;} \EFc{I have no idea why this is needed}
 (map! \EFb{:map} pdftotext-mode-map
 \EFs{"<mouse-4>"} (\EFk{cmd!} (scroll-down mouse-wheel-scroll-amount-horizontal))
 \EFs{"<mouse-5>"} (\EFk{cmd!} (scroll-up mouse-wheel-scroll-amount-horizontal))))

\end{Verbatim}
\end{Code}
\section{R}
\label{sec:org127a9d3}

\subsection{Editor Visuals}
\label{sec:org7cd36fa}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{after!} ess-r-mode
 (\EFk{appendq!} +ligatures-extra-symbols
 '(\EFb{:assign} \EFs{"â�µ"}
 \EFb{:multiply} \EFs{"Ã�"}))
 (set-ligatures! 'ess-r-mode
 \EFcd{;;} \EFc{Functional}
 \EFb{:def} \EFs{"function"}
 \EFcd{;;} \EFc{Types}
 \EFb{:null} \EFs{"NULL"}
 \EFb{:true} \EFs{"TRUE"}
 \EFb{:false} \EFs{"FALSE"}
 \EFb{:int} \EFs{"int"}
 \EFb{:floar} \EFs{"float"}
 \EFb{:bool} \EFs{"bool"}
 \EFcd{;;} \EFc{Flow}
 \EFb{:not} \EFs{"!"}
 \EFb{:and} \EFs{"\&\&"} \EFb{:or} \EFs{"||"}
 \EFb{:for} \EFs{"for"}
 \EFb{:in} \EFs{"\%in\%"}
 \EFb{:return} \EFs{"return"}
 \EFcd{;;} \EFc{Other}
 \EFb{:assign} \EFs{"<-"}
 \EFb{:multiply} \EFs{"\%*\%"}))
\end{Verbatim}
\end{Code}
\section{Julia}
\label{sec:orgb82adfc}

It would be nice if \verb~julia-mode~ also highlighted the \verb~julia>~ prompt when writing
REPL examples.

\begin{Code}
\begin{Verbatim}
\color{EFD}(add-to-list
 'julia-font-lock-keywords
 '(\EFs{"\char94{}julia>"} 0 '(font-lock-string-face bold) prepend))
\end{Verbatim}
\end{Code}

As mentioned in \href{https://github.com/non-Jedi/lsp-julia/issues/35}{lsp-julia\#35}, \verb~lsp-mode~ seems to serve an invalid response to the
Julia server. The pseudo-fix is rather simple at least
\begin{Code}
\begin{Verbatim}
\color{EFD}(add-hook 'julia-mode-hook \#'rainbow-delimiters-mode-enable)
(\EFk{add-hook!} 'julia-mode-hook
 (\EFk{setq-local} lsp-enable-folding t
 lsp-folding-range-limit 100))
\end{Verbatim}
\end{Code}
\section{Data.toml files}
\label{sec:org0ee41aa}

For \verb~DataToolkit.jl~-formatted TOML files, I've made a major mode.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} conf-data-toml \EFb{:recipe} (\EFb{:local-repo} \EFs{"lisp/conf-data-toml"}))
\end{Verbatim}
\end{Code}

Since the major mode is autoloaded, all we need to do is register an appropriate
magic command for it to be used in \verb~Data.toml~ files.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} conf-data-toml
 \EFb{:magic} (\EFs{"\char92{}\char92{}`data_config_version = [0-9]"} . conf-data-toml-mode))
\end{Verbatim}
\end{Code}
\section{Graphviz}
\label{sec:org03167dc}

Graphviz is a nice method of visualising simple graphs, based on plaintext
\verb~.dot~ / \verb~.gv~ files.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} graphviz-dot-mode \EFb{:pin} \EFs{"8ff793b13707cb511875f56e167ff7f980a31136"})
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} graphviz-dot-mode
 \EFb{:commands} graphviz-dot-mode
 \EFb{:mode} (\EFs{"\char92{}\char92{}.dot\char92{}\char92{}'"} . graphviz-dot-mode)
 \EFb{:init}
 (\EFk{after!} org
 (setcdr (assoc \EFs{"dot"} org-src-lang-modes)
 'graphviz-dot)))
\end{Verbatim}
\end{Code}
\section{Markdown}
\label{sec:org967c129}

Most of the time when I write markdown, it's going into some app/website which
will do it's own line wrapping, hence we \emph{only} want to use visual line wrapping. No hard stuff.
\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{add-hook!} (gfm-mode markdown-mode) \#'visual-line-mode \#'turn-off-auto-fill)
\end{Verbatim}
\end{Code}

Since markdown is often seen as rendered HTML, let's try to somewhat mirror the
style or markdown renderers.

Most markdown renders seem to make the first three headings levels larger than
normal text, the first two much so. Then the fourth level tends to be the same
as body text, while the fifth and sixth are (increasingly) smaller, with the
sixth greyed out. Since the sixth level is so small, I'll turn up the boldness a notch.
\begin{Code}
\begin{Verbatim}
\color{EFD}(custom-set-faces!
 '(markdown-header-face-1 \EFb{:height} 1.25 \EFb{:weight} extra-bold \EFb{:inherit} markdown-header-face)
 '(markdown-header-face-2 \EFb{:height} 1.15 \EFb{:weight} bold \EFb{:inherit} markdown-header-face)
 '(markdown-header-face-3 \EFb{:height} 1.08 \EFb{:weight} bold \EFb{:inherit} markdown-header-face)
 '(markdown-header-face-4 \EFb{:height} 1.00 \EFb{:weight} bold \EFb{:inherit} markdown-header-face)
 '(markdown-header-face-5 \EFb{:height} 0.90 \EFb{:weight} bold \EFb{:inherit} markdown-header-face)
 '(markdown-header-face-6 \EFb{:height} 0.75 \EFb{:weight} extra-bold \EFb{:inherit} markdown-header-face))
\end{Verbatim}
\end{Code}
\section{Beancount}
\label{sec:orgf5d5d12}

There are a number of rather compelling advantages to \href{https://plaintextaccounting.org/}{plain text accounting},
with \href{https://www.ledger-cli.org/}{ledger} being the most obvious example. However, \href{https://github.com/beancount/beancount}{beancount}, a more recent
implementation of the idea is ledger-compatible (meaning I can switch easily if
I change my mind) and has a gorgeous front-end --- \href{https://beancount.github.io/fava/}{fava}.

Of course, there's an Emacs mode for this.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{package!} beancount \EFb{:recipe} (\EFb{:host} github \EFb{:repo} \EFs{"beancount/beancount-mode"})
 \EFb{:pin} \EFs{"ddd4b8725703cf17a665b56cc26a3f9f95642424"})
\end{Verbatim}
\end{Code}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{use-package!} beancount
 \EFb{:mode} (\EFs{"\char92{}\char92{}.beancount\char92{}\char92{}'"} . beancount-mode)
 \EFb{:init}
 (\EFk{after!} nerd-icons
 (add-to-list 'nerd-icons-extension-icon-alist
 '(\EFs{"beancount"} nerd-icons-faicon \EFs{"nf-fa-dollar"} \EFb{:face} nerd-icons-lblue))
 (add-to-list 'nerd-icons-mode-icon-alist
 '(beancount-mode nerd-icons-faicon \EFs{"nf-fa-dollar"} \EFb{:face} nerd-icons-lblue)))
 \EFb{:config}
 (\EFk{setq} beancount-electric-currency t)
 (\EFk{defun} \EFf{beancount-bal} ()
 \EFd{"Run bean-report bal."}
 (\EFk{interactive})
 (\EFk{let} ((compilation-read-command nil))
 (beancount--run \EFs{"bean-report"}
 (file-relative-name buffer-file-name) \EFs{"bal"})))
 (map! \EFb{:map} beancount-mode-map
 \EFb{:n} \EFs{"TAB"} \#'beancount-align-to-previous-number
 \EFb{:i} \EFs{"RET"} (\EFk{cmd!} (newline-and-indent) (beancount-align-to-previous-number))))
\end{Verbatim}
\end{Code}
\section{GIMP Palette files}
\label{sec:orgce0e3d5}

I like using colour schemes with Inkscape, and it uses "GIMP Palette" colour
scheme definition files. It's easy to edit them by hand, but often a bit annoying
as you need to keep the RGB code and hex representation in sync. Let's make that
a little easier by writing a little major mode for it.

The major mode doesn't need to do much, just try to turn \texttt{rainbow-mode} on for
 pretty hex colours, turn off \texttt{hl-line-mode} (if required) so the \verb~hl-line~ face
 doesn't overshadow them, and then the most crucial part: syncing the RGB/hex
 colour specifications on every buffer modification.

To catch all relevant modifications, but not trigger more frequently than needed
(as would happen if using \texttt{post-command-hook}, for example),
\texttt{after-change-functions} is the perfect option. We can make a buffer-local
addition that will sync all colours in the modified region.

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{define-derived-mode} \EFf{gimp-palette-mode} fundamental-mode \EFs{"GIMP Palette"}
 \EFd{"A major mode for GIMP Palette (.gpl) files that keeps RGB and Hex colors in sync."}
 (\EFk{when} (\EFk{require} '\EFo{rainbow-mode})
 (rainbow-mode 1))
 (\EFk{when} (\EFk{bound-and-true-p} hl-line-mode)
 (hl-line-mode -1))
 (add-hook 'after-change-functions \#'gimp-palette-update-region nil t))
\end{Verbatim}
\end{Code}

Now we need to implement the \texttt{gimp-palette-update-region} function. If we plan on
implementing a per-line update function, this is simply a matter of calling it
on each line with a few quality of life improvements:
\begin{itemize}
\item Batching all the changes into a single undo step (via \texttt{undo-amalgamate-change-group})
\item Working interactively with a selected region, or the whole buffer.
\end{itemize}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{gimp-palette-update-region} (beg end \EFt{\&optional} _)
 \EFd{"Update each line between BEG and END with `}\textcolor[HTML]{b751b6}{\textit{gimp-palette-update-line}}\EFd{'.}
\EFd{If run interactively without a region set, the whole buffer is affected."}
 (\EFk{interactive}
 (\EFk{if} (region-active-p)
 (list (region-beginning) (region-end))
 (list (point-min) (point-max))))
 (\EFk{let} ((marker (prepare-change-group)))
 (\EFk{unwind-protect}
 (\EFk{save-excursion}
 (goto-char beg)
 (\EFk{while} (< (point) end)
 (gimp-palette-update-line)
 (forward-line 1)))
 (undo-amalgamate-change-group marker))))
\end{Verbatim}
\end{Code}

Now we need to implement the per-line update function. This won't be a
particularly short function, but it isn't complicated either. It should work as
follows:
\begin{enumerate}
\item Check to see whether the line starts with \verb~R G B #HEX~
\item Check that \texttt{point} is within the RGB/hex part of the linen
\item If on the hex part, parse the hex string and update the RGB to match
(inserting the RGB component if it does not already exist)
\item If on the RGB part, update the hex part to match
\end{enumerate}

\begin{Code}
\begin{Verbatim}
\color{EFD}(\EFk{defun} \EFf{gimp-palette-update-line} ()
 \EFd{"Update the RGB and Hex colour codes on the current line.}
\EFd{Whichever `}\textcolor[HTML]{b751b6}{\textit{point}}\EFd{' is currently on is taken as the source of truth."}
 (\EFk{interactive})
 (\EFk{let} ((column (current-column))
 (ipoint (point)))
 (beginning-of-line)
 (\EFk{when} (\EFk{and} (re-search-forward \EFs{"}\textcolor[HTML]{a626a4}{\char92{}\char92{}=}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{[0-9]*}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{(}}\EFs{\#[0-9A-Fa-f]\char92{}\char92{}\{}\textcolor[HTML]{6a1868}{6\char92{}\char92{}}\EFs{\}}\textcolor[HTML]{4078f2}{\textbf{\char92{}\char92{}}}\textcolor[HTML]{4078f2}{\textbf{)}}\EFs{"} nil t)
 (<= column (length (match-string 0))))
 (\EFk{cond}
 ((>= column (length (match-string 1))) \EFcd{;} \EFc{Point in \#HEX}
 (\EFk{cl-destructuring-bind} (r g b) (color-name-to-rgb (match-string 2))
 (replace-match
 (format \EFs{"\%3d \%3d \%3d "}
 (round (* 255 r))
 (round (* 255 g))
 (round (* 255 b)))
 nil t nil 1)))
 ((string-match-p \EFs{"\char92{}\char92{}`[0-9]+ +[0-9]+ +[0-9]+\char92{}\char92{}'"} (match-string 1)) \EFcd{;} \EFc{Valid R G B}
 (\EFk{cl-destructuring-bind} (r g b)
 (mapcar \#'string-to-number
 (\EFk{save-match-data}
 (split-string (match-string 1) \EFs{" +"} t)))
 (replace-match
 (format \EFs{"\%3d \%3d \%3d "} r g b)
 nil t nil 1)
 (replace-match
 (color-rgb-to-hex (/ r 255.0) (/ g 255.0) (/ b 255.0) 2)
 nil t nil 2)))))
 (goto-char ipoint)))
\end{Verbatim}
\end{Code}

The last thing that's needed to make this functionality convenient is to have it
automatically activate when appropriate. GIMP palette files re-use the \verb~.gpl~
extension, so \texttt{auto-mode-alist} isn't a good choice, but we can use the
\texttt{magic-mode-alist} to use this mode in any file that begins with \verb~GIMP Palette~,
which is perfect for our needs.

\begin{Code}
\begin{Verbatim}
\color{EFD}(add-to-list 'magic-mode-alist (cons \EFs{"\char92{}\char92{}`GIMP Palette\char92{}n"} \#'gimp-palette-mode))
\end{Verbatim}
\end{Code}
\section{Snippets}
\label{sec:org5fd6194}
\subsection{Latex mode}
\label{sec:org49a8cc5}
File template
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: LaTeX template}
\EFc{\# --}
\char92{}documentclass\EFk{\$\{}\EFwr{1}\EFk{:}[\EFk{\$\{}\EFwr{2}\EFk{:}opt1,...\EFk{\}}]\EFk{\}}\{`(tec/yas-latex-get-class-choice)`\EFk{\}}

\char92{}title\{\EFk{\$\{}\EFwr{3}\EFk{:}`(s-titleized-words (file-name-base (\EFk{or} buffer-file-name \EFs{"new buffer"})))`\EFk{\}\}}
\char92{}author\{\EFk{\$\{}\EFwr{4}\EFk{:}`(user-full-name)`\EFk{\}\}}
\char92{}date\{\EFk{\$\{}\EFwr{5}\EFk{:}`(format-time-string \EFs{"\%Y-\%m-\%d"})`\EFk{\}\}}
`(\EFk{if} (tec/yas-latex-preamble-if) tec/yas-latex-template-preamble \EFs{""})`
\char92{}begin\{document\EFk{\}}

\char92{}maketitle

\EFk{\$}\EFs{0}

\char92{}end\{document\EFk{\}}
\end{Verbatim}
\end{Code}

Deliminators
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# name: _deliminators}
\EFc{\# --}
\char92{}left`(tec/tex-open-delim-from-char)` `\%`\EFk{\$}\EFs{1} \char92{}right`(tec/tex-close-delim-from-char)` \EFk{\$}\EFs{0}

\end{Verbatim}
\end{Code}

Aligned equals
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# key: ==}
\EFc{\# name: aligned equals}
\EFc{\# --}
\EFt{\&=}
\end{Verbatim}
\end{Code}

Begin alias
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: begin-alias}
\EFc{\# key: beg}
\EFc{\# type: command}
\EFc{\# --}
(doom-snippets-expand :name \EFs{"begin"})
\end{Verbatim}
\end{Code}

Cases
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# key: cs}
\EFc{\# name: cases}
\EFc{\# group: math}
\EFc{\# condition: (texmathp)}
\EFc{\# --}
\char92{}begin\{cases\EFk{\}}
 `\%`\EFk{\$}\EFs{1}
\char92{}end\{cases\EFk{\}\$}\EFs{0}
\end{Verbatim}
\end{Code}

Code
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: code}
\EFc{\# --}
\char92{}begin\{minted\EFk{\}}\{\EFk{\$\{}\EFwr{1}\EFk{:}language\EFk{\}\}}
\EFk{\$\{}\EFwr{0}\EFk{:}`\%`\EFk{\}}
\char92{}end\{minted\EFk{\}}

\end{Verbatim}
\end{Code}

Corollary
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: corollary}
\EFc{\# key: clr}
\EFc{\# group: theorems}
\EFc{\# --}
\char92{}begin\{corollary\EFk{\}\$\{}\EFwr{1}\EFk{:}[\EFk{\$\{}\EFwr{2}\EFk{:}name\EFk{\}}]\EFk{\}}
 `\%`\EFk{\$}\EFs{0}
\char92{}end\{corollary\EFk{\}}
\end{Verbatim}
\end{Code}

Definition
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: definition}
\EFc{\# key: def}
\EFc{\# group: theorems}
\EFc{\# --}
\char92{}begin\{definition\EFk{\}\$\{}\EFwr{1}\EFk{:}[\EFk{\$\{}\EFwr{2}\EFk{:}name\EFk{\}}]\EFk{\}}
 `\%`\EFk{\$}\EFs{0}
\char92{}end\{definition\EFk{\}}
\end{Verbatim}
\end{Code}

Deliminators
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: deliminators}
\EFc{\# key: @}
\EFc{\# condition: (texmathp)}
\EFc{\# type: command}
\EFc{\# --}
(tec/get-open-delim-char)
(yas-expand-snippet (yas-lookup-snippet \EFs{"_deliminators"} 'latex-mode))
\end{Verbatim}
\end{Code}

Deliminators angle
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: deliminators - angle <>}
\EFc{\# key: <}
\EFc{\# condition: (texmathp)}
\EFc{\# type: command}
\EFc{\# --}
(\EFk{setq} tec/tex-last-delim-char ?\char92{}<)
(\EFk{setq} tec/tex-delim-dot-second nil)
(tec/tex-delim-yas-expand)
\end{Verbatim}
\end{Code}

Deliminators bracket
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: deliminators - bracket []}
\EFc{\# key: [}
\EFc{\# condition: (texmathp)}
\EFc{\# type: command}
\EFc{\# --}
(\EFk{setq} tec/tex-last-delim-char ?\char92{}[)
(\EFk{setq} tec/tex-delim-dot-second nil)
(tec/tex-delim-yas-expand)
\end{Verbatim}
\end{Code}

Deliminators curly
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: deliminators - curley \{\}}
\EFc{\# key: \{}
\EFc{\# condition: (texmathp)}
\EFc{\# type: command}
\EFc{\# --}
(\EFk{setq} tec/tex-last-delim-char ?\char92{}\{)
(\EFk{setq} tec/tex-delim-dot-second nil)
(tec/tex-delim-yas-expand)

\end{Verbatim}
\end{Code}

Deliminators paren
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: deliminators - paren ()}
\EFc{\# key: (}
\EFc{\# condition: (texmathp)}
\EFc{\# type: command}
\EFc{\# --}
(\EFk{setq} tec/tex-last-delim-char ?\char92{}()
(\EFk{setq} tec/tex-delim-dot-second nil)
(tec/tex-delim-yas-expand)
\end{Verbatim}
\end{Code}

Enumerate
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: enumerate}
\EFc{\# key: en}
\EFc{\# --}
\char92{}begin\{enumerate\EFk{\}}
`(\EFk{if} \% \% \EFs{" \char92{}\char92{}item "})`\EFk{\$}\EFs{0}
\char92{}end\{enumerate\EFk{\}}
\end{Verbatim}
\end{Code}

Example
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: example}
\EFc{\# key: eg}
\EFc{\# group: theorems}
\EFc{\# --}
\char92{}begin\{example\EFk{\}\$\{}\EFwr{1}\EFk{:}[\EFk{\$\{}\EFwr{2}\EFk{:}name\EFk{\}}]\EFk{\}}
 `\%`\EFk{\$}\EFs{0}
\char92{}end\{example\EFk{\}}
\end{Verbatim}
\end{Code}

Frac short
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# key: /}
\EFc{\# name: frac-short}
\EFc{\# group: math}
\EFc{\# condition: (texmathp)}
\EFc{\# --}
\char92{}frac\{\EFk{\$\{}\EFwr{1}\EFk{:}`(\EFk{or} \% \EFs{""})`\EFk{\}\}}\{\EFk{\$}\EFs{2}\EFk{\}\$}\EFs{0}
\end{Verbatim}
\end{Code}

Int \^{}
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# key: int}
\EFc{\# name: int_\char94{}}
\EFc{\# --}
\char92{}int\EFk{\$\{}\EFwr{1}\EFk{:}\EFpp{\$(}\EFk{when} (> (length yas-text) 0) \EFs{"_"})
\EFk{\}\$\{}\EFwr{1}\EFk{:}\EFpp{\$(}\EFk{when} (> (length yas-text) 1) \EFs{"\{"})
\EFk{\}}\EFwr{\$\{}\EFwr{1}\EFwr{:left\}\$\{}\EFwr{1}\EFwr{:\$(}\textcolor[HTML]{986801}{when} \EFwr{(> (length yas-text) 1)} \textcolor[HTML]{986801}{"\}"}\EFwr{)}
\EFk{\}}\EFwr{\$\{}\EFwr{2}\EFwr{:\$(}\textcolor[HTML]{986801}{when} \EFwr{(> (length yas-text) 0)} \textcolor[HTML]{986801}{"\char94{}"}\EFwr{)}
\EFk{\}}\EFwr{\$\{}\EFwr{2}\EFwr{:\$(}\textcolor[HTML]{986801}{when} \EFwr{(> (length yas-text) 1)} \textcolor[HTML]{986801}{"\{"}\EFwr{)}
\EFk{\}}\EFwr{\$\{}\EFwr{2}\EFwr{:right\}\$\{}\EFwr{2}\EFwr{:\$(}\textcolor[HTML]{986801}{when} \EFwr{(> (length yas-text) 1)} \textcolor[HTML]{986801}{"\}"}\EFwr{)\} \$}\EFs{0}
\end{Verbatim}
\end{Code}

Itemize
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: itemize}
\EFc{\# key: it}
\EFc{\# uuid: it}
\EFc{\# --}
\char92{}begin\{itemize\EFk{\}}
`(\EFk{if} \% \% \EFs{" \char92{}\char92{}item "})`\EFk{\$}\EFs{0}
\char92{}end\{itemize\EFk{\}}
\end{Verbatim}
\end{Code}

Lemma
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: lemma}
\EFc{\# key: lmm}
\EFc{\# group: theorems}
\EFc{\# --}
\char92{}begin\{lemma\EFk{\}\$\{}\EFwr{1}\EFk{:}[\EFk{\$\{}\EFwr{2}\EFk{:}name\EFk{\}}]\EFk{\}}
 `\%`\EFk{\$}\EFs{0}
\char92{}end\{lemma\EFk{\}}
\end{Verbatim}
\end{Code}

Lim
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: lim}
\EFc{\# key: lim}
\EFc{\# --}
\char92{}lim_\{\EFk{\$\{}\EFwr{1}\EFk{:}n\EFk{\}} \char92{}to \EFk{\$\{}\EFwr{2}\EFk{:}\char92{}infty\EFk{\}\}} \EFk{\$}\EFs{0}
\end{Verbatim}
\end{Code}

Mathclap
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# key: mc}
\EFc{\# name: mathclap}
\EFc{\# group: math}
\EFc{\# condition: (texmathp)}
\EFc{\# --}
\char92{}mathclap\{`\%`\EFk{\$}\EFs{1}\EFk{\}\$}\EFs{0}
\end{Verbatim}
\end{Code}

Prod \^{}
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# key: prod}
\EFc{\# name: prod_\char94{}}
\EFc{\# --}
\char92{}prod\EFk{\$\{}\EFwr{1}\EFk{:}\EFpp{\$(}\EFk{when} (> (length yas-text) 0) \EFs{"_"})
\EFk{\}}\EFwr{\$\{}\EFwr{1}\EFwr{:\$(}\textcolor[HTML]{986801}{when} \EFwr{(> (length yas-text) 1)} \textcolor[HTML]{986801}{"\{"}\EFwr{)}
\EFk{\}}\EFwr{\$\{}\EFwr{1}\EFwr{:i=1\}\$\{}\EFwr{1}\EFwr{:\$(}\textcolor[HTML]{986801}{when} \EFwr{(> (length yas-text) 1)} \textcolor[HTML]{986801}{"\}"}\EFwr{)}
\EFk{\}}\EFwr{\$\{}\EFwr{2}\EFwr{:\$(}\textcolor[HTML]{986801}{when} \EFwr{(> (length yas-text) 0)} \textcolor[HTML]{986801}{"\char94{}"}\EFwr{)}
\EFk{\}}\EFwr{\$\{}\EFwr{2}\EFwr{:\$(}\textcolor[HTML]{986801}{when} \EFwr{(> (length yas-text) 1)} \textcolor[HTML]{986801}{"\{"}\EFwr{)}
\EFk{\}}\EFwr{\$\{}\EFwr{2}\EFwr{:n\}\$\{}\EFwr{2}\EFwr{:\$(}\textcolor[HTML]{986801}{when} \EFwr{(> (length yas-text) 1)} \textcolor[HTML]{986801}{"\}"}\EFwr{)\} \$}\EFs{0}
\end{Verbatim}
\end{Code}

Proof
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: proof}
\EFc{\# key: prf}
\EFc{\# group: theorems}
\EFc{\# --}
\char92{}begin\{proof\EFk{\}\$\{}\EFwr{1}\EFk{:}[\EFk{\$\{}\EFwr{2}\EFk{:}name\EFk{\}}]\EFk{\}}
 `\%`\EFk{\$}\EFs{0}
\char92{}end\{proof\EFk{\}}
\end{Verbatim}
\end{Code}

Remark
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: remark}
\EFc{\# key: rmk}
\EFc{\# group: theorems}
\EFc{\# --}
\char92{}begin\{remark\EFk{\}\$\{}\EFwr{1}\EFk{:}[\EFk{\$\{}\EFwr{2}\EFk{:}name\EFk{\}}]\EFk{\}}
 `\%`\EFk{\$}\EFs{0}
\char92{}end\{remark\EFk{\}}
\end{Verbatim}
\end{Code}

Sum \^{}
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# key: sum}
\EFc{\# name: sum_\char94{}}
\EFc{\# --}
\char92{}sum\EFk{\$\{}\EFwr{1}\EFk{:}\EFpp{\$(}\EFk{when} (> (length yas-text) 0) \EFs{"_"})
\EFk{\}}\EFwr{\$\{}\EFwr{1}\EFwr{:\$(}\textcolor[HTML]{986801}{when} \EFwr{(> (length yas-text) 1)} \textcolor[HTML]{986801}{"\{"}\EFwr{)}
\EFk{\}}\EFwr{\$\{}\EFwr{1}\EFwr{:i=1\}\$\{}\EFwr{1}\EFwr{:\$(}\textcolor[HTML]{986801}{when} \EFwr{(> (length yas-text) 1)} \textcolor[HTML]{986801}{"\}"}\EFwr{)}
\EFk{\}}\EFwr{\$\{}\EFwr{2}\EFwr{:\$(}\textcolor[HTML]{986801}{when} \EFwr{(> (length yas-text) 0)} \textcolor[HTML]{986801}{"\char94{}"}\EFwr{)}
\EFk{\}}\EFwr{\$\{}\EFwr{2}\EFwr{:\$(}\textcolor[HTML]{986801}{when} \EFwr{(> (length yas-text) 1)} \textcolor[HTML]{986801}{"\{"}\EFwr{)}
\EFk{\}}\EFwr{\$\{}\EFwr{2}\EFwr{:n\}\$\{}\EFwr{2}\EFwr{:\$(}\textcolor[HTML]{986801}{when} \EFwr{(> (length yas-text) 1)} \textcolor[HTML]{986801}{"\}"}\EFwr{)\} \$}\EFs{0}
\end{Verbatim}
\end{Code}

Theorem
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: theorem}
\EFc{\# key: thm}
\EFc{\# group: theorems}
\EFc{\# --}
\char92{}begin\{theorem\EFk{\}\$\{}\EFwr{1}\EFk{:}[\EFk{\$\{}\EFwr{2}\EFk{:}name\EFk{\}}]\EFk{\}}
 `\%`\EFk{\$}\EFs{0}
\char92{}end\{theorem\EFk{\}}
\end{Verbatim}
\end{Code}
\subsection{Markdown mode}
\label{sec:org568ece3}
File template
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: Org template}
\EFc{\# --}
\# \EFk{\$\{}\EFwr{1}\EFk{:}`(s-titleized-words (file-name-base (\EFk{or} buffer-file-name \EFs{"new buffer"})))`\EFk{\}}

\EFk{\$}\EFs{0}
\end{Verbatim}
\end{Code}
\subsection{Org mode}
\label{sec:org473b4e5}
File template
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: Org template}
\EFc{\# --}
\#+title: \EFk{\$\{}\EFwr{1}\EFk{:}`(s-titleized-words (replace-regexp-in-string \EFs{"\char94{}[0-9]\char92{}\char92{}\{}\textcolor[HTML]{6a1868}{4\char92{}\char92{}}\EFs{\}-[0-9][0-9]-[0-9][0-9]-"} \EFs{""} (file-name-base (\EFk{or} buffer-file-name \EFs{"new buffer"}))))`\EFk{\}}
\EFc{\#+author: \$\{}\EFwr{2}\EFc{:`(user-full-name)`\}}
\#+date: \EFk{\$\{}\EFwr{3}\EFk{:}`(format-time-string \EFs{"\%Y-\%m-\%d"})`\EFk{\}}

\EFk{\$}\EFs{0}
\end{Verbatim}
\end{Code}

Display maths
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: display math}
\EFc{\# key: M}
\EFc{\# condition: t}
\# expand-env: ((yas-after-exit-snippet-hook (\EFk{lambda} () (org-edit-latex-fragment) (evil-insert-state) (insert \EFs{"\char92{}n \char92{}n"}) (left-char))))
\EFc{\# --}
\char92{}\char92{}[`\%`\EFk{\$}\EFs{0}\char92{}\char92{}]
\end{Verbatim}
\end{Code}

Elisp source
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: elisp src}
\EFc{\# uuid: src_elisp}
\EFc{\# key: <el}
\EFc{\# condition: t}
\EFc{\# expand-env: ((yas-after-exit-snippet-hook \#'org-edit-src-code))}
\EFc{\# --}
\EFc{\#+begin_src emacs-lisp}
`\%`\EFk{\$}\EFs{0}
\EFc{\#+end_src}
\end{Verbatim}
\end{Code}

Global property
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: Global property}
\EFc{\# key: \#+p}
\EFc{\# condition: (> 20 (line-number-at-pos))}
\EFc{\# --}
\EFc{\#+property: \$}\EFs{0}
\end{Verbatim}
\end{Code}

Header argument dir
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: Header arg - dir}
\EFc{\# key: d}
\EFc{\# condition: (+yas/org-src-header-p)}
\EFc{\# --}
:dir `(file-relative-name (read-directory-name \EFs{"Working directory: "}))` \EFk{\$}\EFs{0}
\end{Verbatim}
\end{Code}

Header argument eval
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: Header arg - eval}
\EFc{\# key: v}
\EFc{\# condition: (+yas/org-src-header-p)}
\EFc{\# --}
`(\EFk{let} ((out (+yas/org-prompt-header-arg :eval \EFs{"Evaluate: "} '(\EFs{"no"} \EFs{"query"} \EFs{"no-export"} \EFs{"query-export"})))) (\EFk{if} out (concat \EFs{":eval "} out \EFs{" "}) \EFs{""}))`
\end{Verbatim}
\end{Code}

Header argument export
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: Header arg - export}
\EFc{\# key: e}
\EFc{\# condition: (+yas/org-src-header-p)}
\EFc{\# --}
`(\EFk{let} ((out (+yas/org-prompt-header-arg :exports \EFs{"Exports: "} '(\EFs{"code"} \EFs{"results"} \EFs{"both"} \EFs{"none"})))) (\EFk{if} out (concat \EFs{":exports "} out \EFs{" "}) \EFs{""}))`
\end{Verbatim}
\end{Code}

Header argument file
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: Header arg - file}
\EFc{\# key: f}
\EFc{\# condition: (+yas/org-src-header-p)}
\EFc{\# --}
:file \EFk{\$}\EFs{0}
\end{Verbatim}
\end{Code}

Header argument graphics
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: Header arg - graphics}
\EFc{\# key: g}
\EFc{\# condition: (+yas/org-src-header-p)}
\EFc{\# --}
:results file graphics \EFk{\$}\EFs{0}
\end{Verbatim}
\end{Code}

Header argument height
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: Header arg - height}
\EFc{\# key: H}
\EFc{\# condition: (+yas/org-src-header-p)}
\EFc{\# --}
:height \EFk{\$}\EFs{0}
\end{Verbatim}
\end{Code}

Header argument noweb
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: Header arg - noweb}
\EFc{\# key: n}
\EFc{\# condition: (+yas/org-src-header-p)}
\EFc{\# --}
`(\EFk{let} ((out (+yas/org-prompt-header-arg :noweb \EFs{"NoWeb: "} '(\EFs{"no"} \EFs{"yes"} \EFs{"tangle"} \EFs{"no-export"} \EFs{"strip-export"} \EFs{"eval"})))) (\EFk{if} out (concat \EFs{":noweb "} out \EFs{" "}) \EFs{""}))`
\end{Verbatim}
\end{Code}

Header argument output
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: Header arg - output}
\EFc{\# key: o}
\EFc{\# condition: (+yas/org-src-header-p)}
\EFc{\# --}
:results output \EFk{\$}\EFs{0}
\end{Verbatim}
\end{Code}

Header argument results
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: Header arg - results}
\EFc{\# key: r}
\EFc{\# condition: (+yas/org-src-header-p)}
\EFc{\# --}
`(\EFk{let} ((out
(string-trim-right
 (concat
 (+yas/org-prompt-header-arg :results \EFs{"Result collection: "} '(\EFs{"value "} \EFs{"output "}))
 (+yas/org-prompt-header-arg :results \EFs{"Results type: "} '(\EFs{"table "} \EFs{"vector "} \EFs{"list "} \EFs{"verbatim "} \EFs{"file "}))
 (+yas/org-prompt-header-arg :results \EFs{"Results format: "} '(\EFs{"code "} \EFs{"drawer "} \EFs{"html "} \EFs{"latex "} \EFs{"link "} \EFs{"graphics "} \EFs{"org "} \EFs{"pp "} \EFs{"raw "}))
 (+yas/org-prompt-header-arg :results \EFs{"Result output: "} '(\EFs{"silent "} \EFs{"replace "} \EFs{"append "} \EFs{"prepend "}))))))
 (\EFk{if} (string= out \EFs{""}) \EFs{""}
 (concat \EFs{":results "} out \EFs{" "})))
`
\end{Verbatim}
\end{Code}

Header argument session
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: Header arg - session}
\EFc{\# key: S}
\EFc{\# condition: (+yas/org-src-header-p)}
\EFc{\# --}
:session \EFs{"\$\{}\EFwr{1}\EFs{:`(file-name-base (or (buffer-file-name) "}unnnamed\EFs{"))`-session\}"} \EFk{\$}\EFs{0}
\end{Verbatim}
\end{Code}

Header argument silent
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: Header arg - silent}
\EFc{\# key: s}
\EFc{\# condition: (+yas/org-src-header-p)}
\EFc{\# --}
:results silent \EFk{\$}\EFs{0}
\end{Verbatim}
\end{Code}

Header argument tangle
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: Header arg - tangle}
\EFc{\# key: t}
\EFc{\# condition: (+yas/org-src-header-p)}
\EFc{\# --}
:tangle \EFk{\$}\EFs{0}
\end{Verbatim}
\end{Code}

Header argument width
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: Header arg - width}
\EFc{\# key: W}
\EFc{\# condition: (+yas/org-src-header-p)}
\EFc{\# --}
:width \EFk{\$}\EFs{0}
\end{Verbatim}
\end{Code}

Header argument wrap
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: Header arg - wrap}
\EFc{\# key: w}
\EFc{\# condition: (+yas/org-src-header-p)}
\EFc{\# --}
`(\EFk{let} ((out (+yas/org-prompt-header-arg :noweb \EFs{"Wrap: "} '(\EFs{"example"} \EFs{"export"} \EFs{"comment"} \EFs{"src"})))) (\EFk{if} out (concat \EFs{":wrap "} out \EFs{" "}) \EFs{""}))`
\end{Verbatim}
\end{Code}

Inline math
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: inline math}
\EFc{\# key: m}
\EFc{\# condition: t}
\EFc{\# expand-env: ((yas-after-exit-snippet-hook (lambda () (org-edit-latex-fragment) (evil-insert-state) (goto-char 3))))}
\EFc{\# --}
\char92{}\char92{}(`\%`\EFk{\$}\EFs{0}\char92{}\char92{})
\end{Verbatim}
\end{Code}

Property header arguments
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: Property - header arg}
\EFc{\# key: h}
\# condition: (\EFk{or} (looking-back \EFs{"\char94{}\#\char92{}\char92{}+PROPERTY:.*"} (line-beginning-position)) (looking-back \EFs{"\char94{}\#\char92{}\char92{}+property:.*"} (line-beginning-position)))
\EFc{\# --}
header-args:\EFk{\$\{}\EFwr{1}\EFk{:}`(\EFk{or} (+yas/org-most-common-no-property-lang) \EFs{"?"})`\EFk{\}} \EFk{\$}\EFs{0}
\end{Verbatim}
\end{Code}

Python source
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: python src}
\EFc{\# uuid: src_python}
\EFc{\# key: <py}
\EFc{\# condition: t}
\EFc{\# expand-env: ((yas-after-exit-snippet-hook \#'org-edit-src-code))}
\EFc{\# --}
\EFc{\#+begin_src python}
`\%`\EFk{\$}\EFs{0}
\EFc{\#+end_src}
\end{Verbatim}
\end{Code}

Source
\begin{Code}
\begin{Verbatim}
\color{EFD}\EFc{\# -*- mode: snippet -*-}
\EFc{\# name: \#+begin_src}
\EFc{\# uuid: src}
\EFc{\# key: src}
\EFc{\# --}
\#+begin_src \EFk{\$\{}\EFwr{1}\EFk{:}`(\EFk{or} (+yas/org-last-src-lang) \EFs{"?"})`\EFk{\}}
`\%`\EFk{\$}\EFs{0}
\EFc{\#+end_src}
\end{Verbatim}
\end{Code}
\end{document}

;;; init.el -*- lexical-binding: t; -*-

;; This file controls what Doom modules are enabled and what order they load in.
;; Press 'K' on a module to view its documentation, and 'gd' to browse its directory.

(doom! :input
 ;;bidi ; (tfel ot) thgir etirw uoy gnipleh
 ;;chinese
 ;;japanese
 ;;layout ; auie,ctsrnm is the superior home row

 :completion
 ;; company ; the ultimate code completion backend
 (corfu +orderless +dabbrev) ; complete with cap(f), cape and a flying feather!
 ;;helm ; the *other* search engine for love and life
 ;;ido ; the other *other* search engine...
 ;; (ivy ; a search engine for love and life
 ;; +icons ; ... icons are nice
 ;; +prescient) ; ... I know what I want(ed)
 (vertico +icons) ; the search engine of the future

 :ui
 ;;deft ; notational velocity for Emacs
 doom ; what makes DOOM look the way it does
 doom-dashboard ; a nifty splash screen for Emacs
 doom-quit ; DOOM quit-message prompts when you quit Emacs
 ;; (emoji +unicode) ; 🙂
 ;;fill-column ; a `fill-column' indicator
 hl-todo ; highlight TODO/FIXME/NOTE/DEPRECATED/HACK/REVIEW
 ;;hydra ; quick documentation for related commands
 ;;indent-guides ; highlighted indent columns, notoriously slow
 (ligatures +extra) ; ligatures and symbols to make your code pretty again
 ;;minimap ; show a map of the code on the side
 modeline ; snazzy, Atom-inspired modeline, plus API
 nav-flash ; blink the current line after jumping
 ;;neotree ; a project drawer, like NERDTree for vim
 ophints ; highlight the region an operation acts on
 (popup ; tame sudden yet inevitable temporary windows
 +all ; catch all popups that start with an asterix
 +defaults) ; default popup rules
 ;;(tabs ; an tab bar for Emacs
 ;; +centaur-tabs) ; ... with prettier tabs
 treemacs ; a project drawer, like neotree but cooler
 ;;unicode ; extended unicode support for various languages
 (vc-gutter +pretty) ; vcs diff in the fringe
 vi-tilde-fringe ; fringe tildes to mark beyond EOB
 (window-select +numbers) ; visually switch windows
 workspaces ; tab emulation, persistence & separate workspaces
 zen ; distraction-free coding or writing

 :editor
 (evil +everywhere) ; come to the dark side, we have cookies
 file-templates ; auto-snippets for empty files
 fold ; (nigh) universal code folding
 (format) ; automated prettiness
 ;;god ; run Emacs commands without modifier keys
 ;;lispy ; vim for lisp, for people who don't like vim
 multiple-cursors ; editing in many places at once
 ;;objed ; text object editing for the innocent
 ;;parinfer ; turn lisp into python, sort of
 rotate-text ; cycle region at point between text candidates
 snippets ; my elves. They type so I don't have to
 ;;word-wrap ; soft wrapping with language-aware indent

 :emacs
 (dired +icons) ; making dired pretty [functional]
 electric ; smarter, keyword-based electric-indent
 (ibuffer +icons) ; interactive buffer management
 undo ; persistent, smarter undo for your inevitable mistakes
 vc ; version-control and Emacs, sitting in a tree

 :term
 ;;eshell ; the elisp shell that works everywhere
 ;;shell ; simple shell REPL for Emacs
 ;;term ; basic terminal emulator for Emacs
 vterm ; the best terminal emulation in Emacs

 :checkers
 syntax ; tasing you for every semicolon you forget
 ;; spell ; tasing you for misspelling mispelling
 grammar ; tasing grammar mistake every you make

 :tools
 ansible ; a crucible for infrastructure as code
 biblio ; Writes a PhD for you (citation needed)
 ;;collab ; buffers with friends
 ;;debugger ; FIXME stepping through code, to help you add bugs
 ;;direnv ; be direct about your environment
 docker ; port everything to containers
 ;;editorconfig ; let someone else argue about tabs vs spaces
 ;;ein ; tame Jupyter notebooks with emacs
 (eval +overlay) ; run code, run (also, repls)
 ;;gist ; interacting with github gists
 (lookup ; helps you navigate your code and documentation
 +dictionary ; dictionary/thesaurus is nice
 +docsets) ; ...or in Dash docsets locally
 lsp ; Language Server Protocol
 (magit ; a git porcelain for Emacs
 +forge) ; interface with git forges
 make ; run make tasks from Emacs
 ;;pass ; password manager for nerds
 pdf ; pdf enhancements
 ;;prodigy ; FIXME managing external services & code builders
 ;;terraform ; infrastructure as code
 ;;tmux ; an API for interacting with tmux
 ;;tree-sitter ; syntax and parsing, sitting in a tree...
 upload ; map local to remote projects via ssh/ftp

 :os
 (:if (featurep :system 'macos) macos) ; improve compatibility with macOS
 tty ; improve the terminal Emacs experience

 :lang
 ;;agda ; types of types of types of types...
 ;;beancount ; mind the GAAP
 ;;(cc +lsp) ; C > C++ == 1
 ;;clojure ; java with a lisp
 ;;common-lisp ; if you've seen one lisp, you've seen them all
 ;;coq ; proofs-as-programs
 ;;crystal ; ruby at the speed of c
 ;;csharp ; unity, .NET, and mono shenanigans
 data ; config/data formats
 ;;(dart +flutter) ; paint ui and not much else
 ;;dhall ; JSON with FP sprinkles
 ;;elixir ; erlang done right
 ;;elm ; care for a cup of TEA?
 emacs-lisp ; drown in parentheses
 ;;erlang ; an elegant language for a more civilized age
 ess ; emacs speaks statistics
 ;;faust ; dsp, but you get to keep your soul
 ;;fsharp ; ML stands for Microsoft's Language
 ;;fstar ; (dependent) types and (monadic) effects and Z3
 ;;gdscript ; the language you waited for
 ;;(graphql +lsp) ; Give queries a REST
 (go +lsp) ; the hipster dialect
 ;;(haskell +lsp) ; a language that's lazier than I am
 ;;hy ; readability of scheme w/ speed of python
 ;;idris ;
 json ; At least it ain't XML
 ;;(java +lsp) ; the poster child for carpal tunnel syndrome
 (javascript +lsp) ; all(hope(abandon(ye(who(enter(here))))))
 (julia +lsp) ; Python, R, and MATLAB in a blender
 ;;kotlin ; a better, slicker Java(Script)
 (latex ; writing papers in Emacs has never been so fun
 +latexmk ; what else would you use?
 +cdlatex ; quick maths symbols
 +fold) ; fold the clutter away nicities
 ;;lean ; proof that mathematicians need help
 ;;factor ; for when scripts are stacked against you
 ;;ledger ; an accounting system in Emacs
 lua ; one-based indices? one-based indices
 markdown ; writing docs for people to ignore
 ;;nim ; python + lisp at the speed of c
 nix ; I hereby declare "nix geht mehr!"
 ;;ocaml ; an objective camel
 (org ; organize your plain life in plain text
 +dragndrop ; drag & drop files/images into org buffers
 ;;+hugo ; use Emacs for hugo blogging
 +noter ; enhanced PDF notetaking
 +jupyter ; ipython/jupyter support for babel
 +pandoc ; export-with-pandoc support
 +gnuplot ; who doesn't like pretty pictures
 ;;+pomodoro ; be fruitful with the tomato technique
 +present ; using org-mode for presentations
 +roam2) ; wander around notes
 ;;php ; perl's insecure younger brother
 ;;plantuml ; diagrams for confusing people more
 ;;purescript ; javascript, but functional
 (python +lsp +pyright) ; beautiful is better than ugly
 ;;qt ; the 'cutest' gui framework ever
 ;;racket ; a DSL for DSLs
 ;;raku ; the artist formerly known as perl6
 ;;rest ; Emacs as a REST client
 ;;rst ; ReST in peace
 ;;(ruby +rails) ; 1.step {|i| p "Ruby is #{i.even? ? 'love' : 'life'}"}
 (rust +lsp) ; Fe2O3.unwrap().unwrap().unwrap().unwrap()
 ;;scala ; java, but good
 scheme ; a fully conniving family of lisps
 sh ; she sells {ba,z,fi}sh shells on the C xor
 ;;sml ; no, the /other/ ML
 ;;solidity ; do you need a blockchain? No.
 ;;swift ; who asked for emoji variables?
 ;;terra ; Earth and Moon in alignment for performance.
 web ; the tubes
 yaml ; JSON, but readable
 zig ; C, but simpler

 :email
 (:if (executable-find "mu") (mu4e +org))
 ;;notmuch
 ;;(wanderlust +gmail)

 :app
 ;;calendar ; A dated approach to timetabling
 ;;emms ; Multimedia in Emacs is music to my ears
 everywhere ; *leave* Emacs!? You must be joking.
 irc ; how neckbeards socialize
 (rss +org) ; emacs as an RSS reader
 ;;twitter ; twitter client https://twitter.com/vnought

 :config
 literate
 (default +bindings +smartparens)
)

((orgdev (env ("DOOMDIR" . "~/.config/doom.orgdev"))))

;;; init.el -*- lexical-binding: t; -*-
(doom! :completion vertico
 :editor evil
 :config (default +bindings))

(unpin! org) ; there be bugs

(require 'org)
(load-theme 'modus-operandi t)

;;; cli.el -*- lexical-binding: t; -*-
(setq org-confirm-babel-evaluate nil)

(defun doom-shut-up-a (orig-fn &rest args)
 (quiet! (apply orig-fn args)))

(advice-add 'org-babel-execute-src-block :around #'doom-shut-up-a)

(defcli! repl ((in-rlwrap-p ("--rl") "For internal use only."))
 "Start an elisp REPL."
 (require 'core-start)
 (when (and (executable-find "rlwrap") (not in-rlwrap-p))
 ;; For autocomplete
 (setq autocomplete-file "/tmp/doom_elisp_repl_symbols")
 (unless (file-exists-p autocomplete-file)
 (princ "\e[0;33mInitialising autocomplete list...\e[0m\n")
 (with-temp-buffer
 (cl-do-all-symbols (s)
 (let ((sym (symbol-name s)))
 (when (string-match-p "\\`[[:ascii:]][[:ascii:]]+\\'" sym)
 (insert sym "\n"))))
 (write-region nil nil autocomplete-file)))
 (princ "\e[F")
 (exit! "rlwrap" "-f" autocomplete-file
 (concat doom-emacs-dir "bin/doom") "repl" "--rl"))

 (doom-initialize-packages)
 (require 'engrave-faces-ansi)
 (setq engrave-faces-ansi-color-mode '3-bit)

 ;; For some reason (require 'parent-mode) doesn't work :(
 (defun parent-mode-list (mode)
 "Return a list of MODE and all its parent modes.

The returned list starts with the parent-most mode and ends with MODE."
 (let ((result ()))
 (parent-mode--worker mode (lambda (mode)
 (push mode result)))
 result))
 (defun parent-mode--worker (mode func)
 "For MODE and all its parent modes, call FUNC.

FUNC is first called for MODE, then for its parent, then for the parent's
parent, and so on.

MODE shall be a symbol referring to a function.
FUNC shall be a function taking one argument."
 (funcall func mode)
 (when (not (fboundp mode))
 (signal 'void-function (list mode)))
 (let ((modefunc (symbol-function mode)))
 (if (symbolp modefunc)
 ;; Hande all the modes that use (defalias 'foo-parent-mode (stuff)) as
 ;; their parent
 (parent-mode--worker modefunc func)
 (let ((parentmode (get mode 'derived-mode-parent)))
 (when parentmode
 (parent-mode--worker parentmode func))))))
 (provide 'parent-mode)
 ;; Some extra highlighting (needs parent-mode)
 (require 'rainbow-delimiters)
 (require 'highlight-quoted)
 (require 'highlight-numbers)
 (setq emacs-lisp-mode-hook '(rainbow-delimiters-mode
 highlight-quoted-mode
 highlight-numbers-mode))
 ;; Pretty print
 (defun pp-sexp (sexp)
 (with-temp-buffer
 (cl-prettyprint sexp)
 (emacs-lisp-mode)
 (font-lock-ensure)
 (with-current-buffer (engrave-faces-ansi-buffer)
 (princ (string-trim (buffer-string)))
 (kill-buffer (current-buffer)))))
 ;; Now do the REPL
 (defvar accumulated-input nil)
 (while t
 (condition-case nil
 (let ((input (if accumulated-input
 (read-string "\e[31m .\e[0m ")
 (read-string "\e[31mλ:\e[0m "))))
 (setq input (concat accumulated-input
 (when accumulated-input "\n")
 input))
 (cond
 ((string-match-p "\\`[[:space:]]*\\'" input)
 nil)
 ((string= input "exit")
 (princ "\n") (kill-emacs 0))
 (t
 (condition-case err
 (let ((input-sexp (car (read-from-string input))))
 (setq accumulated-input nil)
 (pp-sexp (eval input-sexp))
 (princ "\n"))
 ;; Caused when sexp in unbalanced
 (end-of-file (setq accumulated-input input))
 (error
 (cl-destructuring-bind (backtrace &optional type data . _)
 (cons (doom-cli--backtrace) err)
 (princ (concat "\e[1;31mERROR:\e[0m " (get type 'error-message)))
 (princ "\n ")
 (pp-sexp (cons type data))
 (when backtrace
 (print! (bold "Backtrace:"))
 (print-group!
 (dolist (frame (seq-take backtrace 10))
 (print!
 "%0.74s" (replace-regexp-in-string
 "[\n\r]" "\\\\n"
 (format "%S" frame))))))
 (princ "\n")))))))
 ;; C-d causes an end-of-file error
 (end-of-file (princ "exit\n") (kill-emacs 0)))
 (unless accumulated-input (princ "\n"))))

(defcli! htmlize (file)
 "Export a FILE buffer to HTML."

 (print! "Htmlizing %s" file)

 (doom-initialize)
 (require 'highlight-numbers)
 (require 'highlight-quoted)
 (require 'rainbow-delimiters)
 (require 'engrave-faces-html)

 ;; Lighten org-mode
 (when (string= "org" (file-name-extension file))
 (setcdr (assoc 'org after-load-alist) nil)
 (setq org-load-hook nil)
 (require 'org)
 (setq org-mode-hook nil)
 (add-hook 'engrave-faces-before-hook
 (lambda () (if (eq major-mode 'org-mode)
 (org-show-all)))))

 (engrave-faces-html-file file))

GIMP Palette
Name: Emacs Fancy Splash Template
#
 17 17 18 #111112 Foreground
139 140 141 #8b8c8d Shadow
238 238 239 #eeeeef Background
230 97 0 #e66100 Colour 1 (Highlight)
 28 113 216 #1c71d8 Colour 2 (Keyword)
245 194 17 #f5c211 Colour 3 (Type)
129 61 156 #813d9c Colour 4 (Constant)
134 94 60 #865e3c Colour 5 (Function)
 46 194 126 #2ec27e Colour 6 (String)
192 28 40 #c01c28 Colour 7 (Error)
 0 0 1 #000001 Black
255 0 0 #ff0000 Red
255 0 255 #ff00ff Magenta
 0 255 0 #00ff00 Green
255 255 0 #ffff00 Yellow
 0 0 255 #0000ff Blue
 0 255 255 #00ffff Cyan
255 255 254 #fffffe White

;;; doctor.el -*- lexical-binding: t; no-byte-compile: t; -*-

(let (required-fonts available-fonts missing-fonts)
 (setq required-fonts '("JetBrains ?Mono.*" "Overpass" "JuliaMono" "IBM Plex Mono"
 "Merriweather" "Alegreya" "Twitter Color Emoji"))

 (setq available-fonts
 (delete-dups
 (or (font-family-list)
 (and (executable-find "fc-list")
 (with-temp-buffer
 (call-process "fc-list" nil t nil ":" "family")
 (split-string (buffer-string) "[,\n]"))))))

 (setq missing-fonts
 (delq nil (mapcar
 (lambda (font)
 (unless (delq nil (mapcar (lambda (f)
 (string-match-p (format "^%s$" font) f))
 available-fonts))
 font))
 required-fonts)))
 (if available-fonts
 (dolist (font missing-fonts)
 (warn! (format "Missing font: %s." font)))
 (warn! "Unable to check for missing fonts, is fc-list installed?")))

(unless (string= "enabled\n" (shell-command-to-string "systemctl --user is-enabled emacs.service"))
 (warn! "Emacsclient service is not enabled."))

(unless (executable-find "hunspell")
 (warn! "Couldn't find hunspell executable."))
(unless (file-exists-p "~/.local/share/hunspell/en-custom.dic")
 (warn! "Custom hunspell dictionary is not present."))

(unless (executable-find "aspell")
 (warn! "Couldn't find aspell executable."))
(unless (file-exists-p "~/.config/enchant/aspell/en-custom.multi")
 (warn! "Custom aspell dictionary is not present."))

(unless (executable-find "wal")
 (warn! "Couldn't find the pywal executable (wal), theme-magic will not function."))

(if (executable-find "sdcv")
 (let ((dict-root (concat (or (getenv "STARDICT_DATA_DIR")
 (concat (or "~/.local/share"
 (getenv "XDG_DATA_HOME"))
 "/stardict"))
 "/dic"))
 (dicts '("webster" "synonyms" "etymology" "en-to-latin" "hitchcock" "elements")))
 (if (file-exists-p dict-root)
 (dolist (dict dicts)
 (unless (file-exists-p (file-name-concat dict-root dict))
 (warn! (format "Absent sdcv dictionary: %s." dict))))
 (warn! "Couldn't find any stcv dictionaries, lexic will not function")))
 (warn! "Couldn't find sdcv executable, lexic will be disabled"))
(when (file-exists-p "~/.mail") ; We care about mail when the mail folder exists
 (unless (executable-find "mu")
 (error! "Couldn't find mail dependency mu."))
 (unless (executable-find "mbsync")
 (error! "Couldn't find mail dependency mbsync."))
 (unless (executable-find "msmtp")
 (error! "Couldn't find mail dependency msmtp."))
 (unless (executable-find "goimapnotify")
 (warn! "Couldn't find mail helper goimapnotify, mail syncs will be slower.")))

(when (and (executable-find "goimapnotify")
 (not (file-exists-p "~/.config/imapnotify")))
 (warn! "goimapnotify is installed but not configured."))

(when (executable-find "mbsync")
 (unless (string= "enabled\n" (shell-command-to-string "systemctl --user is-enabled mbsync.timer"))
 (warn! "The mbsync timer is not enabled.")))

(when (and (executable-find "mu")
 (not (string= (shell-command-to-string "xdg-mime query default x-scheme-handler/mailto")
 "emacsmail.desktop\n")))
 (warn! "Emacs is not registered as a mailto handler."))
(if (string= (shell-command-to-string "xdg-mime query default text/org") "")
 (warn! "text/org is not a registered mime type.")
 (unless (string= (shell-command-to-string "xdg-mime query default text/org") "emacs-client.desktop\n")
 (warn! "Emacs(client) is not set up as the text/org handler.")))
(unless (executable-find "latex2text")
 (warn! "Couldn't find latex2text executable (from pylatexenc), will be unable to render LaTeX fragments in org→text exports."))

[Unit]
Description=Emacs server daemon
Documentation=info:emacs man:emacs(1) https://gnu.org/software/emacs/
Wants=gpg-agent.service

[Service]
Type=forking
ExecStart=zsh -c 'emacs --daemon && emacsclient -c --eval "(delete-frame)"'
ExecStop=/usr/bin/emacsclient --no-wait --eval "(progn (setq kill-emacs-hook nil) (kill emacs))"
Environment=COLORTERM=truecolor
Restart=on-failure

[Install]
WantedBy=default.target

#!/usr/bin/env bash

systemctl --user enable emacs.service

cd /tmp
if [! -d hunspell-en-custom]; then
 curl -o "hunspell-en-custom.zip" 'http://app.aspell.net/create?max_size=80&spelling=GBs&spelling=AU&max_variant=0&diacritic=keep&special=hacker&special=roman-numerals&encoding=utf-8&format=inline&download=hunspell'
 unzip "hunspell-en-custom.zip" -d hunspell-en-custom
fi

cd hunspell-en-custom
DESTDIR1="$HOME/.local/share/hunspell"
DESTDIR2="$HOME/.config/enchant/hunspell"
mkdir -p "$DESTDIR1"
mkdir -p "$DESTDIR2"
cp en-custom.{aff,dic} "$DESTDIR1"
cp en-custom.{aff,dic} "$DESTDIR2"

cd /tmp
if [! -d aspell6-en-custom]; then
 curl -o "aspell6-en-custom.tar.bz2" 'http://app.aspell.net/create?max_size=80&spelling=GBs&spelling=AU&max_variant=0&diacritic=keep&special=hacker&special=roman-numerals&encoding=utf-8&format=inline&download=aspell'
 tar -xjf "aspell6-en-custom.tar.bz2"
fi

cd aspell6-en-custom
DESTDIR="$HOME/.config/enchant/" ./configure
sed -i 's/dictdir = .*/dictdir = "aspell"/' Makefile
sed -i 's/datadir = .*/datadir = "aspell"/' Makefile
make && make install

sudo python3 -m pip install pywal

update-mime-database ~/.local/share/mime

xdg-mime default emacs.desktop text/org

sudo python3 -m pip install pylatexenc

[Desktop Entry]
Name=Emacs client
GenericName=Text Editor
Comment=A flexible platform for end-user applications
MimeType=text/english;text/plain;text/x-makefile;text/x-c++hdr;text/x-c++src;text/x-chdr;text/x-csrc;text/x-java;text/x-moc;text/x-pascal;text/x-tcl;text/x-tex;application/x-shellscript;text/x-c;text/x-c++;
Exec=emacsclient -create-frame --alternate-editor="" --no-wait %F
Icon=emacs
Type=Application
Terminal=false
Categories=TextEditor;Utility;
StartupWMClass=Emacs
Keywords=Text;Editor;
X-KDE-StartupNotify=false

#!/usr/bin/env bash
force_tty=false
force_wait=false
stdin_mode=""

args=()

while :; do
 case "$1" in
 -t | -nw | --tty)
 force_tty=true
 shift ;;
 -w | --wait)
 force_wait=true
 shift ;;
 -m | --mode)
 stdin_mode=" ($2-mode)"
 shift 2 ;;
 -h | --help)
 echo -e "\033[1mUsage: e [-t] [-m MODE] [OPTIONS] FILE [-]\033[0m

Emacs client convenience wrapper.

\033[1mOptions:\033[0m
\033[0;34m-h, --help\033[0m Show this message
\033[0;34m-t, -nw, --tty\033[0m Force terminal mode
\033[0;34m-w, --wait\033[0m Don't supply \033[0;34m--no-wait\033[0m to graphical emacsclient
\033[0;34m-\033[0m Take \033[0;33mstdin\033[0m (when last argument)
\033[0;34m-m MODE, --mode MODE\033[0m Mode to open \033[0;33mstdin\033[0m with

Run \033[0;32memacsclient --help\033[0m to see help for the emacsclient."
 exit 0 ;;
 --*=*)
 set -- "$@" "${1%%=*}" "${1#*=}"
 shift ;;
 *)
 if ["$#" = 0]; then
 break; fi
 args+=("$1")
 shift ;;
 esac
done

if [! "${#args[*]}" = 0] && ["${args[-1]}" = "-"]; then
 unset 'args[-1]'
 TMP="$(mktemp /tmp/emacsstdin-XXX)"
 cat > "$TMP"
 args+=(--eval "(let ((b (generate-new-buffer \"*stdin*\"))) (switch-to-buffer b) (insert-file-contents \"$TMP\") (delete-file \"$TMP\")${stdin_mode})")
fi

if [-z "$DISPLAY"] || $force_tty; then
 # detect terminals with sneaky 24-bit support
 if { ["$COLORTERM" = truecolor] || ["$COLORTERM" = 24bit]; } \
 && ["$(tput colors 2>/dev/null)" -lt 257]; then
 if echo "$TERM" | grep -q "^\w\+-[0-9]"; then
 termstub="${TERM%%-*}"; else
 termstub="${TERM#*-}"; fi
 if infocmp "$termstub-direct" >/dev/null 2>&1; then
 TERM="$termstub-direct"; else
 TERM="xterm-direct"; fi # should be fairly safe
 fi
 emacsclient --tty -create-frame --alternate-editor="$ALTERNATE_EDITOR" "${args[@]}"
else
 if ! $force_wait; then
 args+=(--no-wait); fi
 emacsclient -create-frame --alternate-editor="$ALTERNATE_EDITOR" "${args[@]}"
fi

;; -*- no-byte-compile: t; -*-

(package! rotate :pin "4e9ac3ff800880bd9b705794ef0f7c99d72900a6")

(package! emacs-everywhere :recipe (:local-repo "lisp/emacs-everywhere"))
(unpin! emacs-everywhere)

(package! vlf :recipe (:host github :repo "emacs-straight/vlf" :files ("*.el"))
 :pin "d500f39672b35bf8551fdfafa892c551626c8d54")

(package! evil-escape :disable t)

(package! gptel :pin "94bf19da93aee9a101429d7ecbfbb9c7c5b67216")

(package! headlice :recipe (:local-repo "lisp/headlice"
 :files (:defaults "licenses" "headers")))

;; (package! magit-delta :recipe (:host github :repo "dandavison/magit-delta") :pin "5fc7dbddcfacfe46d3fd876172ad02a9ab6ac616")

(package! mpris :recipe (:local-repo "lisp/mpris"))

(package! jinx)

(package! autocorrect :recipe (:local-repo "lisp/autocorrect"))

(package! aas :recipe (:host github :repo "ymarco/auto-activating-snippets")
 :pin "ddc2b7a58a2234477006af348b30e970f73bc2c1")

(package! screenshot :recipe (:local-repo "lisp/screenshot"))

(package! etrace :recipe (:host github :repo "aspiers/etrace")
 :pin "2291ccf2f2ccc80a6aac4664e8ede736ceb672b7")

(package! string-inflection :pin "617df25e91351feffe6aff4d9e4724733449d608")

(package! info-colors :pin "2e237c301ba62f0e0286a27c1abe48c4c8441143")

(package! modus-themes :pin "f3cd4d6983566dab0ef3bcddf812cfd565d00d08" :pin "3576d14f06f245c3111496bfb035bb0926f48089")

(package! spacemacs-theme :pin "a7c5dccb4a037ba1f090015fc8ffb9566c64e369")

(package! theme-magic :pin "844c4311bd26ebafd4b6a1d72ddcc65d87f074e3")

(package! simple-comment-markup :recipe (:local-repo "lisp/simple-comment-markup"))

(package! doom-modeline-media-player
 :recipe (:local-repo "lisp/doom-modeline-media-player"))

(package! keycast :pin "53514c3dc3dfb7d4c3a65898b0b3edb69b6536c2")

(package! gif-screencast :pin "6798656d3d3107d16e30cc26bc3928b00e50c1ca")

(package! page-break-lines :recipe (:host github :repo "purcell/page-break-lines")
 :pin "982571749c8fe2b5e2997dd043003a1b9fe87b38")

(package! xkcd :pin "80011da2e7def8f65233d4e0d790ca60d287081d")

(package! selectric-mode :pin "1840de71f7414b7cd6ce425747c8e26a413233aa")

(package! wttrin :recipe (:local-repo "lisp/wttrin"))

(package! spray :pin "74d9dcfa2e8b38f96a43de9ab0eb13364300cb46"
 :recipe (:host github :repo "emacsmirror/spray")) ; sr.ht can be flaky

(package! elcord :pin "deeb22f84378b382f09e78f1718bc4c39a3582b8")

(package! systemd :pin "8742607120fbc440821acbc351fda1e8e68a8806")

(package! calibredb :pin "7d33947462c77f9e87e8078fa7b7b398feeef0f7")

(package! nov :pin "b37d9380752e541db3f4b947c219ca54d50ca273")

(package! calctex :recipe (:host github :repo "johnbcoughlin/calctex"
 :files ("*.el" "calctex/*.el" "calctex-contrib/*.el" "org-calctex/*.el" "vendor"))
 :pin "67a2e76847a9ea9eff1f8e4eb37607f84b380ebb")

(package! org :recipe
 (:host nil :repo "https://code.tecosaur.net/mirrors/org-mode.git"
 :remote "mirror" :fork
 (:host nil :repo "https://code.tecosaur.net/tec/org-mode.git"
 :branch "dev" :remote "tecosaur")
 :files (:defaults "etc") :build t :pre-build
 (with-temp-file "lisp/org-version.el"
 (require 'lisp-mnt)
 (let
 ((version
 (with-temp-buffer
 (insert-file-contents "lisp/org.el")
 (lm-header "version")))
 (git-version
 (string-trim
 (with-temp-buffer
 (call-process "git" nil t nil "rev-parse"
 "--short" "HEAD")
 (buffer-string)))))
 (insert
 (format
 "(defun org-release () \"The release version of Org.\" %S)\n"
 version)
 (format
 "(defun org-git-version () \"The truncate git commit hash of Org mode.\" %S)\n"
 git-version)
 "(provide 'org-version)\n"))))
 :pin nil)

(unpin! org) ; there be bugs
(package! org-contrib
 ;; The `sr.ht' repo has been a bit flaky as of late.
 :recipe (:host github :repo "emacsmirror/org-contrib"
 :files ("lisp/*.el"))
 :pin "8d14a600a2069ffc494edfc9a12b8e5fc8840bf1")

(package! org-modern :pin "a58534475b4312b0920aa9d3824272470c8e3500")

(package! org-appear :recipe (:host github :repo "awth13/org-appear")
 :pin "32ee50f8fdfa449bbc235617549c1bccb503cb09")

(package! org-ol-tree :recipe (:host github :repo "Townk/org-ol-tree")
 :pin "207c748aa5fea8626be619e8c55bdb1c16118c25")

(package! ob-julia :recipe (:local-repo "lisp/ob-julia" :files ("*.el" "julia")))

(package! ob-http :pin "b1428ea2a63bcb510e7382a1bf5fe82b19c104a7")

(package! ox-rss :pin "d2964eca3614f84db85b498d065862a1e341868d")

(package! org-transclusion :recipe (:host github :repo "nobiot/org-transclusion")
 :pin "e9728b0b14b5c2e5d3b68af98f772ed99e136b48")

(package! org-graph-view :recipe (:host github :repo "alphapapa/org-graph-view")
 :pin "172157aee1131ea59f0bd724a10abfdbccbd860e")

(package! org-chef :pin "1710b54441ed744dcdfb125d08fb88cfaf452f10")

(package! org-pandoc-import :recipe
 (:local-repo "lisp/org-pandoc-import" :files ("*.el" "filters" "preprocessors")))

(package! org-glossary :recipe (:local-repo "lisp/org-glossary"))

(package! orgdiff :recipe (:local-repo "lisp/orgdiff"))

(package! org-music :recipe (:local-repo "lisp/org-music"))

(package! org-cite-csl-activate :recipe (:host github :repo "andras-simonyi/org-cite-csl-activate") :pin "ccadbdcdfd1b4cb0cea132324cc1912e0f1900b6")

(package! org-super-agenda :pin "fb20ad9c8a9705aa05d40751682beae2d094e0fe")

(package! doct
 :recipe (:host github :repo "progfolio/doct")
 :pin "5cab660dab653ad88c07b0493360252f6ed1d898")

(package! org-roam :disable t)

(package! org-roam-ui :recipe (:host github :repo "org-roam/org-roam-ui" :files ("*.el" "out")) :pin "5ac74960231db0bf7783c2ba7a19a60f582e91ab")
(package! websocket :pin "40c208eaab99999d7c1e4bea883648da24c03be3") ; dependency of `org-roam-ui'

;; (package! org-pretty-tags :pin "5c7521651b35ae9a7d3add4a66ae8cc176ae1c76")

(package! engrave-faces :recipe (:local-repo "lisp/engrave-faces"))

(package! ox-chameleon :recipe (:local-repo "lisp/ox-chameleon"))

(package! ox-gfm :pin "4f774f13d34b3db9ea4ddb0b1edc070b1526ccbb")

(package! laas :recipe (:local-repo "lisp/LaTeX-auto-activating-snippets"))

(package! conf-data-toml :recipe (:local-repo "lisp/conf-data-toml"))

(package! graphviz-dot-mode :pin "8ff793b13707cb511875f56e167ff7f980a31136")

(package! beancount :recipe (:host github :repo "beancount/beancount-mode")
 :pin "ddd4b8725703cf17a665b56cc26a3f9f95642424")

#!/usr/bin/env python3
from pathlib import Path
import json
import re
import shutil
import subprocess
import sys
import fnmatch

mbsyncFile = Path("~/.mbsyncrc").expanduser()

imapnotifyConfigFolder = Path("~/.config/imapnotify/").expanduser()
imapnotifyConfigFolder.mkdir(exist_ok=True)
imapnotifyConfigFilename = "notify.conf"

imapnotifyDefault = {
 "host": "",
 "port": 993,
 "tls": True,
 "tlsOptions": {"rejectUnauthorized": True},
 "onNewMail": "",
 "onNewMailPost": "if mu index --lazy-check; then test -f /tmp/mu_reindex_now && rm /tmp/mu_reindex_now; else touch /tmp/mu_reindex_now; fi",
}

def stripQuotes(string):
 if string[0] == '"' and string[-1] == '"':
 return string[1:-1].replace('\\"', '"')

mbsyncInotifyMapping = {
 "Host": (str, "host"),
 "Port": (int, "port"),
 "User": (str, "username"),
 "Password": (str, "password"),
 "PassCmd": (stripQuotes, "passwordCmd"),
 "Patterns": (str, "_patterns"),
}

oldAccounts = [d.name for d in imapnotifyConfigFolder.iterdir() if d.is_dir()]

currentAccount = ""
currentAccountData = {}

successfulAdditions = []

def processLine(line):
 newAcc = re.match(r"^IMAPAccount ([^#]+)", line)

 linecontent = re.sub(r"(^|[^\\])#.*", "", line).split(" ", 1)
 if len(linecontent) != 2:
 return

 parameter, value = linecontent

 if parameter == "IMAPAccount":
 if currentAccountNumber > 0:
 finaliseAccount()
 newAccount(value)
 elif parameter in mbsyncInotifyMapping.keys():
 parser, key = mbsyncInotifyMapping[parameter]
 currentAccountData[key] = parser(value)
 elif parameter == "Channel":
 currentAccountData["onNewMail"] = f"mbsync --pull --new {value}:'%s'"

def newAccount(name):
 global currentAccountNumber
 global currentAccount
 global currentAccountData
 currentAccountNumber += 1
 currentAccount = name
 currentAccountData = {}
 print(f"\n\033[1;32m{currentAccountNumber}\033[0;32m - {name}\033[0;37m")

def accountToFoldername(name):
 return re.sub(r"[^A-Za-z0-9]", "", name)

def finaliseAccount():
 if currentAccountNumber == 0:
 return

 global currentAccountData
 try:
 currentAccountData["boxes"] = getMailBoxes(currentAccount)
 except subprocess.CalledProcessError as e:
 print(
 f"\033[1;31mError:\033[0;31m failed to fetch mailboxes (skipping): "
 + f"`{' '.join(e.cmd)}' returned code {e.returncode}\033[0;37m"
)
 return
 except subprocess.TimeoutExpired as e:
 print(
 f"\033[1;31mError:\033[0;31m failed to fetch mailboxes (skipping): "
 + f"`{' '.join(e.cmd)}' timed out after {e.timeout:.2f} seconds\033[0;37m"
)
 return

 if "_patterns" in currentAccountData:
 currentAccountData["boxes"] = applyPatternFilter(
 currentAccountData["_patterns"], currentAccountData["boxes"]
)

 # strip not-to-be-exported data
 currentAccountData = {
 k: currentAccountData[k] for k in currentAccountData if k[0] != "_"
 }

 parametersSet = currentAccountData.keys()
 currentAccountData = {**imapnotifyDefault, **currentAccountData}
 for key, val in currentAccountData.items():
 valColor = "\033[0;33m" if key in parametersSet else "\033[0;37m"
 print(f" \033[1;37m{key:<13} {valColor}{val}\033[0;37m")

 if (
 len(currentAccountData["boxes"]) > 15
 and "@gmail.com" in currentAccountData["username"]
):
 print(
 " \033[1;31mWarning:\033[0;31m Gmail raises an error when more than"
 + "\033[1;31m15\033[0;31m simultanious connections are attempted."
 + "\n You are attempting to monitor "
 + f"\033[1;31m{len(currentAccountData['boxes'])}\033[0;31m mailboxes.\033[0;37m"
)

 configFile = (
 imapnotifyConfigFolder
 / accountToFoldername(currentAccount)
 / imapnotifyConfigFilename
)
 configFile.parent.mkdir(exist_ok=True)

 json.dump(currentAccountData, open(configFile, "w"), indent=2)
 print(f" \033[0;35mConfig generated and saved to {configFile}\033[0;37m")

 global successfulAdditions
 successfulAdditions.append(accountToFoldername(currentAccount))

def getMailBoxes(account):
 boxes = subprocess.run(
 ["mbsync", "--list", account], check=True, stdout=subprocess.PIPE, timeout=10.0
)
 return boxes.stdout.decode("utf-8").strip().split("\n")

def applyPatternFilter(pattern, mailboxes):
 patternRegexs = getPatternRegexes(pattern)
 return [m for m in mailboxes if testPatternRegexs(patternRegexs, m)]

def getPatternRegexes(pattern):
 def addGlob(b):
 blobs.append(b.replace('\\"', '"'))
 return ""

 blobs = []
 pattern = re.sub(r' ?"([^"]+)"', lambda m: addGlob(m.groups()[0]), pattern)
 blobs.extend(pattern.split(" "))
 blobs = [
 (-1, fnmatch.translate(b[1::])) if b[0] == "!" else (1, fnmatch.translate(b))
 for b in blobs
]
 return blobs

def testPatternRegexs(regexCond, case):
 for factor, regex in regexCond:
 if factor * bool(re.match(regex, case)) < 0:
 return False
 return True

def processSystemdServices():
 keptAccounts = [acc for acc in successfulAdditions if acc in oldAccounts]
 freshAccounts = [acc for acc in successfulAdditions if acc not in oldAccounts]
 staleAccounts = [acc for acc in oldAccounts if acc not in successfulAdditions]

 if keptAccounts:
 print(f"\033[1;34m{len(keptAccounts)}\033[0;34m kept accounts:\033[0;37m")
 restartAccountSystemdServices(keptAccounts)

 if freshAccounts:
 print(f"\033[1;32m{len(freshAccounts)}\033[0;32m new accounts:\033[0;37m")
 enableAccountSystemdServices(freshAccounts)
 else:
 print(f"\033[0;32mNo new accounts.\033[0;37m")

 notActuallyEnabledAccounts = [
 acc for acc in successfulAdditions if not getAccountServiceState(acc)["enabled"]
]
 if notActuallyEnabledAccounts:
 print(
 f"\033[1;32m{len(notActuallyEnabledAccounts)}\033[0;32m accounts need re-enabling:\033[0;37m"
)
 enableAccountSystemdServices(notActuallyEnabledAccounts)

 if staleAccounts:
 print(f"\033[1;33m{len(staleAccounts)}\033[0;33m removed accounts:\033[0;37m")
 disableAccountSystemdServices(staleAccounts)
 else:
 print(f"\033[0;33mNo removed accounts.\033[0;37m")

def enableAccountSystemdServices(accounts):
 for account in accounts:
 print(f" \033[0;32m - \033[1;37m{account:<18}", end="\033[0;37m", flush=True)
 if setSystemdServiceState(
 "enable", f"goimapnotify@{accountToFoldername(account)}.service"
):
 print("\033[1;32m enabled")

def disableAccountSystemdServices(accounts):
 for account in accounts:
 print(f" \033[0;33m - \033[1;37m{account:<18}", end="\033[0;37m", flush=True)
 if setSystemdServiceState(
 "disable", f"goimapnotify@{accountToFoldername(account)}.service"
):
 print("\033[1;33m disabled")

def restartAccountSystemdServices(accounts):
 for account in accounts:
 print(f" \033[0;34m - \033[1;37m{account:<18}", end="\033[0;37m", flush=True)
 if setSystemdServiceState(
 "restart", f"goimapnotify@{accountToFoldername(account)}.service"
):
 print("\033[1;34m restarted")

def setSystemdServiceState(state, service):
 try:
 enabler = subprocess.run(
 ["systemctl", "--user", state, service, "--now"],
 check=True,
 stderr=subprocess.DEVNULL,
 timeout=5.0,
)
 return True
 except subprocess.CalledProcessError as e:
 print(
 f" \033[1;31mfailed\033[0;31m to {state}, `{' '.join(e.cmd)}'"
 + f"returned code {e.returncode}\033[0;37m"
)
 except subprocess.TimeoutExpired as e:
 print(f" \033[1;31mtimed out after {e.timeout:.2f} seconds\033[0;37m")
 return False

def getAccountServiceState(account):
 return {
 state: bool(
 1
 - subprocess.run(
 [
 "systemctl",
 "--user",
 f"is-{state}",
 "--quiet",
 f"goimapnotify@{accountToFoldername(account)}.service",
],
 stderr=subprocess.DEVNULL,
).returncode
)
 for state in ("enabled", "active", "failing")
 }

def getAccountServiceStates(accounts):
 for account in accounts:
 enabled, active, failing = getAccountServiceState(account).values()
 print(f" - \033[1;37m{account:<18}\033[0;37m ", end="", flush=True)
 if not enabled:
 print("\033[1;33mdisabled\033[0;37m")
 elif active:
 print("\033[1;32mactive\033[0;37m")
 elif failing:
 print("\033[1;31mfailing\033[0;37m")
 else:
 print("\033[1;35min an unrecognised state\033[0;37m")

if len(sys.argv) > 1:
 if sys.argv[1] in ["-e", "--enable"]:
 enableAccountSystemdServices(oldAccounts)
 exit()
 elif sys.argv[1] in ["-d", "--disable"]:
 disableAccountSystemdServices(oldAccounts)
 exit()
 elif sys.argv[1] in ["-r", "--restart"]:
 restartAccountSystemdServices(oldAccounts)
 exit()
 elif sys.argv[1] in ["-s", "--status"]:
 getAccountServiceStates(oldAccounts)
 exit()
 elif sys.argv[1] in ["-h", "--help"]:
 print("""\033[1;37mMbsync to IMAP Notify config generator.\033[0;37m

Usage: mbsync-imapnotify [options]

Options:
 -e, --enable enable all services
 -d, --disable disable all services
 -r, --restart restart all services
 -s, --status fetch the status for all services
 -h, --help show this help
""", end='')
 exit()
 else:
 print(f"\033[0;31mFlag {sys.argv[1]} not recognised, try --help\033[0;37m")
 exit()

mbsyncData = open(mbsyncFile, "r").read()

currentAccountNumber = 0

totalAccounts = len(re.findall(r"^IMAPAccount", mbsyncData, re.M))

def main():
 print("\033[1;34m:: MbSync to Go IMAP notify config file creator ::\033[0;37m")

 shutil.rmtree(imapnotifyConfigFolder)
 imapnotifyConfigFolder.mkdir(exist_ok=False)
 print("\033[1;30mImap Notify config dir purged\033[0;37m")

 print(f"Identified \033[1;32m{totalAccounts}\033[0;32m accounts.\033[0;37m")

 for line in mbsyncData.split("\n"):
 processLine(line)

 finaliseAccount()

 print(
 f"\nConfig files generated for \033[1;36m{len(successfulAdditions)}\033[0;36m"
 + f" out of \033[1;36m{totalAccounts}\033[0;37m accounts.\n"
)

 processSystemdServices()

if __name__ == "__main__":
 main()

[Unit]
Description=IMAP notifier using IDLE, golang version.
ConditionPathExists=%h/.config/imapnotify/%I/notify.conf
After=network.target
Wants=gpg-agent.service

[Service]
ExecStart=%h/.local/bin/goimapnotify -conf %h/.config/imapnotify/%I/notify.conf
Restart=always
RestartSec=30

[Install]
WantedBy=default.target

#!/usr/bin/env sh
emacsclient -create-frame --alternate-editor='' --no-wait --eval \
"(progn (x-focus-frame nil) (mu4e-compose-from-mailto \"$1\" t))"

[Desktop Entry]
Name=Mu4e
GenericName=Compose a new message with Mu4e in Emacs
Comment=Open mu4e compose window
MimeType=x-scheme-handler/mailto;
Exec=emacsmail %u
Icon=emacs
Type=Application
Terminal=false
Categories=Network;Email;
StartupWMClass=Emacs

 Emacs Org-mode File

MIT License

Copyright (c) 2020 tecosaur

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

